综述

植物功能性状对生态系统服务影响研究进展

展开
  • 1中国科学院生态环境研究中心, 城市与区域生态国家重点实验室, 北京 100085
    2中国科学院大学, 北京 100049
    3北京大学城市与环境学院生态研究中心, 地表过程分析与模拟教育部重点实验室, 北京 100871

收稿日期: 2020-05-11

  录用日期: 2020-11-08

  网络出版日期: 2020-12-17

基金资助

国家自然科学基金(41925005);国家自然科学基金(41871217)

Effects of plant functional traits on ecosystem services: a review

Expand
  • 1State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
    2University of Chinese Academy of Sciences, Beijing 100049, China
    3Institute of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China

Received date: 2020-05-11

  Accepted date: 2020-11-08

  Online published: 2020-12-17

Supported by

National Natural Science Foundation of China(41925005);National Natural Science Foundation of China(41871217)

摘要

全面认识和理解生态系统服务的形成机制是维持其持续供给的前提。植物功能性状直接参与多种生态系统过程, 影响生态系统服务供给, 探讨植物功能性状与生态系统服务的关系是揭示生态系统服务形成机制的重要途径。该文采用系统的文献综述方法, 分析了植物功能性状与生态系统服务关系的研究特点, 总结了影响不同生态系统服务的主要植物功能性状, 阐述了可能的影响途径。结果表明: 植物功能性状与生态系统服务关系研究以草地和森林等自然生态系统为主; 大部分研究集中在生态系统供给服务和支持服务, 包括生物量、净初级生产力、土壤肥力等; 根据植物功能性状对不同生态系统服务的影响程度, 植物功能性状可以聚类为土壤保持服务相关性状、水分循环相关性状、多功能相关性状、产品提供服务与养分循环相关性状以及授粉与生物控制服务相关性状; 并阐述了植物功能性状指标影响不同的生态系统服务途径。围绕植物功能性状对生态系统服务的影响, 今后尚需进一步探讨生态系统多功能性、植物功能性状相关性、气候变化和人类活动不确定性、时空尺度差异等因素对二者关系的影响。

本文引用格式

潘权, 郑华, 王志恒, 文志, 杨延征 . 植物功能性状对生态系统服务影响研究进展[J]. 植物生态学报, 2021 , 45(10) : 1140 -1153 . DOI: 10.17521/cjpe.2020.0142

Abstract

Comprehensively understanding the mechanisms underlying the formation of ecosystem services is a prerequisite for maintaining the sustainable supply of ecosystem services. Plant functional traits directly participate in a variety of ecosystem processes, which in turn affect the supply of ecosystem services. Revealing the relationship between plant functional traits and ecosystem services is an important way to understand the formation mechanism of ecosystem services. Based on a systematic literature review, 86 papers on plant functional properties and ecosystem services were retrieved in the Web of Science database, and data for 466 pairs of plant functional traits and ecosystem services and 83 plant functional traits were collected. The current status of research on the relationship between plant functional traits and ecosystem services was revealed. Moreover, the main plant functional traits that affect different ecosystem services and their mechanisms underlying their impacts were also demonstrated. The results show that the research on the relationship between plant functional traits and ecosystem services mostly focuses on natural ecosystems such as grasslands and forests. Most of these studies focus on ecosystem products providing and supporting services, including biomass, net primary productivity, and soil fertility. Based on the impacts of plant functional traits on different ecosystem services, the plant functional traits can be clustered into five categories: soil-conservation-related traits, water-cycle-related traits, ecosystem- multifunction- related traits, product-providing-related traits, and pollination-biocontrol-related traits. The impacts of climate change, human activities, and variations in spatial and temporal scales on the relationship between plant functional traits and ecosystem services need to be further explored.

参考文献

[1] Abalos D de Deyn GB, Kuyper TW, van Groenigen JW ( 2014). Plant species identity surpasses species richness as a key driver of N2O emissions from grassland. Global Change Biology, 20, 265-275.
[2] Adair EC, Hooper DU, Paquette A, Hungate BA (2018). Ecosystem context illuminates conflicting roles of plant diversity in carbon storage. Ecology Letters, 21, 1604-1619.
[3] Adamidis GC, Cartar RV, Melathopoulos AP, Pernal SF, Hoover SE (2019). Pollinators enhance crop yield and shorten the growing season by modulating plant functional characteristics: a comparison of 23 canola varieties. Scientific Reports, 9, 14208. DOI: 10.1038/s41598-019-50811-y.
[4] Allan E, Manning P, Alt F, Binkenstein J, Blaser S, Blüthgen N, Böhm S, Grassein F, Hölzel N, Klaus VH, Kleinebecker T, Morris EK, Oelmann Y, Prati D, Renner SC, et al. (2015). Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition. Ecology Letters, 18, 834-843.
[5] Anderson-Teixeira KJ, Davies SJ, Bennett AC, Gonzalez-Akre EB, Muller-Landau HC, Wright SJ, Abu Salim K, Almeyda Zambrano AM, Alonso A, Baltzer JL, Basset Y, Bourg NA, Broadbent EN, Brockelman WY, Bunyavejchewin S, et al. (2015). CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Global Change Biology, 21, 528-549.
[6] Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9, 1146-1156.
[7] Bardgett RD, van der Putten WH (2014). Belowground biodiversity and ecosystem functioning. Nature, 515, 505-511.
[8] Bartual AM, Sutter L, Bocci G, Moonen AC, Cresswell JE, Entling MH, Giffard B, Jacot K, Jeanneret P, Holland JM, Pfister SC, Pintér O, Veromann E, Winkler K, Albrecht M (2019). The potential of different semi-natural habitats to sustain pollinators and natural enemies in European agricultural landscapes. Agriculture, Ecosystems & Environment, 279, 43-52.
[9] Belshe EF, Hoeijmakers D, Herran N, Mtolera M, Teichberg M (2018). Seagrass community-level controls over organic carbon storage are constrained by geophysical attributes within meadows of Zanzibar, Tanzania. Biogeosciences, 15, 4609-4626.
[10] Bin Y, Lin GJ, Russo SE, Huang ZL, Shen Y, Cao HL, Lian J, Ye WH (2019). Testing the competition-colonization trade-off and its correlations with functional trait variations among subtropical tree species. Scientific Reports, 9, 14942. DOI: 10.1038/s41598-019-50604-3.
[11] Bu WS, Zhang CC, Huang JH, Zang RG, Ding Y, Xu H, Lin MX, Wang JS (2019). The influences of disturbance histories and soil properties on aboveground biomass through plant functional traits in a tropical rainforest. Forests, 10, 774. DOI: 10.3390/f10090774.
[12] Burylo M, Rey F, Bochet E, Dutoit T (2012a). Plant functional traits and species ability for sediment retention during concentrated flow erosion. Plant and Soil, 353, 135-144.
[13] Burylo M, Rey F, Mathys N, Dutoit T (2012b). Plant root traits affecting the resistance of soils to concentrated flow erosion. Earth Surface Processes and Landforms, 37, 1463-1470.
[14] Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Larigauderie A, Srivastava DS, Naeem S (2012). Biodiversity loss and its impact on humanity. Nature, 486, 59-67.
[15] Cardinale BJ, Srivastava DS, Duffy JE, Wright JP, Downing AL, Sankaran M, Jouseau C (2006). Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature, 443, 989-992.
[16] Conti G, Díaz S (2013). Plant functional diversity and carbon storage: an empirical test in semi-arid forest ecosystems. Journal of Ecology, 101, 18-28.
[17] Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
[18] Daily GC (1997). Nature’s Services: Societal Dependence on Natural Ecosystems. Island Press, Washington D.C.
[19] de Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen JHC, Bardgett RD, Berg MP, Cipriotti P, Feld CK, Hering D, Martins da Silva P, Potts SG, Sandin L, Sousa JP, Storkey J, Wardle DA, Harrison PA (2010). Towards an assessment of multiple ecosystem processes and services via functional traits. Biodiversity and Conservation, 19, 2873-2893.
[20] Díaz S, Lavorel S de Bello F, Quétier F, Grigulis K, Robson TM (2007). Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America, 104, 20684-20689.
[21] Elumeeva TG, Onipchenko VG, Cornelissen JHC, Semenova GV, Perevedentseva LG, Freschet GT, van Logtestijn RSP, Soudzilovskaia NA (2018). Is intensity of plant root mycorrhizal colonization a good proxy for plant growth rate, dominance and decomposition in nutrient poor conditions? Journal of Vegetation Science, 29, 715-725.
[22] Everwand G, Fry EL, Eggers T, Manning P (2014). Seasonal variation in the capacity for plant trait measures to predict grassland carbon and water fluxes. Ecosystems, 17, 1095-1108.
[23] Eviner VT, Chapin III FS (2003). Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes. Annual Review of Ecology Evolution and Systematics, 34, 455-485.
[24] Falster DS, Brannstrom A, Dieckmann U, Westoby M (2011). Influence of four major plant traits on average height, leaf-area cover, net primary productivity, and biomass density in single-species forests: a theoretical investigation. Journal of Ecology, 99, 148-164.
[25] Finegan B, Peña-Claros M de Oliveira A, Ascarrunz N, Bret-Harte MS, Carreño-Rocabado G, Casanoves F, Díaz S, Eguiguren Velepucha P, Fernandez F, Licona JC, Lorenzo L, Salgado Negret B, Vaz M, Poorter L (2015). Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 103, 191-201.
[26] Fornoff F, Klein AM, Hartig F, Benadi G, Venjakob C, Schaefer HM, Ebeling A (2017). Functional flower traits and their diversity drive pollinator visitation. Oikos, 126, 1020-1030.
[27] Fu H, Zhong JY, Yuan GX, Ni LY, Xie P, Cao T (2014). Functional traits composition predict macrophytes community productivity along a water depth gradient in a freshwater lake. Ecology and Evolution, 4, 1516-1523.
[28] Garcia L, Damour G, Gary C, Follain S, Bissonnais Y, Metay A (2019). Trait-based approach for agroecology: contribution of service crop root traits to explain soil aggregate stability in vineyards. Plant and Soil, 435, 1-14.
[29] García-Palacios P, Gattinger A, Bracht-Jørgensen H, Brussaard L, Carvalho F, Castro H, Clément JC de Deyn G, D'Hertefeldt T, Foulquier A, Hedlund K, Lavorel S, Legay N, Lori M, Mäder P, et al. (2018). Crop traits drive soil carbon sequestration under organic farming. Journal of Applied Ecology, 55, 2496-2505.
[30] Golodets C, Sternberg M, Kigel J (2009). A community-level test of the leaf-height-seed ecology strategy scheme in relation to grazing conditions. Journal of Vegetation Science, 20, 392-402.
[31] Grigulis K, Lavorel S, Krainer U, Legay N, Baxendale C, Dumont M, Kastl E, Arnoldi C, Bardgett RD, Poly F, Pommier T, Schloter M, Tappeiner U, Bahn M, Clement J (2013). Relative contributions of plant traits and soil microbial properties to mountain grassland ecosystem services. Journal of Ecology, 101, 47-57.
[32] Handa IT, Aerts R, Berendse F, Berg MP, Bruder A, Butenschoen O, Chauvet E, Gessner MO, Jabiol J, Makkonen M, McKie BG, Malmqvist B, Peeters ET, Scheu S, Schmid B, et al. (2014). Consequences of biodiversity loss for litter decomposition across biomes. Nature, 509, 218-221.
[33] Hanif MA, Yu Q, Rao X, Shen W (2019). Disentangling the contributions of plant taxonomic and functional diversities in shaping aboveground biomass of a restored forest landscape in Southern China. Plants, 8, 612. DOI: 10.3390/plants8120612.
[34] Hatt S, Uyttenbroeck R, Lopes T, Chen JL, Piqueray J, Monty A, Francis F (2018). Effect of flower traits and hosts on the abundance of parasitoids in perennial multiple species wildflower strips sown within oilseed rape (Brassica napus) crops. Arthropod-Plant Interactions, 12, 787-797.
[35] Hatt S, Uyttenbroeck R, Lopes TCM, Mouchon P, Chen J, Piqueray J, Monty A, Francis F (2017). Do flower mixtures with high functional diversity enhance aphid predators in wildflower strips? European Journal of Entomology, 114, 66-76.
[36] He NP, Li Y, Liu CC, Xu L, Li MX, Zhang JH, He JS, Tang ZY, Han XG, Ye Q, Xiao CW, Yu Q, Liu SR, Sun W, Niu SL, Li SG, Sack L, Yu GR (2020). Plant trait networks: improved resolution of the dimensionality of adaptation. Trends in Ecology & Evolution, 35, 908-918.
[37] He NP, Liu CC, Piao SL, Sack L, Xu L, Luo Y, He JS, Han XG, Zhou GS, Zhou XH, Lin Y, Yu Q, Liu SR, Sun W, Niu SL, Li SG, Zhang JH, Yu GR (2019). Ecosystem traits linking functional traits to macroecology. Trends in Ecology & Evolution, 34, 200-210.
[38] Hector A, Bagchi R (2007). Biodiversity and ecosystem multifunctionality. Nature, 448, 188-190.
[39] Hillebrand H, Matthiessen B (2009). Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecology Letters, 12, 1405-1419.
[40] Hu YK, Pan X, Yang XJ, Liu GF, Liu XY, Song YB, Zhang MY, Cui LJ, Dong M (2019). Is there coordination of leaf and fine root traits at local scales? A test in temperate forest swamps. Ecology and Evolution, 9, 8714-8723.
[41] Kattge J, Diaz S, Lavorel S, Prentice C, Leadley P, Bonisch G, Garnier E, Westoby M, Reich PB, Wright IJ, Cornelissen JHC, Violle C, Harrison SP, van Bodegom PM, Reichstein M, et al. (2011). TRY-A global database of plant traits. Global Change Biology, 17, 2905-2935.
[42] Kervroedan L, Armand R, Saunier M, Ouvry J, Faucon M (2018). Plant functional trait effects on runoff to design herbaceous hedges for soil erosion control. Ecological Engineering, 118, 143-151.
[43] Klumpp K, Soussana J (2009). Using functional traits to predict grassland ecosystem change: a mathematical test of the response-and-effect trait approach. Global Change Biology, 15, 2921-2934.
[44] Kröber W, Li Y, Härdtle W, Ma KP, Schmid B, Schmidt K, Scholten T, Seidler G, von Oheimb G, Welk E, Wirth C, Bruelheide H (2015). Early subtropical forest growth is driven by community mean trait values and functional diversity rather than the abiotic environment. Ecology and Evolution, 5, 3541-3556.
[45] La Pierre KJ, Smith MD (2015). Functional trait expression of grassland species shift with short- and long-term nutrient additions. Plant Ecology, 216, 307-318.
[46] Lamarque P, Lavorel S, Mouchet M, Quetier F (2014). Plant trait-based models identify direct and indirect effects of climate change on bundles of grassland ecosystem services. Proceedings of the National Academy of Sciences of the United States of America, 111, 13751-13756.
[47] Li XL, Liu ZY, Wang Z, Wu XH, Li XL, Hu J, Shi HX, Guo FH, Zhang Y, Hou XY (2015). Pathways of Leymus chinensis individual aboveground biomass decline in natural semiarid grassland induced by overgrazing: a study at the plant functional trait scale. PLOS ONE, 10, e0124443. DOI: 10.1371/journal.pone.0124443.
[48] Lienin P, Kleyer M (2012). Plant trait responses to the environment and effects on ecosystem properties. Basic and Applied Ecology, 13, 301-311.
[49] Lin DM, Anderson-Teixeira KJ, Lai JS, Mi XC, Ren HB, Ma KP (2016). Traits of dominant tree species predict local scale variation in forest aboveground and topsoil carbon stocks. Plant and Soil, 409, 435-446.
[50] Liu XJ, Ma KP (2015). Plant functional traits: concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339.
[50] [ 刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.]
[51] Lu N, Fu BJ, Jin TT, Chang RY (2014). Trade-off analyses of multiple ecosystem services by plantations along a precipitation gradient across Loess Plateau landscapes. Landscape Ecology, 29, 1697-1708.
[52] Lundholm J, Heim A, Tran S, Smith T (2014). Leaf and life history traits predict plant growth in a green roof ecosystem. PLOS ONE, 9, e101395. DOI: 10.1371/journal. pone.0101395.
[53] Lundholm J, Tran S, Gebert L (2015). Plant functional traits predict green roof ecosystem services. Environmental Science & Technology, 49, 2366-2374.
[54] Lundin O, Ward KL, Williams NM (2019). Identifying native plants for coordinated habitat management of arthropod pollinators, herbivores and natural enemies. Journal of Applied Ecology, 56, 665-676.
[55] Matheny AM, Mirfenderesgi G, Bohrer G (2017). Trait-based representation of hydrological functional properties of plants in weather and ecosystem models. Plant Diversity, 39, 1-12.
[56] Millennium Ecosystem Assessment Board (2005). Ecosystems and Human Well-Being: Synthesis Report. Island Press, Washington D.C.
[57] Monteiroa MV, Blanusa T, Verhoef A, Richardson M, Hadley P, Cameron RWF (2017). Functional green roofs: importance of plant choice in maximising summertime environmental cooling and substrate insulation potential. Energy and Buildings, 141, 56-68.
[58] Moonen PCJ, Verbist B, Bosela FB, Norgrove L, Dondeyne S, van Meerbeek K, Kearsley E, Verbeeck H, Vermeir P, Boeckx P, Muys B (2019). Disentangling how management affects biomass stock and productivity of tropical secondary forests fallows. Science of the Total Environment, 659, 101-114.
[59] Navarro-Cano JA, Verdú M, Goberna M (2018). Trait-based selection of nurse plants to restore ecosystem functions in mine tailings. Journal of Applied Ecology, 55, 1195-1206.
[60] Orwin KH, Mason NWH, Jordan OM, Lambie SM, Stevenson BA, Mudge PL (2018). Season and dominant species effects on plant trait-ecosystem function relationships in intensively grazed grassland. Journal of Applied Ecology, 55, 236-245.
[61] Ouyang ZY, Wang RS, Zhao JZ (1999). Ecosystem services and their economic valuation. Chinese Journal of Applied Ecology, 10, 3-5.
[61] [ 欧阳志云, 王如松, 赵景柱 (1999). 生态系统服务功能及其生态经济价值评价. 应用生态学报, 10, 3-5.]
[62] Ouyang ZY, Zheng H (2009). Ecological mechanisms of ecosystem services. Acta Ecologica Sinica, 29, 6183-6188.
[62] [ 欧阳志云, 郑华 (2009). 生态系统服务的生态学机制研究进展. 生态学报, 29, 6183-6188.]
[63] Pakeman RJ (2014). Leaf dry matter content predicts herbivore productivity, but its functional diversity is positively related to resilience in grasslands. PLOS ONE, 9, e101876. DOI: 10.1371/journal.pone.0101876.
[64] Pakeman RJ, Eastwood A, Scobie A (2011). Leaf dry matter content as a predictor of grassland litter decomposition: a test of the “mass ratio hypothesis”. Plant and Soil, 342, 49-57.
[65] Paquette A, Messier C (2011). The effect of biodiversity on tree productivity: from temperate to boreal forests. Global Ecology and Biogeography, 20, 170-180.
[66] Patoine G, Thakur MP, Friese J, Nock CA, Honig L, Haase J, Scherer-Lorenzen M, Eisenhauer N (2017). Plant litter functional diversity effects on litter mass loss depend on the macro-detritivore community. Pedobiologia, 65, 29-42.
[67] Pommier T, Cantarel AAM, Grigulis K, Lavorel S, Legay N, Baxendale C, Bardgett RD, Bahn M, Poly F, Clément JC (2018). The added value of including key microbial traits to determine nitrogen-related ecosystem services in managed grasslands. Journal of Applied Ecology, 55, 49-58.
[68] Quétier F, Thébault A, Lavorel S (2007). Plant traits in a state and transition framework as markers of ecosystem response to land-use change. Ecological Monographs, 77, 33-52.
[69] Robleño I, Storkey J, Solé-Senan XO, Recasens J (2018). Using the response-effect trait framework to quantify the value of fallow patches in agricultural landscapes to pollinators. Applied Vegetation Science, 21, 267-277.
[70] Rolo V, Rivest D, Lorente M, Kattge J, Moreno G (2016). Taxonomic and functional diversity in Mediterranean pastures: insights on the biodiversity-productivity trade-off. Journal of Applied Ecology, 53, 1575-1584.
[71] Santala K, Aubin I, Hoepting M, Bachand M, Pitt D (2019). Managing conservation values and tree performance: lessons learned from 10 year experiments in regenerating eastern white pine (Pinus strobus L.). Forest Ecology and Management, 432, 748-760.
[72] Schindler MH, Gessner MO (2009). Functional leaf traits and biodiversity effects on litter decomposition in a stream. Ecology, 90, 1641-1649.
[73] Schröter D, Cramer W, Leemans R, Prentice IC, Araújo MB, Arnell NW, Bondeau A, Bugmann H, Carter TR, Gracia CA, de la Vega-Leinert AC, Erhard M, Ewert F, Glendining M, House JI, et al. (2005). Ecosystem service supply and vulnerability to global change in Europe. Science, 310, 1333-1337.
[74] Schuldt A, Assmann T, Bruelheide H, Durka W, Eichenberg D, Härdtle W, Kröber W, Michalski SG, Purschke O (2014). Functional and phylogenetic diversity of woody plants drive herbivory in a highly diverse forest. New Phytologist, 202, 864-873.
[75] Serna-Chavez HM, Swenson NG, Weiser MD, van Loon EE, Bouten W, Davidson MD,van Bodegom PM (2017). Strong biotic influences on regional patterns of climate regulation services. Global Biogeochemical Cycles, 31, 787-803.
[76] Sole-Senan XO, Juarez-Escario A, Robleno I, Conesa JA, Recasens J (2017). Using the response-effect trait framework to disentangle the effects of agricultural intensification on the provision of ecosystem services by Mediterranean arable plants. Agriculture Ecosystems & Environment, 247, 255-264.
[77] Staples TL, Dwyer JM, England JR, Mayfield MM (2019). Productivity does not correlate with species and functional diversity in Australian reforestation plantings across a wide climate gradient. Global Ecology and Biogeography, 28, 1417-1429.
[78] Storkey J, Brooks D, Haughton A, Hawes C, Smith BM, Holland JM (2013). Using functional traits to quantify the value of plant communities to invertebrate ecosystem service providers in arable landscapes. Journal of Ecology, 101, 38-46.
[79] Storkey J, Döring T, Baddeley J, Collins R, Roderick S, Jones H, Watson C (2015). Engineering a plant community to deliver multiple ecosystem services. Ecological Applications, 25, 1034-1043.
[80] Tecco PA, Díaz S, Cabido M, Urcelay C (2010). Functional traits of alien plants across contrasting climatic and land-use regimes: Do aliens join the locals or try harder than them? Journal of Ecology, 98, 17-27.
[81] Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, et al. (2012). Landscape moderation of biodiversity patterns and processes-Eight hypotheses. Biological Reviews, 87, 661-685.
[82] van der Plas F (2019). Biodiversity and ecosystem functioning in naturally assembled communities. Biological Reviews, 94, 1220-1245.
[83] Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892.
[84] Wen Z, Zheng H, Ouyang ZY (2020). Research progress on the relationship between biodiversity and ecosystem services. Chinese Journal of Applied Ecology, 31, 1-10.
[84] [ 文志, 郑华, 欧阳志云 (2020). 生物多样性与生态系统服务关系研究进展. 应用生态学报, 31, 1-10.]
[85] Wen Z, Zheng H, Smith JR, Zhao H, Liu L, Ouyang ZY (2019). Functional diversity overrides community-weighted mean traits in linking land-use intensity to hydrological ecosystem services. Science of the Total Environment, 682, 583-590.
[86] Westoby M (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 199, 213-227.
[87] Willemen L (2020). It’s about time: advancing spatial analyses of ecosystem services and their application. Ecosystem Services, 44, 101125.
[88] Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
[89] Yang Y, Dou YX, Cheng H, An SS (2019). Plant functional diversity drives carbon storage following vegetation restoration in Loess Plateau, China. Journal of Environmental Management, 246, 668-678.
[90] Zhang JH, Huang YM, Chen HY, Gong JR, Qi Y, Li EG, Wu XC (2018). Response of plant functional traits at species and community levels to grazing exclusion on Inner Mongolian steppe, China. Rangeland Journal, 40, 179-189.
[91] Zheng H, Wang LJ, Peng WJ, Zhang CP, Li C, Robinson BE, Wu XC, Kong LQ, Li RN, Xiao Y, Xu WH, Ouyang ZY, Daily GC (2019). Realizing the values of natural capital for inclusive, sustainable development: informing China’s new ecological development strategy. Proceedings of the National Academy of Sciences of the United States of America, 116, 8623-8628.
[92] Zhu HX, Fu BJ, Wang S, Zhu LH, Zhang LW, Jiao L, Wang C (2015). Reducing soil erosion by improving community functional diversity in semi-arid grasslands. Journal of Applied Ecology, 52, 1063-1072.
[93] Zirbel CR, Bassett T, Grman E, Brudvig LA (2017). Plant functional traits and environmental conditions shape community assembly and ecosystem functioning during restoration. Journal of Applied Ecology, 54, 1070-1079.
[94] Zuo XA, Zhou X, Lv P, Zhao XY, Zhang J, Wang SK, Yue XY (2016). Testing associations of plant functional diversity with carbon and nitrogen storage along a restoration gradient of sandy grassland. Frontiers in Plant Science, 7, 189. DOI: 10.3389/fpls.2016.00189.
文章导航

/