综述

生物互作与全球变化下的生态系统动态: 从理论到应用

展开
  • 复旦大学生命科学学院, 生物多样性与生态工程教育部重点实验室, 上海 200438

收稿日期: 2020-03-03

  录用日期: 2020-07-02

  网络出版日期: 2020-07-03

基金资助

国家自然科学基金(31870414)

Biotic interactions and ecosystem dynamics under global change: from theory to application

Expand
  • MOE Key Laboratory of Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China

Received date: 2020-03-03

  Accepted date: 2020-07-02

  Online published: 2020-07-03

Supported by

National Natural Science Foundation of China(31870414)

摘要

随着气候变化和人类活动的加剧, 生态系统组成与结构的时空动态正变得日益剧烈和复杂, 许多生态系统呈退化趋势。全球变化背景下的生态系统动态及其形成机制既是生态学的基础理论问题, 也是生态系统修复和保护中亟需认识的关键应用问题。该文在概述连续型、阈值型和随机型等生态系统动态模式的基础上, 分析生物互作影响生态系统动态的机理; 结合次生演替、稳态转换、物种分布区移位等研究热点, 总结有关生物互作对生态系统动态影响的主要研究进展; 并探讨相关生物互作理论在生态系统保护和修复中的应用。日益丰富的研究表明, 竞争、促进(包括共生)、营养级间的互作等一系列生物互作可直接或间接驱动或改变生态系统在不同时空尺度上变化的模式、方向及速率; 在生态系统管理实践中, 应用生物互作的相关理论有望大幅提升生态系统保护和修复的成效。进一步丰富和完善该领域的基础理论及应用实践, 需要今后在生物互作对生态系统动态影响的时空变异机制、多重干扰下生物互作对生态系统动态的影响、生物互作在生态系统保护和修复中的应用等方面开展深入研究。

本文引用格式

贺强 . 生物互作与全球变化下的生态系统动态: 从理论到应用[J]. 植物生态学报, 2021 , 45(10) : 1075 -1093 . DOI: 10.17521/cjpe.2020.0055

Abstract

Under intensifying human activities and climate change, spatiotemporal changes in ecosystem composition and structure are becoming increasingly drastic and intricate, and there are trends of degradation in many ecosystems. An improved understanding of ecosystem dynamics and their underlying mechanisms in the context of global change can not only help resolve fundamental theoretical questions in ecology, but can also inform applied issues in ecosystem restoration and conservation. Here, we review different models of ecosystem dynamics (gradual continuum, threshold/regime shift, and stochastic) and conceptualize the mechanisms by which biotic interactions can potentially modulate ecosystem dynamics. We then synthesize the state of understanding how biotic interactions regulate secondary succession, regime shift, and species range shift—ecosystem dynamics subject to intense recent investigation. We further discuss results from studies that applied theories on biotic interactions in ecosystem restoration and conservation. We show that there is a growing body of research revealing 1) that multiple types of biotic interactions, such as competition, facilitation (including mutualism), and trophic interactions, can drive or substantially alter the patterns, directions, and rates of ecosystem change at various spatiotemporal scales, and 2) that managing biotic interactions is likely to greatly enhance the performance of ecosystem restoration and conservation. To move forward, we highlight that further research is needed to better understand how the impacts of biotic interactions on ecosystem dynamics vary spatially and temporally, how biotic interactions modulate ecosystem dynamics under multiple anthropogenic disturbances, and how best to manage biotic interactions to optimize ecosystem conservation and restoration.

参考文献

[1] Alexander JM, Diez JM, Levine JM (2015). Novel competitors shape species’ responses to climate change. Nature, 525, 515-518.
[2] Amundrud SL, Srivastava DS (2016). Trophic interactions determine the effects of drought on an aquatic ecosystem. Ecology, 97, 1475-1483.
[3] Asner GP, Elmore AJ, Olander LP, Martin RE, Harris AT (2004). Grazing systems, ecosystem responses, and global change. Annual Review of Environment and Resources, 29, 261-299.
[4] Bai Y, Han X, Wu J, Chen Z, Li L (2004). Ecosystem stability and compensatory effects in the Inner Mongolia grassland. Nature, 431, 181-184.
[5] Begon M, Townsend CR, Harper JL (2006). Ecology: from Individuals to Ecosystems. 4th ed. Blackwell Publishing, Malden, USA.
[6] Bernhardt JR, Leslie HM (2013). Resilience to climate change in coastal marine ecosystems. Annual Review of Marine Science, 5, 371-392.
[7] Bertness MD, Callaway R (1994). Positive interactions in communities. Trends in Ecology & Evolution, 9, 191-193.
[8] Blois JL, Zarnetske PL, Fitzpatrick MC, Finnegan S (2013). Climate change and the past, present, and future of biotic interactions. Science, 341, 499-504.
[9] Boersma M, Mathew KA, Niehoff B, Schoo KL, Franco-Santos RM, Meunier CL (2016). Temperature-driven changes in the diet preference of omnivorous copepods: No more meat when itʼs hot? A response to Winder et al. Ecology Letters, 19, 1386-1388.
[10] Boivin NL, Zeder MA, Fuller DQ, Crowther A, Larson G, Erlandson JM, Denham T, Petraglia MD (2016). Ecological consequences of human niche construction: examining long-term anthropogenic shaping of global species distributions. Proceedings of the National Academy of Sciences of the United States of America, 113, 6388-6396.
[11] Brooker RW, Travis JMJ, Clark EJ, Dytham C (2007). Modelling species’ range shifts in a changing climate: the impacts of biotic interactions, dispersal distance and the rate of climate change. Journal of Theoretical Biology, 245, 59-65.
[12] Browning DM, Archer SR (2011). Protection from livestock fails to deter shrub proliferation in a desert landscape with a history of heavy grazing. Ecological Applications, 21, 1629-1642.
[13] Cairns DM, Moen J (2004). Herbivory influences tree lines. Journal of Ecology, 92, 1019-1024.
[14] Carreira BM, Segurado P, Orizaola G, Gonçalves N, Pinto V, Laurila A, Rebelo R (2016). Warm vegetarians? Heat waves and diet shifts in tadpoles. Ecology, 97, 2964-2974.
[15] Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333, 1024-1026.
[16] Chen Y, Uriarte M, Wright SJ, Yu S (2019). Effects of neighborhood trait composition on tree survival differ between drought and postdrought periods. Ecology, 100, e02766. DOI: 10.1002/ecy.2766.
[17] Clements FE (1916). Plant Succession: an Analysis of the Development of Vegetation. Carnegie Institution of Washington, Washington D.C.
[18] Cruz-Alonso V, Villar-Salvador P, Ruiz-Benito P, Ibáñez I, Rey-Benayas JM (2020). Long-term dynamics of shrub facilitation shape the mixing of evergreen and deciduous oaks in Mediterranean abandoned fields. Journal of Ecology, 108, 1125-1137.
[19] Curtis PG, Slay CM, Harris NL, Tyukavina A, Hansen MC (2018). Classifying drivers of global forest loss. Science, 361, 1108-1111.
[20] Daleo P, Alberti J, Pascual J, Canepuccia A, Iribarne O (2014). Herbivory affects salt marsh succession dynamics by suppressing the recovery of dominant species. Oecologia, 175, 335-343.
[21] Dangles O, Herrera M, Carpio C, Lortie CJ (2018). Facilitation costs and benefits function simultaneously on stress gradients for animals. Proceedings of the Royal Society B: Biological Sciences, 285, 20180983. DOI: 10.1098/?rspb.? 2018.0983.
[22] Davidson DW (1993). The effects of herbivory and granivory on terrestrial plant succession. Oikos, 68, 23-35.
[23] de Dios VR, Weltzin JF, Sun W, Huxman TE, Williams DG (2014). Transitions from grassland to savanna under drought through passive facilitation by grasses. Journal of Vegetation Science, 25, 937-946.
[24] de Fouw J, Govers LL, van de Koppel J, van Belzen J, Dorigo W, Sidi Cheikh MA, Christianen MJA, van der Reijden KJ, van der Geest M, Piersma T, Smolders AJP, Olff H, Lamers LPM, van Gils JA, van der Heide T (2016). Drought, mutualism breakdown, and landscape-scale degradation of seagrass beds. Current Biology, 26, 1051-1056.
[25] de Steven D (1991). Experiments on mechanisms of tree establishment in old-field succession: seedling survival and growth. Ecology, 72, 1076-1088.
[26] Derksen-Hooijberg M, Angelini C, Lamers LPM, Borst A, Smolders A, Hoogveld JRH de Paoli H, van de Koppel J, Silliman BR, van der Heide T (2018). Mutualistic interactions amplify saltmarsh restoration success. Journal of Applied Ecology, 55, 405-414.
[27] Donohue I, Hillebrand H, Montoya JM, Petchey OL, Pimm SL, Fowler MS, Healy K, Jackson AL, Lurgi M, McClean D, OʼConnor NE, OʼGorman EJ, Yang Q (2016). Navigating the complexity of ecological stability. Ecology Letters, 19, 1172-1185.
[28] Dublin HT, Sinclair ARE, McGlade J (1990). Elephants and fire as causes of multiple stable states in the Serengeti-?Mara woodlands. Journal of Animal Ecology, 59, 1147- 1164.
[29] Duncan RS, Chapman CA (2003). Tree-shrub interactions during early secondary forest succession in Uganda. Restoration Ecology, 11, 198-207.
[30] Engelkes T, Morriën E, Verhoeven KJF, Bezemer TM, Biere A, Harvey JA, McIntyre LM, Tamis WLM, van der Putten WH (2008). Successful range-expanding plants experience less above-ground and below-ground enemy impact. Nature, 456, 946-948.
[31] Eskelinen A, Kaarlejärvi E, Olofsson J (2017). Herbivory and nutrient limitation protect warming tundra from lowland species’ invasion and diversity loss. Global Change Biology, 23, 245-255.
[32] Estes JA, Terborgh J, Brashares JS, Power ME, Berger J, Bond WJ, Carpenter SR, Essington TE, Holt RD, Jackson JBC, Marquis RJ, Oksanen L, Oksanen T, Paine RT, Pikitch EK, et al. (2011). Trophic downgrading of planet earth. Science, 333, 301-306.
[33] Ettinger A, HilleRisLambers J (2017). Competition and facilitation may lead to asymmetric range shift dynamics with climate change. Global Change Biology, 23, 3921-3933.
[34] Eynaud Y, McNamara DE, Sandin SA (2016). Herbivore space use influences coral reef recovery. Royal Society Open Science, 3, 160262. DOI: 10.1098/rsos.160262.
[35] Farjalla VF, Srivastava DS, Marino NAC, Azevedo FD, Dib V, Lopes PM, Rosado AS, Bozelli RL, Esteves FA (2012). Ecological determinism increases with organism size. Ecology, 93, 1752-1759.
[36] Filbee-Dexter K, Scheibling RE (2014). Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Marine Ecology Progress Series, 495, 1-25.
[37] Fischman HS, Crotty SM, Angelini C (2019). Optimizing coastal restoration with the stress gradient hypothesis. Proceedings of the Royal Society B: Biological Sciences, 286, 20191978. DOI: 10.1098/rspb.2019.1978.
[38] Folke C, Carpenter S, Walker B, Scheffer M, Elmqvist T, Gunderson L, Holling CS (2004). Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology, Evolution, and Systematics, 35, 557-581.
[39] Fraterrigo JM, Rusak JA (2008). Disturbance-driven changes in the variability of ecological patterns and processes. Ecology Letters, 11, 756-770.
[40] Frederiksen M, Daunt F, Harris MP, Wanless S (2008). The demographic impact of extreme events: stochastic weather drives survival and population dynamics in a long-lived seabird. Journal of Animal Ecology, 77, 1020-1029.
[41] Frishkoff LO, Echeverri A, Chan KMA, Karp DS (2018). Do correlated responses to multiple environmental changes exacerbate or mitigate species loss? Oikos, 127, 1724-1734.
[42] Fukami T (2015). Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annual Review of Ecology, Evolution, and Systematics, 46, 1-23.
[43] Gallardo B, Clavero M, Sánchez MI, Vilà M (2016). Global ecological impacts of invasive species in aquatic ecosystems. Global Change Biology, 22, 151-163.
[44] Garland HG, Kimbro DL (2015). Drought increases consumer pressure on oyster reefs in Florida, USA. PLOS ONE, 10, e0125095. DOI: 10.1371/journal.pone.0125095.
[45] Gedan KB, Crain CM, Bertness MD (2009). Small-mammal herbivore control of secondary succession in New England tidal marshes. Ecology, 90, 430-440.
[46] Guisan A, Tingley R, Baumgartner JB, Naujokaitis-Lewis I, Sutcliffe PR, Tulloch AIT, Regan TJ, Brotons L, McDonald-?? Madden E, Mantyka-Pringle C, Martin TG, Rhodes JR, Maggini R, Setterfield SA, Elith J, et al. (2013). Predicting species distributions for conservation decisions. Ecology Letters, 16, 1424-1435.
[47] Guo H, Zhang Y, Lan Z, Pennings SC (2013). Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change. Global Change Biology, 19, 2765-2774.
[48] Harley CDG (2011). Climate change, keystone predation, and biodiversity loss. Science, 334, 1124-1127.
[49] Harris RMB, Beaumont LJ, Vance TR, Tozer CR, Remenyi TA, Perkins-Kirkpatrick SE, Mitchell PJ, Nicotra AB, McGregor S, Andrew NR, Letnic M, Kearney MR, Wernberg T, Hutley LB, Chambers LE, et al. (2018). Biological responses to the press and pulse of climate trends and extreme events. Nature Climate Change, 8, 579-587.
[50] He Q, Bertness MD, Altieri AH (2013). Global shifts towards positive species interactions with increasing environmental stress. Ecology Letters, 16, 695-706.
[51] He Q, Silliman BR (2019). Climate change, human impacts, and coastal ecosystems in the Anthropocene. Current Biology, 29, 1021-1035.
[52] He Q, Silliman BR, Liu Z, Cui B (2017). Natural enemies govern ecosystem resilience in the face of extreme droughts. Ecology Letters, 20, 194-201.
[53] He Q, Silliman BR, van de Koppel J, Cui B (2019). Weather fluctuations affect the impact of consumers on vegetation recovery following a catastrophic die-off. Ecology, 100, e02559. DOI: 10.1002/ecy.2559.
[54] Hebblewhite M, Miquelle DG, Robinson H, Pikunov DG, Dunishenko YM, Aramilev VV, Nikolaev IG, Salkina GP, Seryodkin IV, Gaponov VV, Litvinov MN, Kostyria AV, Fomenko PV, Murzin AA (2014). Including biotic interactions with ungulate prey and humans improves habitat conservation modeling for endangered Amur tigers in the Russian Far East. Biological Conservation, 178, 50-64.
[55] Hin V, Schellekens T, Persson L, de Roos AM (2011). Coexistence of predator and prey in intraguild predation systems with ontogenetic niche shifts. The American Naturalist, 178, 701-714.
[56] Holling CS (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1-23.
[57] Holt RD, Barfield M (2009). Trophic interactions and range limits: the diverse roles of predation. Proceedings of the Royal Society B: Biological Sciences, 276, 1435-1442.
[58] Holt RD, Bonsall MB (2017). Apparent competition. Annual Review of Ecology, Evolution, and Systematics, 48, 447-471.
[59] Holtkamp R, Kardol P, van der Wal A, Dekker SC, van der Putten WH, de Ruiter PC (2008). Soil food web structure during ecosystem development after land abandonment. Applied Soil Ecology, 39, 23-34.
[60] Horn HS (1974). The ecology of secondary succession. Annual Review of Ecology and Systematics, 5, 25-37.
[61] Hughes BB, Eby R, Van Dyke E, Tinker MT, Marks CI, Johnson KS, Wasson K (2013). Recovery of a top predator mediates negative eutrophic effects on seagrass. Proceedings of the National Academy of Sciences of the United States of America, 110, 15313-15318.
[62] Hughes TP, Barnes ML, Bellwood DR, Cinner JE, Cumming GS, Jackson JBC, Kleypas J, van de Leemput IA, Lough JM, Morrison TH, Palumbi SR, van Nes EH, Scheffer M (2017). Coral reefs in the Anthropocene. Nature, 546, 82-90.
[63] Ibelings BW, Portielje R, Lammens EHRR, Noordhuis R, van den Berg MS, Joosse W, Meijer ML (2007). Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: Lake Veluwe as a case study. Ecosystems, 10, 4-16.
[64] Ingrisch J, Bahn M (2018). Towards a comparable quantification of resilience. Trends in Ecology & Evolution, 33, 251-259.
[65] Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ, Bradbury RH, Cooke R, Erlandson J, Estes JA, Hughes TP, Kidwell S, Lange CB, Lenihan HS, Pandolfi JM, et al. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293, 629-637.
[66] Janssen ABG de Jager VCL, Janse JH, Kong X, Liu S, Ye Q, Mooij WM (2017). Spatial identification of critical nutrient loads of large shallow lakes: implications for Lake Taihu (China). Water Research, 119, 276-287.
[67] Janssen ABG, Teurlincx S, An S, Janse JH, Paerl HW, Mooij WM (2014). Alternative stable states in large shallow lakes? Journal of Great Lakes Research, 40, 813-826.
[68] Jourdan M, Kunstler G, Morin X (2020). How neighbourhood interactions control the temporal stability and resilience to drought of trees in mountain forests. Journal of Ecology, 108, 666-677.
[69] Kaarlejärvi E, Eskelinen A, Olofsson J (2013). Herbivory prevents positive responses of lowland plants to warmer and more fertile conditions at high altitudes. Functional Ecology, 27, 1244-1253.
[70] Kang L, Han X, Zhang Z, Sun OJ (2007). Grassland ecosystems in China: review of current knowledge and research advancement. Philosophical Transactions of the Royal Society B: Biological Sciences, 362, 997-1008.
[71] Kissling WD, Dormann CF, Groeneveld J, Hickler T, Kühn I, McInerny GJ, Montoya JM, Römermann C, Schiffers K, Schurr FM, Singer A, Svenning JC, Zimmermann NE, O’Hara RB (2012). Towards novel approaches to modelling biotic interactions in multispecies assemblages at large spatial extents. Journal of Biogeography, 39, 2163- 2178.
[72] Ladd MC, Miller MW, Hunt JH, Sharp WC, Burkepile DE (2018). Harnessing ecological processes to facilitate coral restoration. Frontiers in Ecology and the Environment, 16, 239-247.
[73] Lande R (1993). Risks of population extinction from demographic and environmental stochasticity and random catastrophes. The American Naturalist, 142, 911-927.
[74] Lenton TM, Held H, Kriegler E, Hall JW, Lucht W, Rahmstorf S, Schellnhuber HJ (2008). Tipping elements in the Earthʼs climate system. Proceedings of the National Academy of Sciences of the United States of America, 105, 1786-1793.
[75] Lewontin RC (1969). The meaning of stability. Brookhaven Symposia in Biology, 22, 13-23.
[76] Li B, Ma KP (2010). Biological invasions: opportunities and challenges facing Chinese ecologists in the era of translational ecology. Biodiversity Science, 18, 529-532.
[76] [ 李博, 马克平 (2010). 生物入侵: 中国学者面临的转化生态学机遇与挑战. 生物多样性, 18, 529-532.]
[77] Li G, Liu Y, Frelich LE, Sun S (2011). Experimental warming induces degradation of a Tibetan alpine meadow through trophic interactions. Journal of Applied Ecology, 48, 659-667.
[78] Li YH (1994). Research on the grazing degradation model of the main steppe rangelands in inner mongolia and some considerations for the establishment of a computerized rangeland monitoring system. Acta Phytoecologica Sinica, 18, 68-79.
[78] [ 李永宏 (1994). 内蒙古草原草场放牧退化模式研究及退化监测专家系统雏议. 植物生态学报, 18, 68-79.]
[79] Liang E, Wang Y, Piao S, Lu X, Camarero JJ, Zhu H, Zhu L, Ellison AM, Ciais P, Peñuelas J (2016). Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 113, 4380-4385.
[80] Liebhold A, Bascompte J (2003). The Allee effect, stochastic dynamics and the eradication of alien species. Ecology Letters, 6, 133-140.
[81] Liu J, Rühland KM, Chen J, Xu Y, Chen S, Chen Q, Huang W, Xu Q, Chen F, Smol JP (2017). Aerosol-weakened summer monsoons decrease lake fertilization on the Chinese Loess Plateau. Nature Climate Change, 7, 190-194.
[82] Lotze HK, Coll M, Magera AM, Ward-Paige C, Airoldi L (2011). Recovery of marine animal populations and ecosystems. Trends in Ecology & Evolution, 26, 595-605.
[83] Louthan AM, Doak DF, Angert AL (2015). Where and when do species interactions set range limits? Trends in Ecology & Evolution, 30, 780-792.
[84] Lucero JE, Noble T, Haas S, Westphal M, Butterfield HS, Lortie CJ (2019). The dark side of facilitation: native shrubs facilitate exotic annuals more strongly than native annuals. NeoBiota, 44, 75-93.
[85] Mammola S, Isaia M (2017). Rapid poleward distributional shifts in the European cave-dwelling Meta spiders under the influence of competition dynamics. Journal of Biogeography, 44, 2789-2797.
[86] Mattson WJ, Haack RA (1987). The role of drought in outbreaks of plant-eating insects. BioScience, 37, 110-118.
[87] Maxwell PS, Eklöf JS, van Katwijk MM, OʼBrien KR, de la Torre-Castro M, Boström C, Bouma TJ, Krause-Jensen D, Unsworth RKF, van Tussenbroek BI, van der Heide T (2017). The fundamental role of ecological feedback mechanisms for the adaptive management of seagrass ecosystems-A review. Biological Reviews, 92, 1521-?1538.
[88] May RM (1977). Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature, 269, 471-477.
[89] McDowell NG, Fisher RA, Xu C, Domec JC, Hölttä T, Scott Mackay D, Sperry JS, Boutz A, Dickman L, Gehres N, Limousin JM, Macalady A, Martínez-Vilalta J, Mencuccini M, Plaut JA, et al. (2013). Evaluating theories of drought-induced vegetation mortality using a multimodel- experiment framework. New Phytologist, 200, 304-321.
[90] Menge BA, Sutherland JP (1987). Community regulation: variation in disturbance, competition, and predation in relation to environmental stress and recruitment. The American Naturalist, 130, 730-757.
[91] Mills JN (1986). Herbivores and early postfire succession in southern California chaparral. Ecology, 67, 1637-1649.
[92] Minucci JM, Miniat CF, Wurzburger N (2019). Drought sensitivity of an N2-fixing tree may slow temperate deciduous forest recovery from disturbance. Ecology, 100, e02862. DOI: 10.1002/ecy.2862.
[93] Moore KA, Shields EC, Jarvis JC (2010). The role of habitat and herbivory on the restoration of tidal freshwater submerged aquatic vegetation populations. Restoration Ecology, 18, 596-604.
[94] Mumby PJ, Wolff NH, Bozec YM, Chollett I, Halloran P (2014). Operationalizing the resilience of coral reefs in an era of climate change. Conservation Letters, 7, 176-187.
[95] Novoplansky A, Goldberg D (2001). Interactions between neighbour environments and drought resistance. Journal of Arid Environments, 47, 11-32.
[96] Odum EP (1969). The strategy of ecosystem development. Science, 164, 262-270.
[97] Opperman JJ, Merenlender AM (2000). Deer herbivory as an ecological constraint to restoration of degraded riparian corridors. Restoration Ecology, 8, 41-47.
[98] Padilla FM, Pugnaire FI (2006). The role of nurse plants in the restoration of degraded environments. Frontiers in Ecology and the Environment, 4, 196-202.
[99] Parmesan C, Yohe G (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421, 37-42.
[100] Puig P, Canals M, Company JB, Martín J, Amblas D, Lastras G, Palanques A, Calafat AM (2012). Ploughing the deep sea floor. Nature, 489, 286-289.
[101] Qi Z, Liu H, Wu X, Hao Q (2015). Climate-driven speedup of alpine treeline forest growth in the Tianshan Mountains, Northwestern China. Global Change Biology, 21, 816-826.
[102] Rasmann S, Bauerle TL, Poveda K, Vannette R (2011). Predicting root defence against herbivores during succession. Functional Ecology, 25, 368-379.
[103] Ripple WJ, Beschta RL (2007). Restoring Yellowstone’s aspen with wolves. Biological Conservation, 138, 514-519.
[104] Samson DA, Philippi TE, Davidson DW (1992). Granivory and competition as determinants of annual plant diversity in the Chihuahuan desert. Oikos, 65, 61-80.
[105] Scheffer M, Bascompte J, Brock WA, Brovkin V, Carpenter SR, Dakos V, Held H, van Nes EH, Rietkerk M, Sugihara G (2009). Early-warning signals for critical transitions. Nature, 461, 53-59.
[106] Scheffer M, Carpenter S, Foley JA, Folke C, Walker B (2001). Catastrophic shifts in ecosystems. Nature, 413, 591-596.
[107] Scheffer M, Carpenter SR (2003). Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology & Evolution, 18, 648-656.
[108] Scheffer M, Carpenter SR, Lenton TM, Bascompte J, Brock W, Dakos V, van de Koppel J, van de Leemput IA, Levin SA, van Nes EH, Pascual M, Vandermeer J (2012). Anticipating critical transitions. Science, 338, 344-348.
[109] Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993). Alternative equilibria in shallow lakes. Trends in Ecology & Evolution, 8, 275-279.
[110] Schelhaas MJ, Nabuurs GJ, Schuck A (2003). Natural disturbances in the European forests in the 19th and 20th centuries. Global Change Biology, 9, 1620-1633.
[111] Schröder A, Persson L, De Roos AM (2005). Direct experimental evidence for alternative stable states: a review. Oikos, 110, 3-19.
[112] Schweiger O, Heikkinen RK, Harpke A, Hickler T, Klotz S, Kudrna O, Kühn I, Pöyry J, Settele J (2012). Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Global Ecology and Biogeography, 21, 88-99.
[113] Shantz HL (1917). Plant succession on abandoned roads in eastern Colorado. Journal of Ecology, 5, 19-42.
[114] Silliman BR, He Q (2018). Physical stress, consumer control, and new theory in ecology. Trends in Ecology & Evolution, 33, 492-503.
[115] Silliman BR, McCoy MW, Angelini C, Holt RD, Griffin JN, van de Koppel J (2013). Consumer fronts, global change, and runaway collapse in ecosystems. Annual Review of Ecology, Evolution, and Systematics, 44, 503-538.
[116] Silliman BR, Schrack E, He Q, Cope R, Santoni A, van der Heide T, Jacobi R, Jacobi M, van de Koppel J (2015). Facilitation shifts paradigms and can amplify coastal restoration efforts. Proceedings of the National Academy of Sciences of the United States of America, 112, 14295-14300.
[117] Simberloff D,von Holle B (1999). Positive interactions of nonindigenous species: invasional meltdown? Biological Invasions, 1, 21-32.
[118] Simenstad CA, Estes JA, Kenyon KW (1978). Aleuts, sea otters, and alternate stable-state communities. Science, 200, 403-411.
[119] Smith MD, Knapp AK, Collins SL (2009). A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology, 90, 3279-3289.
[120] Soberón J, Nakamura M (2009). Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences of the United States of America, 106, 19644-19650.
[121] Søndergaard M, Jeppesen E, Mortensen E, Dall E, Kristensen P, Sortkjær O (1990). Phytoplankton biomass reduction after planktivorous fish reduction in a shallow, eutrophic lake: a combined effect of reduced internal P-loading and increased zooplankton grazing//Gulati RD, Lammens EHRR, Meijer ML, van Donk E. Biomanipulation Tool for Water Management. Springer, Dordrecht, the Netherlands. 229-240.
[122] Speed JDM, Austrheim G, Hester AJ, Mysterud A (2010). Experimental evidence for herbivore limitation of the treeline. Ecology, 91, 3414-3420.
[123] Stylinski CD, Allen EB (1999). Lack of native species recovery following severe exotic disturbance in southern Californian shrublands. Journal of Applied Ecology, 36, 544-554.
[124] Suding KN, Gross KL (2016). The dynamic nature of ecological systems: multiple states and restoration trajectories//Palmer MA, Zedler JB, Falk DA. Foundations of Restoration Ecology. 2nd ed. Island Press, Washington D.C. 190-209.
[125] Suding KN, Gross KL, Houseman GR (2004). Alternative states and positive feedbacks in restoration ecology. Trends in Ecology & Evolution, 19, 46-53.
[126] Suding KN, Hobbs RJ (2009). Threshold models in restoration and conservation: a developing framework. Trends in Ecology & Evolution, 24, 271-279.
[127] Suttle KB, Thomsen MA, Power ME (2007). Species interactions reverse grassland responses to changing climate. Science, 315, 640-642.
[128] Svenning JC, Pedersen PBM, Donlan CJ, Ejrnæs R, Faurby S, Galetti M, Hansen DM, Sandel B, Sandom CJ, Terborgh JW, Vera FWM (2016). Science for a wilder Anthropocene: synthesis and future directions for trophic rewilding research. Proceedings of the National Academy of Sciences of the United States of America, 113, 898-906.
[129] Tilman D (1999). The ecological consequences of changes in biodiversity: a search for general principles. Ecology, 80, 1455-1474.
[130] Toscano BJ, Rombado BR, Rudolf VHW (2016). Deadly competition and life-saving predation: the potential for alternative stable states in a stage-structured predator-prey system. Proceedings of the Royal Society B: Biological Sciences, 283, 20161546. DOI: 10.1098/rspb.2016.1546.
[131] Turner MG (2010). Disturbance and landscape dynamics in a changing world. Ecology, 91, 2833-2849.
[132] Tylianakis JM, Didham RK, Bascompte J, Wardle DA (2008). Global change and species interactions in terrestrial ecosystems. Ecology Letters, 11, 1351-1363.
[133] van de Koppel J, Rietkerk M, Weissing FJ (1997). Catastrophic vegetation shifts and soil degradation in terrestrial grazing systems. Trends in Ecology & Evolution, 12, 352-356.
[134] van der Heide T, Govers LL, de Fouw J, Olff H, van der Geest M, van Katwijk MM, Piersma T, van de Koppel J, Silliman BR, Smolders AJP, van Gils JA (2012). A three-stage symbiosis forms the foundation of seagrass ecosystems. Science, 336, 1432-1434.
[135] van der Putten WH(2012). Climate change, aboveground- ?belowground interactions, and speciesʼ range shifts. Annual Review of Ecology, Evolution, and Systematics, 43, 365-383.
[136] van der Putten WH, Macel M, Visser ME (2010). Predicting species distribution and abundance responses to climate change: Why it is essential to include biotic interactions across trophic levels. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2025-2034.
[137] van der Wal R, van Wijnen H, van Wieren S, Beucher O, Bos D (2000). On facilitation between herbivores: How Brent Geese profit from brown hares? Ecology, 81, 969-980.
[138] van Langevelde F, van de Vijver CADM, Kumar L, van de Koppel J, de Ridder N, van Andel J, Skidmore AK, Hearne JW, Stroosnijder L, Bond WJ, Prins HHT, Rietkerk M (2003). Effects of fire and herbivory on the stability of savanna ecosystems. Ecology, 84, 337-350.
[139] Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011). Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology Letters, 14, 702-708.
[140] Walker LR del Moral R (2008). Transition dynamics in succession: implications for rates, trajectories and restoration// Suding K, Hobbs RJ. New Models for Ecosystem Dynamics and Restoration. Island Press, Washington D.C. 33-49.
[141] Wang G, Zhao SL (1988). The niche model of secondary succession of Picea wilsonii forests. Acta Ecologica Sinica, 8, 371-376.
[141] [ 王刚, 赵松岭 (1988). 青扦林次生演替的生态位模型. 生态学报, 8, 371-376.]
[142] Wang H, Liu H, Cao G, Ma Z, Li Y, Zhang F, Zhao X, Zhao X, Jiang L, Sanders NJ, Classen AT, He JS (2020). Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecology Letters, 23, 701-710.
[143] Wang L, Delgado-Baquerizo M, Wang D, Isbell F, Liu J, Feng C, Liu J, Zhong Z, Zhu H, Yuan X, Chang Q, Liu C (2019a). Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands. Proceedings of the National Academy of Sciences of the United States of America, 116, 6187-6192.
[144] Wang R, Chen XY, Chen Y, Wang G, Dunn DW, Quinnell RJ, Compton SG (2019b). Loss of top-down biotic interactions changes the relative benefits for obligate mutualists. Proceedings of the Royal Society B: Biological Sciences, 286, 20182501. DOI: 10.1098/rspb.2018.2501.
[145] Wernberg T, Bennett S, Babcock RC de Bettignies T, Cure K, Depczynski M, Dufois F, Fromont J, Fulton CJ, Hovey RK, Harvey ES, Holmes TH, Kendrick GA, Radford B, Santana-Garcon J, et al. (2016). Climate-driven regime shift of a temperate marine ecosystem. Science, 353, 169-172.
[146] White PS, Jentsch A (2001). The search for generality in studies of disturbance and ecosystem dynamics//Esser K, Lüttge U, Kadereit JW, Beyschlag W. Progress in Botany. Springer, Berlin. 399-450.
[147] Wilson SD (1999). Plant interactions during secondary succession//Walker LR. Ecosystems of the World. Elsevier, Amsterdam, the Netherlands. 611-632.
[148] Wright JP, Fridley JD (2010). Biogeographic synthesis of secondary succession rates in eastern North America. Journal of Biogeography, 37, 1584-1596.
[149] Xu C, Holmgren M, van Nes EH, Maestre FT, Soliveres S, Berdugo M, Kéfi S, Marquet PA, Abades S, Scheffer M (2015a). Can we infer plant facilitation from remote sensing? A test across global drylands. Ecological Applications, 25, 1456-1462.
[150] Xu H, Paerl HW, Qin B, Zhu G, Hall NS, Wu Y (2015b). Determining critical nutrient thresholds needed to control harmful cyanobacterial blooms in eutrophic Lake Taihu, China. Environmental Science & Technology, 49, 1051-1059.
[151] Yalcin S, Leroux SJ (2017). Diversity and suitability of existing methods and metrics for quantifying species range shifts. Global Ecology and Biogeography, 26, 609-624.
[152] Yan Y, Li Y, Wang WJ, He JS, Yang RH, Wu HJ, Wang XL, Jiao L, Tang Z, Yao YJ (2017). Range shifts in response to climate change of Ophiocordyceps sinensis, a fungus endemic to the Tibetan Plateau. Biological Conservation, 206, 143-150.
[153] Yang JR, Lv H, Isabwe A, Liu L, Yu X, Chen H, Yang J (2017). Disturbance-induced phytoplankton regime shifts and recovery of cyanobacteria dominance in two subtropical reservoirs. Water Research, 120, 52-63.
[154] Yelenik SG, D’Antonio CM (2013). Self-reinforcing impacts of plant invasions change over time. Nature, 503, 517-520.
[155] Zanini L, Ganade G, Hübel I (2006). Facilitation and competition influence succession in a subtropical old field. Plant Ecology, 185, 179-190.
[156] Zhang RZ, Zhang YP, Jiang YX (2008). The threat of the worldʼs major invasive pests to China. Science in China Series C: Life Sciences, 38, 1095-1102.
[156] [ 张润志, 张亚平, 蒋有绪 (2008). 世界重要入侵害虫对中国的威胁. 中国科学C辑: 生命科学, 38, 1095-1102.]
[157] Zhang Y, Loreau M, He N, Wang J, Pan Q, Bai Y, Han X (2018). Climate variability decreases species richness and community stability in a temperate grassland. Oecologia, 188, 183-192.
[158] Zhang ZB (2003). Grassland rodent damage and management strategy. Bulletin of the Chinese Academy of Sciences, 18, 343-347.
[158] [ 张知彬 (2003). 我国草原鼠害的严重性及防治对策. 中国科学院院刊, 18, 343-347.]
文章导航

/