研究论文

亚麻响应盐、碱胁迫的生理特征

展开
  • 1中国农业科学院农业环境与可持续发展研究所, 北京 100081
    2农业部旱作节水农业重点实验室, 北京 100081
    3国土资源部土地整治中心, 北京 100034

# 共同第一作者

网络出版日期: 2016-01-28

基金资助

国家自然科学基金青年基金(31200243)、国家自然科学基金面上项目(31570328)、国家高技术研究发展计划(“863”计划) (2011AA100503)和中央公益性科研业务费(BSRF 201201)。

Eco-physiological responses of linseed (Linum usitatissimum) to salt and alkali stresses

Expand
  • 1Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing 100081, China
    and 3Land Consolidation and Rehabilitation Centre, Ministry of Land and Resources of the People’s Republic of China, Beijing 100034, China

# Co-first authors

Online published: 2016-01-28

摘要

利用中性盐NaCl、Na2SO4和碱性盐NaHCO3、Na2CO3混合模拟不同强度的盐、碱胁迫条件, 对亚麻(Linum usitatissimum)进行14天胁迫处理, 测定其地上部分和根生长速率、光合特征、离子平衡及有机渗透调节物质积累, 以探讨亚麻对盐、碱两种胁迫的生理响应特点。研究表明: 亚麻生长对盐、碱胁迫的响应存在差异, 在相同盐浓度下, 碱胁迫对亚麻的伤害大于盐胁迫。碱胁迫使地上部分中Na+浓度急剧增高, 造成叶绿体破坏、光合色素含量下降, 光合能力及碳同化能力也急剧下降。亚麻中Na+含量随着胁迫强度的增加而升高, 而K+含量呈下降趋势, 碱胁迫下的变化明显大于盐胁迫。因此, 碱胁迫导致Na+过度积累可能是碱胁迫对植物伤害大于盐胁迫的最主要原因。碱胁迫下Ca2+和Mg2+在根中下降明显, 可见高pH值阻碍根对Ca2+和Mg2+的吸收。Fe2+和Zn2+对渗透调节的影响不大, 因为它们的离子含量较低。盐胁迫促进阴离子(Cl-、H2PO4-和SO42-)的积累来平衡大量涌入的Na+, 但是碱胁迫明显减少无机阴离子含量, 可能造成严重营养胁迫(如P和S不足)。亚麻在盐胁迫下积累大量可溶性糖来平衡大量的Na+, 但碱胁迫下积累大量有机酸来维持细胞内离子平衡和pH值稳定, 碱胁迫大量积累的有机酸也可能被分泌到根外调节根外的pH值, 这说明亚麻对两种不同胁迫的响应方式不同。研究证明高pH值会直接影响植物根系的生长发育, 影响植物矿质元素的吸收, 阻碍离子稳态重建, 有机酸代谢是亚麻碱胁迫下的关键适应机制。

本文引用格式

郭瑞, 李峰, 周际, 李昊儒, 夏旭, 刘琪 . 亚麻响应盐、碱胁迫的生理特征[J]. 植物生态学报, 2016 , 40(1) : 69 -79 . DOI: 10.17521/cjpe.2015.0240

Abstract

AimsEffects of salt and alkali stresses (NaCl-Na2SO4 and NaHCO3-Na2CO3) were compared on growth, photosynthesis characters, ionic balance and osmotic adjustment of linseed (Linum usitatissimum), to elucidate the mechanisms of salt and alkali stress (high pH value) damage to plants, and their physiological adaptive mechanisms to the stresses. MethodsThe experiment was carried out in an artificial greenhouse. Plants grew at approximately 700 mmol·m-2·s-1 photosynthetic photon flux density (PPFD) in greenhouse under photoperiod of 15 h in light and 9 h in dark. In each plastic pot (17 cm diameter) which contained 2.5 kg of washed sand, 20 linseed seeds were sown. The seedlings were exposed to stresses lasting 14 days after 2 months.Important findingsThe inhibitory effects of alkali stress on linseed growth were more remarkable than those of salt stress, indicating that alkali and salt represent two distinct forms of stress. The alkali stress increased the Na+ content in shoots, damaged the photosynthetic system, and highly reduced the net photosynthetic rate and C assimilation capacity. Under salinity stress, the Na+ content increased, the K+ content decreased with increasing stress. Greater changes were observed under alkali than under salt stress. Alkali stress caused the massive influx of Na+, which probably explained that the harmful of alkali stress on plants was stronger than that of salt stress. Under alkali stress, Ca2+ and Mg2+ decreased in roots, showing that high pH value around roots hindered the absorption of them. Fe2+ and Zn2+ had little effects on the osmotic adjustment, mainly because of they had a low ion content. Under salt stress, anion increased in order to balance the sharp increase of Na+. However, alkali stress made severe deficit of negative charge, broke the intracellular ionic balance and pH homeostasis, and caused a series of strain response. Our results showed that linseed enhanced the synthesis of soluble sugars to balance massive influx of Na+ under salt stress, but linseed enhanced the synthesis of organic acids to compensate for the shortage of inorganic anions, which might be a key pathway for the pH adjustment. In conclusion, the alkali stress (high pH value) clearly inhibited the growth, element absorption, ion homeostasis reconstruction of plants. Organic acid concentration is possibly a key adaptive factor for linseed to maintain intracellular ion balance and regulate high pH value under alkali stress.

参考文献

1 Arnon DI (1949). Copper enzymes in isolated chloroplasts phenoloxidases in Beta vulgaris.Plant Physiology, 24, 1-15.
2 Ashraf M, Fatima H (2004). Intra-specific variation for salt tolerance in linseed (Linum usitatissimum L).Journal of Agronomy and Crop Science, 173, 193-203.
3 Bao SD (1981). Analytic Methods for Soil and Agriculture Chemistry. China Agriculture Press, Beijing. 150-160. (in Chinese)
3 [鲍士旦 (1981). 土壤农化分析. 中国农业出版社, 北京. 150-160.]
4 Bolhàr-Nordenkampf HR, Long SP, Baker NR, Öquist G, Schreiber U, Lechner EG (1989). Chlorophyll fluorescence as a probe of the photosynthetic competence of leaves in the field: A review of current instrumentation. Functional Ecology, 3, 497-514.
5 Brugnoli E, Lauteri M (1991). Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non- halophytes.Plant Physiology, 95, 628-635.
6 Chemikosova SB, Pavlencheva NV, Gur’yanov OP, Gorshkova TA (2006). The effect of soil drought on the phloem fiber development in long-fiber flax.Russian Journal of Plant Physiology, 53, 656-662.
7 Everard R, Gucci SC, Kann JA, Loescher WH (1994). Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity.Plant Physiology, 106, 281-292.
8 Feng YL, Feng ZL, Cao KF (2001). The protection against photodamage in Amomum villosum Lour.Acta Phytophysiologica Sinica, 27, 483-488. (in Chinese with English abstract)
8 [冯玉龙, 冯志立, 曹坤芳 (2001). 砂仁叶片光破坏的防御. 植物生理学报, 27, 483-488.]
9 Gao ZH, Xue YB, Dai JR (2001). cDNA-AFLP analysis reveals that maize resistance to Bipolaris maydis is associated with the induction of multiple defense-related genes.Chinese Science Bulletin, 46, 1454-1458.
10 Genty B, Briantais JM, Baker NR (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.Biochimica et Biophysica Acta, 990, 87-92.
11 Gorham J, McDonnell E, WynJones RG (1982). Determination of betaines as ultraviolet-absorbing esters.Analytica Chimica Acta, 138, 277-283.
12 Guo R, Zhou J, Hao WP, Gong DJ (2011). Germination, growth, photosynthesis and ionic balance in Setaria viridis seedlings subjected to saline and alkaline stress.Canadian Journal of Plant Science, 91, 1077-1088.
13 Hare PD, Cress WA, Staden JV (1998). Dissecting the roles of osmolyte accumulation during stress.Plant, Cell & Environment, 21, 535-553.
14 Jing JH, Ding ZR (1981). Analysis Method of Plant Biochemistry. Science Press, Beijing. 264-267. (in Chinese)
14 [荆家海, 丁钟荣 (1981). 植物生物化学分析方法. 科学出版社, 北京. 264-267.]
15 Kingsbury RW, Epstein E, Peary RW (1984). Physiological responses to salinity in selected lines of wheat. Plant Physiology, 74, 417-423.
16 Kong LA, Guo HH, Dong XX (2000). A study on ultrastructure of hybrid rumex under salt stress.Acta Prataculturae Sinica, 9(2), 53-57. (in Chinese with English abstract)
16 [孔令安, 郭洪海, 董晓霞 (2000). 盐胁迫下杂交酸模超微结构的研究. 草业学报, 9(2), 53-57.]
17 Li B, Wang ZC, Shun ZG, Chen Y, Yang F (2005). Resources and sustainable resource exploitation of salinized in China.Agricultural Research in the Arid Areas, 23(2), 152-158. (in Chinese with English abstract)
17 [李彬, 王志春, 孙志高, 陈渊, 杨福 (2005). 中国盐碱地资源与可持续利用研究. 干旱地区农业研究, 23(2), 152-158.]
18 Liang HZ, Dou DQ, Feng YL (2004). Diurnal changes in photosynthesis and chlorophyll fluorescence parameters of Amomum villosum Lour. grown under tropical rainforest in rainy, and foggy and cool seasons at Xishuangbanna.Acta Ecologica Sinica, 24, 1421-1429. (in Chinese with English abstract)
18 [梁红柱, 窦德泉, 冯玉龙 (2004). 热带雨林下砂仁叶片光合作用和叶绿素荧光参数在雾凉季和雨季的日变化. 生态学报, 24, 1421-1429.]
19 Lu CM, Qiu NW, Lu QT, Wang BS, Kuang TY (2002). Does saline stress lead to increased susceptibility of photosystem II to photoinhibition and changes in photosynthetic pigmpnt composition in halophyte Suaeda salsa grown outdoors?Plant Science, 163, 1063-1068.
20 Lu YH, Lam HM, Pi EX, Zhan QL, Tsai S, Wang CM, Kwan YW, Ngai SM (2013). Comparative metabolomics in Glycine max and Glycine soja under salt stress to reveal the phenotypes of their offspring.Journal of Agricultural and Food Chemistry, 61, 8711-8721.
21 McKenzie RR, Deyholos MK (2011). Effects of plant growth regulator treatments on stem vascular tissue development in linseed (Linum usitatissimum L.).Industrial Crops and Products, 34, 1119-1127.
22 Munns R, Tester M (2008). Mechanisms of salinity tolerance.Annual Review of Plant Biology, 59, 651-681.
23 Peng ZH, Peng KQ, Hu JJ, Xiao LT (2002). Research progress on accumulation of proline under osmotic stress in plants.Chinese Agriculture Science Bulletin, 18(4), 80-83. (in Chinese with English abstract)
23 [彭志红, 彭克勤, 胡家金, 萧浪涛 (2002). 渗透胁迫下植物脯氨酸积累的研究进展. 中国农学通报, 18(4), 80-83.]
24 Reddy MP, Vora AB (1986). Changes in pigment composition, Hill reaction activity and saccharides metabolism in bajra (Pennisetum typhoides S&H) leaves under NaCl salinity.Photosynthetica, 20, 50-55.
25 Sa RL, Liu JH, Liu W, Bai JH, Wang ZH (2014). Cation- responsive mechanisms of oats to alkali stress.Acta Agronomica Sinica, 40, 362-368. (in Chinese with English abstract)
25 [萨如拉, 刘景辉, 刘伟, 白健慧, 王占海 (2014). 燕麦对碱胁迫的阳离子响应机制. 作物学报, 40, 362-368.]
26 Shi DC, Zhao KF (1997). Effects of NaCl and Na2CO3 on growth of Puccinellia tenuiflora and on present state of mineral elements in nutrient solution.Acta Prataculturae Sinica, 6, 51-61.
27 Shi DC, Li YM, Yang GH, Li YD, Zhao KF (2002). A simulation of salt and alkali stress mixed ecological conditions and analysis of their stress factors in the seedlings of Aneurolepidium chinense.Acta Ecological Sinica, 22, 1317-1326. (in Chinese with English abstract)
27 [石德成, 李玉明, 杨国会, 李毅丹, 赵可夫 (2002). 盐碱混合生态条件的人工模拟及其对羊草胁迫作用因素分析. 生态学报, 22, 1317-1326.]
28 Shi DC, Wang D (2005). Effects of various salt-alkaline mixed stresses on Aneurolepidium chinense (Trin.) Kitag.Plant and Soil, 271, 15-26.
29 Tester M, Davenport RJ (2003). Na+ transport and Na+ tolerance in higher plants.Annals of Botany, 91, 503-527.
30 Wang LX, Zhao ZG, Wang SM (2006). Effect of nitric oxide on metabolism of reactive oxygen species and membrane lipid peroxidation in Triticum aestivum leaves under water stress.Aata Prataculturae Sinica, 15(4), 104-108. (in Chinese with English abstract)
30 [王罗霞, 赵志光, 王锁民 (2006). 一氧化氮对水分胁迫下小麦叶片活性氧代谢及膜脂过氧化的影响. 草业学报, 15(4), 104-108.]
31 Wang N, Yang J, Huang Q, Su GL, Zhou H, Xu QH, Dong HL, Yan GT (2015). Physiological salinity tolerance mechanism for transport of K+ and Na+ ions in cotton (Gossypium hirsutum L.) seedlings under salt stress.Cotton Science, 27, 208-215. (in Chinese with English abstract)
31 [王宁, 杨杰, 黄群, 苏桂兰, 周红, 许庆华, 董合林, 严根土 (2015). 盐胁迫下棉花K+和Na+离子转运的耐盐性生理机制. 棉花学报, 27, 208-215.]
32 Wang JF, Shen QR (2006). Roles of organic metabolism in plant adaptation to nutrient deficiency and aluminum toxicity stress.Chinese Journal of Applied Ecology, 17, 2210-2216. (in Chinese with English abstract)
32 [汪建飞, 沈其荣 (2006). 有机酸代谢在植物适应养分和铝毒胁迫中的作用. 应用生态学报, 17, 2210-2216.]
33 Wu DZ, Shen QF, Cai SG, Chen ZH, Dai F, Zhang GP (2013). Ionomic responses and correlations between elements and metabolites under salt stress in wild and cultivated barley.Plant and Cell Physiology, 54, 1976-1988.
34 Yan H, Shi DC, Yin SJ, Zhao W (2000). Effects of saline- alkaline stress on the contents of nitrogen and several organisms of Aneurolepidium chinense. Journal of Northeast Normal University (Natural Science), 32(3), 47-52. (in Chinese with English abstract)
34 [颜宏, 石德成, 尹尚军, 赵伟 (2000). 盐碱胁迫对羊草体内N及几种有机代谢产物积累的影响. 东北师范大学学报(自然科学版), 32(3), 47-52.]
35 Yang C, Shi D, Wang D (2008). Comparative effects of salt stress and alkali stress on growth, osmotic adjustment and ionic balance of an alkali resistant halophyte Suaeda glauca Bge.Plant Growth Regulation, 56, 179-190.
36 Yang CW, Li CY, Zhang ML, Liu J, Ju M, Shi DC (2008). pH and ion balance in wheat-wheatgrass under salt or alkali stress.Chinese Journal of Applied Ecology, 19, 1000-1005. (in Chinese with English abstract)
36 [杨春武, 李长有, 张美丽, 刘杰, 鞠淼, 石德成 (2008). 盐、碱胁迫下小冰麦体内的pH及离子平衡. 应用生态学报, 19, 1000-1005.]
37 Zhang LX, Li SX (2004). Research progress on relationships betain and drought/salt resistance of plants.Acta Botanica Boreali-Occidentalia Sinica, 24, 1765-1771. (in Chinese with English abstract)
37 [张立新, 李生秀 (2004). 甜菜碱与植物抗旱/盐性研究进展.西北植物学报, 24, 1765-1771.]
38 Zhang JF, Zhang XD, Zhou JX, Liu GH, Li DX (2005). World resources of saline soil and main amelioration measures.Research of Soil and Water Conservation, 12(6), 28-30. (in Chinese with English abstract)
38 [张建锋, 张旭东, 周金星, 刘国华, 李冬雪 (2005). 世界盐碱地资源及其改良利用的基本措施. 水土保持研究, 12(6), 28-30.]
39 Zhang JL, Flowers TJ, Wang SM (2010). Mechanisms of sodium uptake by roots of higher plants.Plant and Soil, 326, 45-60.
40 Zhang JL, Shi H (2013). Physiological and molecular mechanisms of plant salt tolerance.Photosynthesis Research, 115, 1-22.
41 Zhang YG, Jianati, Li XS, Zhang HH, Shawulie, Ma HY, Tang S (2014). Seed germination and physiological responses of Agropyron cristatum ‘Tawukumu’ under alkali stress.Acta Agrestia Sinica, 22, 783-788. (in Chinese with English abstract)
41 [张一弓, 贾纳提, 李学森, 张荟荟, 沙吾列, 马海燕, 唐森 (2014). 碱胁迫下塔乌库姆冰草的萌发及生理响应. 草地学报, 22, 783-788.]
42 Zhu GL, Deng XW, Zuo WN (1983). Determination of free pro- line in plants.Plant Physiology Communications, 1, 35-37. (in Chinese)
42 [朱广廉, 邓兴旺, 左卫能 (1983). 植物体内游离脯氨酸的测定. 植物生理学通讯, 1, 35-37.]
43 Zhu JK (2003). Regulation of ion homeostasis under salt stress.Current Opinion in Plant Biology, 6, 441-445.
文章导航

/

005-264X/bottom_cn.htm"-->