水位与光强变化对尖叶泥炭藓孢蒴生产动态的影响

展开
  • 东北师范大学泥炭沼泽研究所, 国家环境保护湿地生态与植被恢复重点实验室, 长春 130024

*作者简介:E-mail:chengliu6542@gmail.com

收稿日期: 2015-02-02

  录用日期: 2015-03-31

  网络出版日期: 2015-05-26

基金资助

国家自然科学基金(41471043和41371103)

Effects of water level and light intensity on capsule production dynamics of Sphagnum capillifolium

Expand
  • State Environmental Protection Key Laboratory for Wetland Conservation and Vegetation Restoration, Institute for Peat and Mire Research, Northeast Normal University, Changchun 130024, China

# Co-first authors

Received date: 2015-02-02

  Accepted date: 2015-03-31

  Online published: 2015-05-26

摘要

选取尖叶泥炭藓(Sphagnum capillifolium)为试验材料, 在模拟水位与光强条件下, 对人工构建的苔藓植物群落进行室内培养, 每隔1-3天观察并记录植株高度、孢蒴变化过程及变化时间, 分析了不同水位与光强条件对孢蒴生产的植物功能属性动态的影响。水位上升促进了蒴柄伸长及植株高增长, 增加了孢蒴开裂率及遮蔽率。光强增加有助于孢蒴生长, 并提高了孢蒴开裂率。在孢蒴直径以及植株高增长性状上, 水位与光强存在交互作用。水位与光强对孢蒴增长率均没有影响。此外, 水位升高与光强增加使孢蒴成熟及蒴柄伸长时间提前, 总体上使孢子释放时间分别提前了4.0 d和4.8 d, 由此可能减小了孢子体因受夏季干旱影响而败育的风险。孢子释放后, 繁殖株高增长加速, 可为未来的再次繁殖奠定基础。

关键词: 泥炭藓; 水位; 光强; 物候

本文引用格式

袁敏, 卜兆君, 刘超, 马进泽, 王升忠 . 水位与光强变化对尖叶泥炭藓孢蒴生产动态的影响[J]. 植物生态学报, 2015 , 39(5) : 501 -507 . DOI: 10.17521/cjpe.2015.0048

Abstract

Aims

Our objective was to analyze the effect of water levels and light intensities on capsule production dynamics of Sphagnum to lay the foundation for further research on its reproductive phenology.

Methods

Our selected Sphagnum capillifolium in this study. We set up a simulation experiment within a growth chamber and grew moss communities in polystyrene containers. Water levels and light intensities were altered to create different environmental conditions. Gametophores and capsule production were observed and recorded.

Important findings

Seta length, shoot height and capsule cracking rate increased when water level increased. Under high light intensities, capsule diameter and capsule cracking rate were higher. Water level and light intensity had an interactive effect on shoot height increment and capsule diameter. Water level and light intensity had no effect on capsule production rate. Increase in both water level and light intensity led to earlier spore release. Reproductive phenology advance can reduce the abortive risk of spores by avoiding detrimental environment conditions such as drought. After capsules dehisced, reproductive shoots were able to accelerate height growth to avoid shading to lay a foundation for further reproduction in the future.

参考文献

1 Bao WM, Cao JG (2001). Spore germination and sexual reproduction in Sphagnum.Bulletin of Biology, 36(1), 8-9(in Chinese).
1 [包文美, 曹建国 (2001). 泥炭藓及其孢子萌发和有性生殖. 生物学通报, 36(1), 8-9.]
2 Bragazza L (2008). A climatic threshold triggers the die-off of peat mosses during an extreme heat wave.Global Change Biology, 14, 2688-2695.
3 Bragazza L, Parisod J, Buttler A, Bardgett RD (2013). Biogeochemical plant-soil microbe feedback in response to climate warming in peatlands.Nature Climate Change, 3, 273-277.
4 Bu ZJ, Rydin H, Chen X (2011). Direct and interaction- mediated effects of environmental changes on peatland bryophytes.Oecologia, 166, 555-563.
5 Bubier JL, Moore TR, Bledzki LA (2007). Effects of nutrient addition on vegetation and carbon cycling in an ombrotrophic bog.Global Change Biology, 13, 1168-1186.
6 Clymo RS (1998). Sphagnum, the peatland carbon economy, and climate change. In: Bates JW, Ashton NW, Duckett JG eds. Bryology for the Twenty-first Century. Maney Publishing and the British Bryological Society, Leeds, UK. 361-368.
7 Cronberg N (1993). Reproductive biology of Sphagnum.Lindbergia, 17, 69-82.
8 Crum H (1972). The geographic origins of the mosses of North America’s eastern deciduous forest.Journal of the Hattori Botanical Laboratory, 35, 269-298.
9 Ehrlén J, Bisang I, Hedenäs L (2000). Costs of sporophyte production in the moss, Dicranum polysetum.Plant Ecology, 149, 207-217.
10 Gao Q, Cao T, Fu X (2000). Types of spore dispersal of mosses in relation to evolution system.Acta Botanica Yunnanica, 22, 268-276(in Chinese with English abstract).
10 [高谦, 曹同, 付星 (2000). 藓类植物传孢类型及其系统演化关系. 云南植物研究, 22, 268-276. ]
11 Glime JM (. Cited: Feb. 2015.
12 Gravobik SI (1986). Influence of some ecological factors on the spore productivity of Sphagnum mosses. Botanicheskii Zhurnal (in Russian), 71, 1652-1657.
13 Ingold CT (1965). Spore Liberation. Clarendon Press, Oxford.
14 Johansson V, Lönnell N, Sundberg S, Hylander K (2014). Release thresholds for moss spores: The importance of turbulence and sporophyte length.Journal of Ecology, 102, 721-729.
15 Jones EW (1986). Bryophytes in chawley brick pit, Oxford, 1948-1985.Journal of Bryology, 14, 347-358.
16 Longton RE (1997). Reproductive biology and life-history strategies.Advances of Bryology, 6, 65-101.
17 Moore TR, Roulet NT, Waddington JM (1998). Uncertainty in predicting the effect of climatic change on the carbon cycling of Candian peatlands.Climatic Change, 40, 229-245.
18 Nawaschin S (1897). Über die Sporenausschleuderung bei den Torfmoosen.Flora, 48, 151-159.
19 Rochefort L (2000). Sphagnum―A keystone genus in habitat restoration.The Bryologist, 103, 503-508.
20 Rudolph H, Kirchhoff M, Gliesmann S (1988). Sphagnum culture techniques. In: Glime JM ed. Methods in Bryology. Hattori Botanical Laboratory, Nichinan. 25-34.
21 Rydin H, Clymo RS (1989). Transport of carbon and phosphorus compounds about Sphagnum.Proceedings of the Royal Society of London Series B: Biological Sciences, 237, 63-84.
22 Söderström L, Herben T (1997). Dynamics of bryophyte metapopulations.Advances of Bryology, 6, 205-240.
23 Soro A, Sundberg S, Rydin H (1999). Species diversity, niche metrics and species associations in harvested and undisturbed bogs.Journal of Vegetation Science, 10, 549-560.
24 Stark LR, Mishler BD, McLetchie DN (2000). The cost of realized sexual reproduction: Assessing patterns of reproductive allocation and sporophyte abortion in a desert moss.American Journal of Botany, 87, 1599-1608.
25 Sundberg S (2000). The ecological significance of sexual reproduction in peat mosses (Sphagnum).Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, 581, 1-37.
26 Sundberg S (2002). Sporophyte production and spore dispersal phenology in Sphagnum: The importance of summer moisture and patch characteristics.Canadian Journal of Botany, 80, 543-556.
27 Sundberg S (2005). Larger capsules enhance short-range spore dispersal in Sphagnum, but what happens further away?Oikos, 108, 115-124.
28 Sundberg S (2010). Size matters for violent discharge height and settling speed of Sphagnum spores: Important attributes for dispersal potential.Annals of Botany, 105, 291-300.
29 Sundberg S (2013). Spore rain in relation to regional sources and beyond.Ecography, 36, 364-373.
30 Sundberg S, Rydin H (1998). Spore number in Sphagnum and its dependence on spore and capsule size.Journal of Bryology, 20, 1-16.
31 Sundberg S, Rydin H (2000). Experimental evidence for a persistent spore bank in Sphagnum.New Phytologist, 148, 105-116.
32 Whitaker DL, Edwards J (2010). Sphagnum moss disperses spores with vortex rings.Science, 329, 406.
文章导航

/