研究论文

中国亚热带森林动态监测样地常绿和落叶木本被子植物谱系结构及生态习性差异

展开
  • 1西南喀斯特山地生物多样性保护国家林业和草原局重点实验室, 贵州师范大学, 贵阳 550025
    2贵州省植物生理与发育调控重点实验室, 贵州师范大学, 贵阳 550025
    3贵州师范大学生命科学学院, 贵阳 550025
Yi Y: gzklppdr@gznu.edu.cn
*金毅:ORCID: 0000-0003-4961-5172 Jin Y:codon@126.com;

收稿日期: 2020-05-29

  录用日期: 2020-08-10

  网络出版日期: 2020-10-11

基金资助

国家自然科学基金委员会-贵州省人民政府喀斯特科学研究中心项目(U1812401);贵州省科学技术基金(黔科合基础[2020]1Z013)

Separation of phylogeny and ecological behaviors between evergreen and deciduous woody angiosperms in the subtropical forest dynamics plots of China

Expand
  • 1Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China
    2Key Laboratory of Plant Physiology and Developmental Regulation of Guizhou Province, Guizhou Normal University, Guiyang 550025, China
    3School of Life Sciences, Guizhou Normal University, Guiyang 550025, China

Received date: 2020-05-29

  Accepted date: 2020-08-10

  Online published: 2020-10-11

Supported by

Joint Fund of the National Natural Science Foundation of China and the Karst Science Research Center of Guizhou Province(U1812401);Natural Science and Technology Foundation of Guizhou Province(黔科合基础[2020]1Z013)

摘要

常绿和落叶木本被子植物是组成东亚地区亚热带阔叶林的两个主要植物类群。探索常绿和落叶木本被子植物的生态位差异, 对于推测亚热带阔叶林群落的生物多样性维持机制, 具有重要意义。该研究采用线性回归模型和Mantel检验多元回归等统计手段, 分析了中国亚热带地区8个森林动态监测样地的常绿和落叶木本被子植物谱系和生态习性差异。主要结果: (1)该研究的788个被子植物分类单元的叶习性(常绿和落叶)具有一定的谱系保守性。常绿和落叶植物对光照、温度、水分、土壤反应和土壤肥力因子的生态习性均有差异, 表现为常绿植物偏好较低的光照和土壤pH, 以及较高的温度、水分和土壤肥力; 落叶植物则相反。(2)样地内落叶较常绿植物的种间谱系散布更收敛, 但生态习性散布更发散; 样地间落叶较常绿类群的谱系组成差异更小, 但生态习性差异更大; 样地间落叶类群的谱系组成差异随年平均气温差异的增大而增大。(3)落叶/常绿植物物种数量的比例随年平均气温升高而降低, 而旱季持续时间和年降水量等因子的影响不明显。该研究证实了我国亚热带地区8个森林动态监测样地内的常绿和落叶木本被子植物在谱系和生态习性上均存在巨大差异, 生态位分化在很大程度上是促进亚热带阔叶林群落内生物多样性维持的重要机制。

本文引用格式

车俭, 郑洁, 蒋娅, 金毅, 乙引 . 中国亚热带森林动态监测样地常绿和落叶木本被子植物谱系结构及生态习性差异[J]. 植物生态学报, 2020 , 44(10) : 1007 -1014 . DOI: 10.17521/cjpe.2020.0174

Abstract

Aims Evergreen (EBL) and deciduous broad-leaved (DBL) woody angiosperms are two major plant groups in the subtropical broad-leaved forests of eastern Asia. Exploring the separation between these two groups in ecological niche, will shed light on the biodiversity maintenance mechanisms of subtropical broad-leaved forests.
Methods Adopting statistical methods including the linear regression model and the multiple regression method of Mantel test, we compared the phylogeny and ecological behaviors of the two plant groups in eight forest dynamics plots in China.
Important findings We found that (1) leaf habit, be either EBL or DBL, was phylogenetically conserved in the 788 study angiosperm taxa. EBLs and DBLs differed in ecological behaviors towards light, temperature, water, soil reaction and soil fertility. EBLs prefer low light and soil pH, high temperature, water and soil fertility; while the opposite was true for DBLs. (2) Within plot, DBLs were more clustered in phylogenetic dispersion, but more overdispersed in ecological behavior, compared with EBLs; similarly, between plots, DBLs were less diverse in phylogenetic composition, but more diverse in ecological behaviors, than EBLs. On the other hand, divergence in phylogenetic composition of DBLs between plots increased with difference in mean annual temperature (MAT). Further, we found that (3) the ratio of DBLs to EBLs in species richness decreased with MAT increased, but not with dry season length or annual precipitation. The findings show that EBLs and DBLs of the eight study plots differ in both phylogeny and ecological behaviors, and imply that niche separation may be a major mechanism that maintains the biodiversity of subtropical broad-leaved forests.

参考文献

[1] Axelrod (1966). Origin of deciduous and evergreen habits in temperate forests. Evolution, 20, 1-15.
[2] Bartoń K (2016). MuMIn: Multi-Model Inference. R package version 1.15.6. [2019-12-21] https://CRAN.R-project.org/ package=MuMIn.
[3] Bews JW (1927). Studies in the ecological evolution of angiosperms. The New Phytologist, 26(2), 65-84.
[4] Cadotte MW, Davies TJ (2016). Phylogenies in Ecology. Princeton University Press, Princeton, USA.
[5] Cadotte MW, Davies TJ, Peresneto PR (2017). Why phylogenies do not always predict ecological differences. Ecological Monographs, 87, 535-551.
[6] Duan R, Huang M, Kong X, Wang Z, Fan W (2015). Ecophysiological responses to different forest patch type of two codominant tree seedlings. Ecology and Evolution, 5, 265-274.
[7] Ellenberg H, Weber HE, Duell R, Wirth V, Werner W (2001). Zeigerwerte der Gefasspflanzen Mitteleuropas (3 Aufl). Scripta Geobotanica, 18, 1-262.
[8] Escudero A, del Arco JM (1987). Ecological significance of the phenology of leaf abscission. Oikos, 49, 11-14.
[9] Fang XF, Shen GC, Yang QS, Liu HM, Ma ZP, Deane DC, Wang XH (2017). Habitat heterogeneity explains mosaics of evergreen and deciduous trees at local-scales in a subtropical evergreen broad-leaved forest. Journal of Vegetation Science, 28, 379-388.
[10] Fang XF, Yang QS, Liu HM, Ma ZP, Dong S, Cao Y, Yuan MJ, Fei XY, Sun XY, Wang XH (2016). Distribution of species abundance of evergreen and deciduous woody plants in the evergreen broad-leaved forests at Tiantong, Zhejiang. Biodiversity Science, 24, 629-638.
[10] [ 方晓峰, 杨庆松, 刘何铭, 马遵平, 董舒, 曹烨, 袁铭皎, 费希旸, 孙小颖, 王希华 (2016). 天童常绿阔叶林中常绿与落叶物种的物种多度分布格局. 生物多样性, 24, 629-638.]
[11] Ge JL, Xie ZQ (2017). Geographical and climatic gradients of evergreen versus deciduous broad-leaved tree species in subtropical China: implications for the definition of the mixed forest. Ecology and Evolution, 7, 3636-3644.
[12] Givnish TJ (1979). On the adaptive significance of leaf form//Solbrig OT, Jain S, Johnson GB, Raven PH. Topics in Plant Population Biology. Palgrave, London, 375-407.
[13] Givnish TJ (2002). Adaptive signifi cance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fennica, 36, 703-743.
[14] Goslee SC, Urban DL (2007). The ecodist package for dissimilarity-based analysis of ecological data. Journal of Statistical Software, 22, 1-19.
[15] Huang YT, Yao L, Ai XR, Lü SA, Ding Y (2015). Quantitative classification of the subtropical evergreen-deciduous broadleaved mixed forest and the deciduous and evergreen species composition structure across two national nature reserves in the southwest of Hubei, China. Chinese Journal of Plant Ecology, 39, 990-1002.
[15] [ 黄永涛, 姚兰, 艾训儒, 吕世安, 丁易 (2015). 鄂西南两个自然保护区亚热带常绿落叶阔叶混交林类型及其常绿和落叶物种组成结构分析. 植物生态学报, 39, 990-1002.]
[16] Jin Y, Russo SE, Yu M (2018). Effects of light and topography on regeneration and coexistence of evergreen and deciduous tree species in a Chinese subtropical forest. Journal of Ecology, 106, 1634-1645.
[17] Kira T (1991). Forest ecosystems of east and southeast Asia in a global perspective. Ecological Research, 6, 185-200.
[18] Kraft NJ, Godoy O, Levine JM (2015). Plant functional traits and the multidimensional nature of species coexistence. Proceedings of the National Academy of Sciences of the United States of America, 112, 797-802.
[19] Mi XC, Guo J, Hao ZQ, Xie ZQ, Guo K, Ma KP (2016). Chinese forest biodiversity monitoring: scientific foundations and strategic planning. Biodiversity Science, 24, 1203-1219.
[19] [ 米湘成, 郭静, 郝占庆, 谢宗强, 郭柯, 马克平 (2016). 中国森林生物多样性监测: 科学基础与执行计划. 生物多样性, 24, 1203-1219.]
[20] Miura M, Manabe T, Nishimura N, Yamamoto S (2001). Forest canopy and community dynamics in a temperate old- growth evergreen broad-leaved forest, south-western Japan: a 7-year study of a 4-ha plot. Journal of Ecology, 89, 841-849.
[21] Oksanen JF, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O?Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2017). vegan: Community Ecology Package. R package version 2.4-3. [2020-04-09]. https://CRAN.R-project.org/package=vegan.
[22] Paradis E, Claude J, Strimmer K (2004). Analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289-290.
[23] Pennell MW, Eastman JM, Slater GJ, Brown JW, Uyeda JC, Fitzjohn RG, Alfaro ME, Harmon LJ (2014). geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics, 30, 2216-2218.
[24] Qian H, Jin Y (2016). An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. Journal of Plant Ecology, 9, 233-239.
[25] R Core Team (2016). R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [2020-04-12]. https://www.R-project.org/.
[26] Reich PB (2014). The world-wide “fast-slow” plant economics spectrum: a traits manifesto. Journal of Ecology, 102, 275-301.
[27] Ricklefs RE, He F (2016). Region effects influence local tree species diversity. Proceedings of the National Academy of Sciences of the United States of America, 113, 674-679.
[28] Song K, Kohyama T, Da L (2014). Transition patterns across an evergreen-deciduous broad-leaved forest ecotone: the effect of topographies. Journal of Vegetation Science, 25, 1257-1266.
[29] Song YC (1999). Perspective of the vegetation zonafion of forest region in eastern China. Acta Botanica Sinica, 41, 541-552.
[29] [ 宋永昌 (1999). 中国东部森林植被带划分之我见. 植物学报, 41, 541-552.]
[30] Song YC (2013). Evergreen Broad-leaved Forests in China. Science Press. Beijing.
[30] [ 宋永昌 (2013). 中国常绿阔叶林 科学出版社, 北京.]
[31] Song YC, Yan ER, Song K (2015). Synthetic comparison of eight dynamics plots in evergreen broadleaf forests, China. Biodiversity Science, 23, 139-148.
[31] [ 宋永昌, 阎恩荣, 宋坤 (2015). 中国常绿阔叶林8大动态监测样地植被的综合比较. 生物多样性, 23, 139-148.]
[32] Tang CQ, Ohsawa M (2002). Coexistence mechanisms of evergreen, deciduous and coniferous trees in a mid-montane mixed forest on Mt. Emei, Sichuan, China. Plant Ecology, 161, 215-230.
[33] Webb CO, Ackerly DD, Kembel SW (2008). Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics, 24, 2098-2100.
[34] Wu ZY (1980). Vegetation of China. Science Press, Beijing.
[34] [ 吴征镒 (1980). 中国植被. 科学出版社, 北京.]
[35] Zhang L, Luo T, Zhu H, Daly C, Deng K (2009). Leaf life span as a simple predictor of evergreen forest zonation in China. Journal of Biogeography, 37, 27-36.
[36] Zhang TT, Wang X, Jin Y, Yu JP, Ren HB, Qian HY, Chen SW, Ma KP, Yu MJ (2020). Comparative study on species composition between Gutianshan and other eastern typical evergreen broad-leaved forests in China. Guihaia, 40, 1061-1070.
[36] [ 张田田, 王璇, 金毅, 余建平, 任海保, 钱海源, 陈声文, 马克平, 于明坚 (2020). 古田山与中国其他东部典型常绿阔叶林物种组成特征的比较. 广西植物, 40, 1061-1070.]
[37] Zhu Y, Zhao GF, Zhang LW, Shen GC, Mi XC, Ren HB, Yu MJ, Chen JH, Chen SW, Fang T, Ma KP (2008). Community composition and structure of Gutianshan forest dynamic plot in a mid-subtropical evergreen broad-leaved forest, East China. Chinese Journal of Plant Ecology (Chinese Version), 32, 262-273.
[37] [ 祝燕, 赵谷风, 张俪文, 沈国春, 米湘成, 任海保, 于明坚, 陈建华, 陈声文, 方腾, 马克平 (2008). 古田山中亚热带常绿阔叶林动态监测样地——群落组成与结构. 植物生态学报, 32, 262-273.]
文章导航

/