模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响
收稿日期: 2020-01-17
修回日期: 2020-06-15
网络出版日期: 2020-07-31
基金资助
国家重点研发计划项目(2016YFC0500801);科技基础资源调查专项(2017FY100206);国家自然科学基金(41471096);国家自然科学基金(41371093)
Effects of simulated warming on biological soil crust-soil system respiration in alpine sandy lands
Received date: 2020-01-17
Revised date: 2020-06-15
Online published: 2020-07-31
Supported by
Supported by the National Key R&D Program of China(2016YFC0500801);the Special Survey on Science and Technology Basic Resources(2017FY100206);the National Natural Science Foundation of China(41471096);the National Natural Science Foundation of China(41371093)
生物土壤结皮是高寒沙区重要的地表覆盖类型, 研究增温对高寒地区生物土壤结皮-土壤系统呼吸的影响, 能够为准确评估高寒生态系统中生物土壤结皮对气候变化的响应和反馈提供一定的参考。该文以人工植被恢复区的苔藓和藻类结皮为研究对象, 采用开顶式被动增温装置(OTC)进行模拟增温, 观测增温条件下苔藓和藻类结皮-土壤系统呼吸速率的日动态和生长季动态, 探讨增温对其CO2释放量和温度敏感性的影响。研究结果显示, 增温未改变苔藓和藻类结皮-土壤系统呼吸速率的日动态和生长季动态特征, 均呈“单峰”曲线, 日动态峰值出现在13:00左右, 生长季动态峰值出现在8月左右; 增温改变了生物土壤结皮-土壤系统呼吸速率的日动态峰值。相对干旱年份(2017), 适度增温增加了两类生物土壤结皮-土壤系统生长季累积CO2释放量, 过高幅度增温, 两类生物土壤结皮-土壤系统CO2释放量的增加程度降低; 相对湿润年份(2018), 增温幅度越高, 两类生物土壤结皮-土壤系统CO2释放量增加程度越大。两种类型生物土壤结皮-土壤系统呼吸速率与温度间的关系均可用指数函数较好地描述, 相对干旱年份, 增温幅度越高, 苔藓和藻类结皮-土壤呼吸的温度敏感性越小, 变化范围分别为1.47-1.61和1.60-1.95; 相对湿润年份, 增温幅度越高, 温度敏感性越大, 变化范围分别为1.44-1.68和1.44-1.76。该研究表明, 全球气候变暖很大程度地增强了高寒生态系统中生物土壤结皮-土壤系统的呼吸作用, 因此在准确评估高寒生态系统碳循环过程时, 应充分考虑气候变暖对该区广泛分布的生物土壤结皮所产生的影响。
赵河聚, 岳艳鹏, 贾晓红, 成龙, 吴波, 李元寿, 周虹, 赵雪彬 . 模拟增温对高寒沙区生物土壤结皮-土壤系统呼吸的影响[J]. 植物生态学报, 2020 , 44(9) : 916 -925 . DOI: 10.17521/cjpe.2020.0018
Aims Biological soil crust is an important type of surface cover in alpine sandy lands. Understanding of the effect of warming on respiration from the biological soil crust-soil system in alpine regions can provide theoretical reference to the assessment of the response and feedback of biological soil crusts to climate changes.
Methods The moss and algae crusts in the artificial vegetation restoration areas were taken as the research objects. The open top chamber (OTC) was used as a passive warming device to simulate warming. The daily and growing season dynamics of respiration rates in two types of biological soil crust-soil systems were measured. The effects of warming on CO2 emission and its temperature sensitivity were discussed.
Important findings Both the daily and the growing season dynamics of respiration rate of the moss and algae crust-soil system showed “single-peak” curves and were not affected by warming. The daily peaks appeared around 13:00, and the growing season peaks appeared around August. Warming changed the daily peak value of respiration rate of the biological soil crust-soil system. In the relatively dry year (2017), moderate warming increased cumulative CO2 emission from the two types of biological soil crust-soil system during growing season, but the increase declined under excessive warming. In the relatively wet year (2018), as warming got greater, CO2 emission from the two types of biological soil crust-soil system increased more. The relationship between respiration rate and temperature of two types of biological soil crust-soil system followed the exponential function. In the relatively dry year, more increase of temperature induced smaller temperature sensitivity of CO2 emission, and the temperature sensitivity varied from 1.47 to 1.61 and 1.60 to 1.95 in the moss and algae crust soil system respectively. In the relatively wet year, with the increase of temperature, temperature sensitivity of system respiration increased, and the temperature sensitivity varied from 1.44 to 1.68 and 1.44 to 1.76 in the moss and algae crust soil system respectively. This study shows that global warming has greatly increased the respiration of biological soil crust-soil system in alpine ecosystems. Therefore, we should fully consider the impact of climate warming on the wide spread biological soil crusts in this area for better evaluation of carbon cycling processes in alpine ecosystems.
[1] | Allison SD, Treseder KK (2008). Warming and drying suppress microbial activity and carbon cycling in boreal forest soils.Global Change Biology, 14, 2898-2909. |
[2] | Almagro M, López J, Querejeta JI, Martínez-Mena M (2009). Temperature dependence of soil CO2 efflux is strongly modulated by seasonal patterns of moisture availability in a Mediterranean ecosystem.Soil Biology & Biochemistry, 41, 594-605. |
[3] | Bokhorst S, Bjerke JW, Melillo J, Callaghan TV, Phoenix GK (2010). Impacts of extreme winter warming events on litter decomposition in a sub-Arctic heathland.Soil Biology & Biochemistry, 42, 611-617. |
[4] | Chen H, Zhu Q, Peng CH, Wu N, Wang YF, Fang XQ, Gao YH, Zhu D, Yang G, Tian JQ, Kang XM, Piao SL, Ouyang H, Xiang WH, Luo ZB, Jiang H, Song XZ, Zhang Y, Yu GR, Zhao XQ, Gong P, Yao TD, Wu JH (2013). The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau.Global Change Biology, 19, 2940-2955. |
[5] | Chen QS, Li LH, Han XG, Yan ZD, Wang YF, Zhang Y, Xiong XG, Chen SP, Zhang LX, Gao YZ, Tang F, Yang J, Dong YS (2004). Temperature sensitivity of soil respiration in relation to soil moisture in 11 communities of typical temperate steppe in Inner Mongolia.Acta Ecologica Sinica, 24, 831-836. |
[5] | [陈全胜, 李凌浩, 韩兴国, 阎志丹, 王艳芬, 张焱, 熊小刚, 陈世苹, 张丽霞, 高英志, 唐芳, 杨晶, 董云社 (2004). 典型温带草原群落土壤呼吸温度敏感性与土壤水分的关系. 生态学报, 24, 175-180.] |
[6] | Chen ZF (2012). Effects of Simulated Warming and Nitrogen Addition on Gas Exchange in Desert Steppe Ecosystems. Master degree dissertation, Inner Mongolia Agricultural University, Hohhot. |
[6] | [陈志芳 (2012). 模拟增温和氮素添加对荒漠草原生态系统气体交换的影响. 硕士学位论文, 内蒙古农业大学, 呼和浩特.] |
[7] | Davidson EA, Janssens IA (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change.Nature, 440, 165-173. |
[8] | Dore MHI (2005). Climate change and changes in global precipitation patterns: What do we know?Environment International, 31, 1167-1181. |
[9] | Eldridge DJ, Greene RSB (1994). Microbiotic soil crusts—A review of their roles in soil and ecological processes in the rangelands of Australia.Australian Journal of Soil Research, 32, 389-415. |
[10] | Feng W (2014). Photosynthetic Carbon Fixation of Biological Soil Crusts in MU US Desert and Their Impact on Soil Carbon Emission.PhD dissertation, Beijing Forestry University, Beijing. |
[10] | [冯薇 (2014). 毛乌素沙地生物结皮光合固碳过程及对土壤碳排放的影响. 博士学位论文, 北京林业大学, 北京.] |
[11] | Fu W, Zhang XY, Zhao J, Du SL, Hou MT (2017). Effects of experimental warming on soil respiration during growing period in cropland in the black soil region of Northeast China.Chinese Journal of Ecology, 36, 601-608. |
[11] | [付微, 张兴义, 赵军, 杜书立, 侯美亭 (2017). 模拟增温对东北黑土农田作物生长季土壤呼吸的影响. 生态学杂志, 36, 601-608.] |
[12] | Geng XD, Xu R, Wei D (2017). Response of greenhouse gases flux to multi-level warming in an alpine meadow of Tibetan Plateau.Ecology and Environment Sciences, 26, 445-452. |
[12] | [耿晓东, 旭日, 魏达 (2017). 多梯度增温对青藏高原高寒草甸温室气体通量的影响. 生态环境学报, 26, 445-452.] |
[13] | Gu C, Jia XH, Wu B, Cheng L, Yang ZW, Yang DF, Zhao XB (2017). Effect of simulated precipitation on the carbon flux in biological-soil crusted soil in alpine sandy habitats.Acta Ecologica Sinica, 37, 4423-4433. |
[13] | [辜晨, 贾晓红, 吴波, 成龙, 杨占武, 杨德福, 赵雪彬 (2017). 高寒沙区生物土壤结皮覆盖土壤碳通量对模拟降水的响应. 生态学报, 37, 4423-4433.] |
[14] | Guan C, Zhang P, Li XR (2017). Responses of soil respiration with biocrust cover to water and temperature in the southeastern edge of Tengger Desert, Northwest China. Chinese Journal of Plant Ecology, 41, 301-310. |
[14] | [管超, 张鹏, 李新荣 (2017). 腾格里沙漠东南缘生物结皮土壤呼吸对水热因子变化的响应. 植物生态学报, 41, 301-310.] |
[15] | Han GX, Zhou GS, Xu ZZ, Yang Y, Liu JL, Shi KQ (2007). Soil temperature and biotic factors drive the seasonal variation of soil respiration in a maize (Zea mays L.) agricultural ecosystem. Plant and Soil, 291, 15-26. |
[16] | Han HY (2014). Biological Soil Crust Carbon Emission and Its Effects on Soil Respiration Alpine in Alpine Sandy Land. PhD dissertation, Chinese Academy of Forestry, Beijing. |
[16] | [韩海燕 (2014). 高寒沙地生物结皮碳释放及其对土壤呼吸的影响. 博士学位论文, 中国林业科学研究院, 北京.] |
[17] | IPCC (2013). Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[18] | Janssens IA, Pilegaard K (2003). Large seasonal changes inQ10 of soil respiration in a beech forest. Global Change Biology, 9, 911-918. |
[19] | Klimek B, Choczyński M, Juszkiewicz A (2009). Scots pine (Pinus sylvestris L.) roots and soil moisture did not affect soil thermal sensitivity. European Journal of Soil Biology, 45, 442-447. |
[20] | Lan SB, Wu L, Zhang DL, Hu CX (2012). Successional stages of biological soil crusts and their microstructure variability in Shapotou region (China).Environmental Earth Sciences, 65, 77-88. |
[21] | Leifeld J, Fuhrer J (2005). The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality.Biogeochemistry, 75, 433-453. |
[22] | Li XR, Zhang YM, Zhao YG (2009). A study of biological soil crusts: recent development, trend and prospect.Advances in Earth Science, 24, 11-24. |
[22] | [李新荣, 张元明, 赵允格 (2009). 生物土壤结皮研究: 进展、前沿与展望. 地球科学进展, 24, 11-24.] |
[23] | Lin GH, Rygiewicz PT, Ehleringer JR, Johnson MG, Tingey DT (2001). Time-dependent responses of soil CO2 efflux components to elevated atmospheric [CO2] and temperature in experimental forest mesocosms.Plant and Soil, 229, 259-270. |
[24] | Liu DJ (2012). Responses of Soil Respiration of Prickly Prickles Community to Rainfall Increase in Extreme Arid Area. PhD dissertation, Chinese Academy of Forestry, Beijing. |
[24] | [刘殿君 (2012). 极端干旱区泡泡刺群落土壤呼吸对增雨的响应. 博士学位论文, 中国林业科学研究院, 北京.] |
[25] | Liu HS, Liu HJ, Wang ZP, Xu M, Han XG, Li LH (2008). The temperature sensitivity of soil respiration.Progress in Geography, 27, 51-60. |
[26] | Luo CY, Xu GP, Chao ZG, Wang SP, Lin XW, Hu YG, Zhang ZH, Duan JC, Chang XF, Su AL, Li YN, Zhao XQ, Du MY, Tang YH, Kimball B (2010). Effect of warming and grazing on litter mass loss and temperature sensitivity of litter and dung mass loss on the Tibetan Plateau.Global Change Biology, 16, 1606-1617. |
[27] | Maestre FT, Escolar C, de Guevara ML, Quero JL, Lázaro R, Delgado-Baquerizo M, Ochoa V, Berdugo M, Gozalo B, Gallardo A (2013). Changes in biocrust cover drive carbon cycle responses to climate change in drylands.Global Change Biology, 19, 3835-3847. |
[28] | Marilley L, Hartwig UA, Aragno M (1999). Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneathLolium perenne and Trifolium repens under field conditions. Microbial Ecology, 38, 39-49. |
[29] | McCulley RL, Boutton TW, Archer SR (2007). Soil respiration in a subtropical savanna parkland: response to water additions.Soil Science Society of America Journal, 71, 820-828. |
[30] | Niklińska M, Maryański M, Laskowski R (1999). Effect of temperature on humus respiration rate and nitrogen mineralization: implications for global climate change.Biogeochemistry, 44, 239-257. |
[31] | Pan XL, Lin B, Liu Q (2008). Effects of elevated temperature on soil organic carbon and soil respiration under subalpine coniferous forest in western Sichuan Province, China.Chinese Journal of Applied Ecology,19, 1637-1643. |
[31] | [潘新丽, 林波, 刘庆 (2008). 模拟增温对川西亚高山人工林土壤有机碳含量和土壤呼吸的影响. 应用生态学报, 19, 1637-1643.] |
[32] | Qin Y, Yi SH, Li NJ, Ren SL, Wang XY, Chen JJ (2012). Advance in studies of carbon cycling on alpine grasslands of the Qinghai-Tibetan Plateau.Acta Prataculturae Sinica, 21, 275-285. |
[32] | [秦彧, 宜树华, 李乃杰, 任世龙, 王晓云, 陈建军 (2012). 青藏高原草地生态系统碳循环研究进展. 草业学报, 21, 275-285.] |
[33] | Reichstein M, Subke JA, Angeli AC, Tenhunene JD (2005). Does the temperature sensitivity of decomposition of soil organic matter depend upon water content, soil horizon, or incubation time?Global Change Biology, 11, 1754-1767. |
[34] | Song B, Niu SL (2016). Global change and terrestrial carbon cycle: a review.Journal of Southwest University for Nationalities (Natural Science Edition), 42, 14-23. |
[34] | [宋冰, 牛书丽 (2016). 全球变化与陆地生态系统碳循环研究进展. 西南民族大学学报(自然科学版), 42, 14-23.] |
[35] | Su YG, Wu L, Zhou ZB, Liu YB, Zhang YM (2013). Carbon flux in deserts depends on soil cover type: a case study in the Gurbantunggute desert, North China. Soil Biology & Biochemistry, 58, 332-340. |
[36] | Wan SQ, Norby RJ, Ledford J, Norby RJ, Ledford J, Weltzin JF (2007). Responses of soil respiration to elevated CO2, air warming, and changing soil water availability in a model old-field grassland.Global Change Biology, 13, 2411-2424. |
[37] | Wang Z, Zhao ML, Han GD, Gao FG, Han X (2012). Response of soil respiration to simulated warming and N addition in the desert steppe.Journal of Arid Land Resources and Environment, 26, 98-103. |
[37] | [王珍, 赵萌莉, 韩国栋, 高福光, 韩雄 (2012). 模拟增温及施氮对荒漠草原土壤呼吸的影响. 干旱区资源与环境, 26, 98-103.] |
[38] | Xia J, Han Y, Zhang Z, Zhang Z, Wan S (2009). Effects of diurnal warming on soil respiration are not equal to the summed effects of day and night warming in a temperate steppe.Biogeosciences, 6, 1361-1370. |
[39] | Xiong P, Xu ZF, Lin B, Liu Q (2010). Short-term response of winter soil respiration to simulated warming in aPinus armandii plantation in the upper reaches of the Minjiang River, China. Chinese Journal of Plant Ecology,34, 1369-1376. |
[39] | [熊沛, 徐振锋, 林波, 刘庆 (2010). 岷江上游华山松林冬季土壤呼吸对模拟增温的短期响应. 植物生态学报, 34, 1369-1376.] |
[40] | Xu BX, Hu YG, Zhang ZS, Chen YL, Zhang P, Li G (2014). Effects of experimental warming on CO2, CH4 and N2O fluxes of biological soil crust and soil system in a desert region.Chinese Journal of Plant Ecology, 38, 809-820. |
[40] | [徐冰鑫, 胡宜刚, 张志山, 陈永乐, 张鹏, 李刚 (2014). 模拟增温对荒漠生物土壤结皮-土壤系统CO2、CH4和N2O通量的影响. 植物生态学报, 38, 809-820.] |
[41] | Xu M, Qi Y (2001). Spatial and seasonal variations ofQ10 determined by soil respiration measurements at a Sierra Nevadan Forest. Global Biogeochemical Cycles, 15, 687-696. |
[42] | Yang QP, Xu M, Liu HS, Wang JS, Liu LX, Chi YG, Zheng YP (2011). Impact factors and uncertainties of the temperature sensitivity of soil respiration.Acta Ecologica Sinica, 31, 2301-2311. |
[42] | [杨庆朋, 徐明, 刘洪升, 王劲松, 刘丽香, 迟永刚, 郑云普 (2011). 土壤呼吸温度敏感性的影响因素和不确定性. 生态学报, 31, 2301-2311.] |
[43] | Yang Y, Huang M, Liu HS, Liu HJ (2011). The interrelation between temperature sensitivity and adaptability of soil respiration.Journal of Natural Resources, 26, 1811-1820. |
[43] | [杨毅, 黄玫, 刘洪升, 刘华杰 (2011). 土壤呼吸的温度敏感性和适应性研究进展. 自然资源学报, 26, 1811-1820.] |
[44] | Yuste JC, Ma S, Baldocchi DD (2010). Plant-soil interactions and acclimation to temperature of microbial-mediated soil respiration may affect predictions of soil CO2 efflux.Biogeochemistry, 98, 127-138. |
[45] | Zhao JX, Luo TX, Wei HX, Deng ZH, Li X, Li RC, Tang YH (2019). Increased precipitation offsets the negative effect of warming on plant biomass and ecosystem respiration in a Tibetan alpine steppe.Agricultural and Forest Meteorology, 279, 107761. DOI: 10.1016/j.agrformet.?2019.?107761. |
/
〈 |
|
〉 |