研究论文

秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素

展开
  • 1陕西省地表系统与环境承载力重点实验室, 西安 710127
    2西北大学城市与环境学院, 西安 710127
    3西北大学生命科学学院, 西安 710127
    4西北农林科技大学农学院, 陕西杨凌 712100

收稿日期: 2019-12-23

  录用日期: 2020-04-23

  网络出版日期: 2020-07-03

基金资助

国家自然科学基金(41601578);中国博士后特别资助(2018T111089)

Characteristics of soil enzyme activities and stoichiometry and its influencing factors in Quercus aliena var. acuteserrata forests in the Qinling Mountains

Expand
  • 1Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Xi?an 710127, China
    2College of Urban and Environment Science, Northwest University, Xi?an 710127, China
    3College of Life Sciences, Northwest University, Xi?an 710127, China
    4College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China

Received date: 2019-12-23

  Accepted date: 2020-04-23

  Online published: 2020-07-03

Supported by

National Natural Science Foundation of China(41601578);China Postdoctoral Science Foundation(2018T111089)

摘要

研究微尺度海拔梯度土壤酶活性与化学计量学比值的动态变化及驱动因素对于探讨生态系统养分循环过程具有重要意义。该研究以秦岭太白山6个海拔(分别为1 308、1 403、1 503、1 603、1 694和1 803 m)的锐齿栎(Quercus aliena var. acuteserrata)林作为研究对象, 测定锐齿栎叶片、凋落物、细根和土壤的碳(C)、氮(N)、磷(P)含量以及碱性磷酸酶(AKP)、β-1,4-葡萄糖苷酶(βG)、纤维二糖水解酶(CBH)、木糖苷酶(βX)与β-N-乙酰氨基葡萄糖苷酶(NAG)的活性, 探究不同海拔植物、土壤、酶含量如何变化及驱动土壤酶活性变化的主要因子。结果表明: 5种土壤酶活性在海拔梯度上表现出不同的变化趋势, CBH和βG活性随海拔升高整体呈先增后减趋势, βX与之相反; NAG与AKP活性在1 408-1 694 m呈下降趋势, 在1 803 m处有所升高; 土壤总体酶活性随海拔上升整体表现为降低趋势。相关性分析表明, 土壤酶活性及其化学计量比不同程度上受到植物和土壤C、N、P资源及土壤水热条件等的调控, 其中与土壤有机碳含量的相关性较高, 土壤有机碳含量可被认为是锐齿栎林中影响土壤酶活性变化的主要因子。总之, 土壤酶活性及化学计量比在微尺度海拔梯度上具有差异性, 且受到植物和土壤C、N、P资源的综合影响。

本文引用格式

解梦怡, 冯秀秀, 马寰菲, 胡汗, 王洁莹, 郭垚鑫, 任成杰, 王俊, 赵发珠 . 秦岭锐齿栎林土壤酶活性与化学计量比变化特征及其影响因素[J]. 植物生态学报, 2020 , 44(8) : 885 -894 . DOI: 10.17521/cjpe.2019.0358

Abstract

Aims The dynamics and driving factors of soil enzyme activities and stoichiometry in the micro-scale elevation gradient is of great significance in the study of nutrient cycling processes.
Methods In the present study, the Quercus aliena var. acuteserrata forest belts at the elevation of 1 308, 1 403, 1 503, 1 603, 1 694 and 1 803 m in Taibai Mountain were sampled to determine the contents of carbon (C), nitrogen (N), and phosphorus (P) in leaves, litters, roots and soils, and the activities of alkaline phosphatase (AKP), β-1,4-glucosidase (βG), cellobiohydrolase (CBH), β-1,4-xylosidase (βX) and β-1,4-N-acetylglucosaminidase (NAG).
Important findings Our results showed that altitude had a great impact on the activities of five soil enzymes. CBH and βG increased first and then decreased with the altitude, while βX showed the opposite trend. The NAG and AKP activity showed a downward trend from 1 408 to 1 694 m and increased with elevation since 1 803 m. The total enzyme activity index exhibited a decreasing trend with altitudes increases. The correlation analysis results indicated that soil enzyme activities and their stoichiometry were controlled by plant, soil C, N, P resources, and soil water and heat conditions. Among these factors, the content of soil organic carbon had high correlation with these parameters and was the main factor affecting the change of soil enzyme activities in the Quercus aliena var. acuteserrata forest. In short, the soil enzyme activities and stoichiometry were different along the micro-scale elevation gradient, affected by the C, N, and P resources of plant and soil.

参考文献

[1] Bach LH, Grytnes JA, Halvorsen R, Ohlson M (2010). Tree influence on soil microbial community structure. Soil Biology & Biochemistry, 42, 1934-1943.
[2] Cao R, Wu FZ, Yang WQ, Xu ZF, Tan B, Wang B, Li J, Chang CH (2016). Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions. Chinese Journal of Applied Ecology, 27, 1257-1264.
[2] [ 曹瑞, 吴福忠, 杨万勤, 徐振锋, 谭波, 王滨, 李俊, 常晨晖 (2016). 海拔对高山峡谷区土壤微生物生物量和酶活性的影响. 应用生态学报, 27, 1257-1264.]
[3] Enrique AG, Bruno C, Christopher A, Virgile C, Stéven C (2008). Effects of nitrogen availability on microbial activities, densities and functional diversities involved in the degradation of a Mediterranean evergreen oak litter (Quercus ilex L.). Soil Biology & Biochemistry, 40, 1654-1661.
[4] Gu XN, He HS, Tao Y, Jin YH, Zhang XY, Xu ZW, Wang YT, Song XX (2017). Soil microbial community structure, enzyme activities, and their influencing factors along different altitudes of Changbai Mountain. Acta Ecologica Sinica, 37, 8374-8384.
[4] [ 谷晓楠, 贺红士, 陶岩, 靳英华, 张心昱, 徐志伟, 王钰婷, 宋祥霞 (2017). 长白山土壤微生物群落结构及酶活性随海拔的分布特征与影响因子. 生态学报, 37, 8374-8384.]
[5] Guo ZM, Zhang XY, Li DD, Dong WT, Li ML (2017). Characteristics of soil organic carbon and related exo-enzyme activities at different altitudes in temperate forests. Chinese Journal of Applied Ecology, 28, 2888-2896.
[5] [ 郭志明, 张心昱, 李丹丹, 董文亭, 李美玲 (2017). 温带森林不同海拔土壤有机碳及相关胞外酶活性特征. 应用生态学报, 28, 2888-2896.]
[6] He WX, Tan XP, Wang XD, Tang M, Hao MD (2010). Study on total enzyme activity index in soils. Acta Pedologica Sinica, 47, 1232-1236.
[6] [ 和文祥, 谭向平, 王旭东, 唐明, 郝明德 (2010). 土壤总体酶活性指标的初步研究. 土壤学报, 47, 1232-1236.]
[7] Hofmann K, Lamprecht A, Pauli H, Illmer P (2016). Distribution of prokaryotic abundance and microbial nutrient cycling across a high-alpine altitudinal gradient in the Austrian Central Alps is affected by vegetation, temperature, and soil nutrients. Microbial Ecology, 72, 704-716.
[8] Huang HL, Zong N, He NP, Tian J (2019). Characteristics of soil enzyme stoichiometry along an altitude gradient on Qinghai-Tibet Plateau alpine meadow, China. Chinese Journal of Applied Ecology, 30, 3689-3696.
[8] [ 黄海莉, 宗宁, 何念鹏, 田静 (2019). 青藏高原高寒草甸不同海拔土壤酶化学计量特征. 应用生态学报, 30, 3689-3696.]
[9] Jiang PP, Cao Y, Chen YM, Zhao YP (2017). N and P stoichiometric characteristics of leaves, litter, and soil for three dominant tree species in the Shaanxi Province. Acta Ecologica Sinica, 37, 443-454.
[9] [ 姜沛沛, 曹扬, 陈云明, 赵一娉 (2017). 陕西省3种主要树种叶片、凋落物和土壤N、P化学计量特征. 生态学报, 37, 443-454.]
[10] Kardol P, Cregger MA, Campany CE, Classen AT (2010). Soil ecosystem functioning under climate change: plant species and community effects. Ecology, 91, 767-781.
[11] Koch O, Tscherko D, Kandeler E (2007). Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Global Biogeochemical Cycles, 21, GB4017. DOI: 10.1029/ 2007GB002983.
[12] Lei TZ, Si GC, Wang J, Zhang GX (2017). Microbial communities and associated enzyme activities in alpine wetlands with increasing altitude on the Tibetan Plateau. Wetlands, 37, 401-412.
[13] Liu S, Luo D, Liu QL, Zhang L, Yang HG, Shi ZM (2017). Carbon and nitrogen storage and distribution in different forest ecosystems in the subalpine of western Sichuan. Acta Ecologica Sinica, 37, 1074-1083.
[13] [ 刘顺, 罗达, 刘千里, 张利, 杨洪国, 史作民 (2017). 川西亚高山不同森林生态系统碳氮储量及其分配格局. 生态学报, 37, 1074-1083.]
[14] Lucas Y, Luizao FJ, Chauvel A, Rouiller J, Nahon D (1993). The relation between biological activity of the rain forest and mineral composition of soils. Science, 260, 521-523.
[15] Lucas-Borja ME, Candel Pérez D, López-Serrano FR, Andrés M, Bastida F (2012). Altitude-related factors but not Pinus community exert a dominant role over chemical and microbiological properties of a Mediterranean humid soil. European Journal of Soil Science, 63, 541-549.
[16] Ma J, Liu XD, Jin M, Zhao WJ, Cheng CX, Meng HJ, Wu XR (2019). Soil physicochemical properties and enzyme activities along the altitudinal gradients in Picea crassifolia of Qilian Mountains. Journal of Soil and Water Conservation, 33, 207-213.
[16] [ 马剑, 刘贤德, 金铭, 赵维俊, 成彩霞, 孟好军, 武秀荣 (2019). 祁连山青海云杉林土壤理化性质和酶活性海拔分布特征. 水土保持学报, 33, 207-213.]
[17] Nie YY, Wang HH, Li XJ, Ren YB, Jin CS, Xu ZK, Lv MK, Xie JS (2018). Characteristics of soil organic carbon mineralization in low altitude and high altitude forests in Wuyi Mountains, southeastern China. Chinese Journal of Applied Ecology, 29, 748-756.
[17] [ 聂阳意, 王海华, 李晓杰, 任寅榜, 金昌善, 徐自坤, 吕茂奎, 谢锦升 (2018). 武夷山低海拔和高海拔森林土壤有机碳的矿化特征. 应用生态学报, 29, 748-756.]
[18] Olander LP, Vitousek PM (2000). Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry, 49, 175-191.
[19] Qi RM, Li J, Lin ZA, Li ZJ, Li YT, Yang XD, Zhang JJ, Zhao BQ (2016). Temperature effects on soil organic carbon, soil labile organic carbon fractions, and soil enzyme activities under long-term fertilization regimes. Applied Soil Ecology, 102, 36-45.
[20] Si GC, Yuan YL, Wang J, Xia YQ, Lei TZ, Zhang GX (2014). Microbial community and soil enzyme activities along an altitudinal gradient in Sejila Mountains. Microbiology China, 41, 2001-2011.
[20] [ 斯贵才, 袁艳丽, 王建, 夏燕青, 雷天柱, 张更新 (2014). 藏东南森林土壤微生物群落结构与土壤酶活性随海拔梯度的变化. 微生物学通报, 41, 2001-2011.]
[21] Sinsabaugh RL, Follstad Shah JJ (2010). Integrating resource utilization and temperature in metabolic scaling of riverine bacterial production. Ecology, 91, 1455-1465.
[22] Tang ZY, Fang JY, Zhang L (2004). Patterns of woody plant species diversity along environmental gradients on Mt. Taibai, Qinling Mountains. Biodiversity Science, 12, 115-122.
[22] [ 唐志尧, 方精云, 张玲 (2004). 秦岭太白山木本植物物种多样性的梯度格局及环境解释. 生物多样性, 12, 115-122.]
[23] Tao BX, Zhang JC, Yu YC, Cong RL (2010). Season variations of forest soil enzyme activities in the hilly region of southern Jiangsu Province. Ecology and Environmental Sciences, 19, 2349-2354.
[23] [ 陶宝先, 张金池, 愈元春, 丛日亮 (2010). 苏南丘陵地区森林土壤酶活性季节变化. 生态环境学报, 19, 2349-2354.]
[24] Ushio M, Balser TC, Kitayama K (2013). Effects of condensed tannins in conifer leaves on the composition and activity of the soil microbial community in a tropical montane forest. Plant and Soil, 365, 157-170.
[25] Wallenius K, Rita H, Mikkonen A, Lappi K, Lindstr?m K, Hartikainen H, Raateland A, Niemi RM (2011). Effects of land use on the level, variation and spatial structure of soil enzyme activities and bacterial communities. Soil Biology & Biochemistry, 43, 1464-1473.
[26] Wang Y, Wang YM, Chen LC (2010). Effects of forest vegetation change on soil microbial biomass carbon and enzyme activities in Huitong, Hunan Province. Chinese Journal of Ecology, 29, 905-909.
[26] [ 王莹, 王彦梅, 陈龙池 (2010). 湖南会同地区森林植被转变对土壤微生物生物量碳和酶活性的影响. 生态学杂志, 29, 905-909.]
[27] Xu ZW, Yu GR, Zhang XY, Ge JP, He NP, Wang QF, Wang D (2015). The variations in soil microbial communities, enzyme activities and their relationships with soil organic matter decomposition along the northern slope of Changbai Mountain. Applied Soil Ecology, 86, 19-29.
[28] Xu ZW, Yu GR, Zhang XY, He NP, Wang QF, Wang SZ, Wang RL, Zhao N, Jia YL, Wang CY (2017). Soil enzyme activity and stoichiometry in forest ecosystems along the North-South Transect in eastern China (NSTEC). Soil Biology & Biochemistry, 104, 152-163.
[29] Yang R, Liu S, Wang ZQ, Cao YC, Zhao YM, He WX, Geng ZC (2016). Relationships between the soil enzyme activity and soil nutrients in forest soils typical of the Qinling Mountain. Acta Pedologica Sinica, 53, 1037-1046.
[29] [ 杨瑞, 刘帅, 王紫泉, 曹永昌, 赵翊明, 和文祥, 耿增超 (2016). 秦岭山脉典型林分土壤酶活性与土壤养分关系的探讨. 土壤学报, 53, 1037-1046.]
[30] Yin S, Wang CK, Jin Y, Zhou ZH (2019). Changes in soil- microbe-exoenzyme C:N:P stoichiometry along an altitudinal gradient in Mt. Datudingzi, Northeast China. Chinese Journal of Plant Ecology, 43, 999-1009.
[30] [ 殷爽, 王传宽, 金鹰, 周正虎 (2019). 东北地区大秃顶子山土壤-微生物-胞外酶C:N:P化学计量特征沿海拔梯度的变化. 植物生态学报, 43, 999-1009.]
[31] Zhao YH, Lei RD, Jia X, He XY, Chen W (2003). Quantitative analysis on sharp-tooth oak stands in Qinling Mountains. Chinese Journal of Applied Ecology, 14, 2123-2128.
[31] [ 赵永华, 雷瑞德, 贾夏, 何兴元, 陈玮 (2003). 秦岭锐齿栎群落数量特征的研究. 应用生态学报, 14, 2123-2128.]
文章导航

/