亚洲东部森林的小气候特征: 1. 辐射和能量的平衡

展开
  • 1中国科学院西双版纳热带植物园热带森林生态学重点实验室, 昆明 650223, 中国
    2中国科学院地理科学与资源研究所, 北京 100101, 中国
    3中国科学院华南植物园, 广州 510650, 中国
    4中国科学院沈阳应用生态研究所, 沈阳 110016, 中国
    5东华大学环境学院, 台湾花莲 97401, 中国
    6日本产业技术综合研究所环境管理技术研究部门,筑波 305-8569, 日本
    7京都大学农学研究科,京都 606-8501, 日本
    8日本森林综合研究所北海道支所, 札幌 062-8516, 日本
    9名古屋大学生命农学研究科, 名古屋 464-8601, 日本
    10日本国立环境研究所地球环境研究中心,筑波 305-8506, 日本
    11日本森林综合研究所东北支所, 岩手 020-0123, 日本
    12日本森林综合研究所气象环境研究领域, 筑波 305-8687, 日本
    13日本森林综合研究所关西支所, 京都 612-0855, 日本
    14日本森林综合研究所九州支所, 熊本 860-0862, 日本

*作者简介: E-mail:tanzh@xtbg.ac.cn

收稿日期: 2014-10-09

  录用日期: 2015-03-31

  网络出版日期: 2015-07-02

基金资助

国家自然科学基金(31200347)

Microclimate of forests across East Asia biomes: 1. Radiation and energy balance

Expand
  • 1Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
    2Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    3South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
    4Shenyang Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
    5College of Environmental Studies, Dong Hwa University, Hualien 97401, Taiwan, China
    6Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8569, Japan
    7Graduate School Agriculture, Kyoto University, Kyoto 606-8501, Japan
    8Hokkaido Research Center, Forestry and Forest Products Research Institute, Sapporo 062-8516, Japan
    9Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
    10Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba 305-8506, Japan
    11Tohoku Research Center, Forestry and Forest Products Research Institute, Iwate 020-0123, Japan
    12Department of Meteorological Environment, Forestry and Forest Products Research Institute, Tsukuba 305-8687, Japan
    13Kansai Research Center, Forestry and Forest Products Research Institute, Kyoto 612-0855, Japan
    14Kyushu Research Center, Forestry and Forest Products Research Institute, Kumamoto 860-0862, Japan

# Co-first authors

Received date: 2014-10-09

  Accepted date: 2015-03-31

  Online published: 2015-07-02

摘要

森林小气候是森林植被与区域气候相互作用所形成的局地环境系统。森林小气候的研究, 不仅是一项关于森林生态系统运行机理的理论研究工作, 对农林业生产也具有现实的指导意义, 在全球变化形势下其重要性又进一步凸显。辐射的收支、能量的平衡与分配是小气候特征形成的基础。对森林辐射收支和能量分配的研究, 过去主要以单站点为主, 系统的区域分析十分匮乏。该文采用亚洲东部17个森林站点的实测数据, 分析了生态系统的辐射收支和能量平衡, 探讨了区域尺度上辐射特征量的纬度变异性及其预测关系式, 建立了亚洲东部森林带典型森林生态系统的辐射和能量收支模式。所选站点以水平地带性为主, 为区域分析奠定了基础。研究发现, 辐射特征量具有明显的纬度依赖性, 辐射特征量和纬度二者的关系可以用于相应的预测。比如, 太阳辐射随着纬度的变化关系为: y = 6205 - 42.15x (p < 0.01), 即纬度每上升1°, 太阳辐射年总量下降42 MJ, 理论最大值为6205 MJ。净辐射的纬度趋势更加显著(r = -0.89, p < 0.0001), 其线性回归关系为: y = 4340 - 45.60x。亚洲东部森林蒸散比(EF)与降水量(P)之间的定量关系为: EF = 0.7098(1 - exp(-0.0026P))。通过对比不同森林带的辐射和能量模式, 发现亚热带森林在辐射收支上与温带森林相近, 波文比既高于温带森林, 也高于热带森林, 表明更多的净辐射能用于显热交换。关于亚热带森林在小气候和物质代谢方面的特殊性, 值得进一步分析研究。

本文引用格式

谭正洪, 于贵瑞, 周国逸, 韩士杰, 夏禹九, 前田高尚, 小杉绿子, 山野井克己, 李胜功, 太田岳史, 平田竜一, 安田幸生, 中野隆志, 小南裕志, 北村兼三, 溝口康子, 廖志勇, 赵俊福, 杨廉雁 . 亚洲东部森林的小气候特征: 1. 辐射和能量的平衡[J]. 植物生态学报, 2015 , 39(6) : 541 -553 . DOI: 10.17521/cjpe.2015.0052

Abstract

<i>Aims</i>

Forest microclimate is the local environment generated through the interaction between regional climate and forest structure. Studies on forest microclimate not only have theoretical significances in ecology but also practical meanings in forest management practices and wood production. Radiation budget and energy balance is the basis for microclimate. Few studies have performed the radiatoin budget and energy balance analysis at regional scale. Here, we focused at this for the East Asia.

<i>Methods</i>

A total of 17 forest sites in the East Asia across biomes were used in this study. Measurements on solar radiation, long-wave radiation, net radiation, sensible heat flux, latent heat flux, and soil heat flux were compiled in the context of radiation and energy conservation. The annual variations of radiation and energy components were analyzed by site. Mean annual radiation and energy were related to latitude. The radiation and energy conservation equations were established for each forest biome by the multi-site block averages.

<i>Important findings</i>

Forest radiation properties (i.e. solar radiation, net radiation, albedo) showed a linear trend with latitude among the sites. For example, the solar radiation and latitude relationship is: y = 6205 - 42.15x (p < 0.01), indicating that solar radiation decreases with latitude at a rate of 42 MJ per degree with a theoretical maximum of 6205 MJ. A more significant relationship was found between net radiation and latitude: y = 4340 - 45.60x (r = -0.89, p < 0.0001). The radiation and energy budgets of boreal, temperate, subtropical and tropical forest were established. Evapotranspiration fraction (EF) was highly correlated with precipitation (P) as: EF = 0.7098(1 - exp(-0.0026P)) (R2 = 0.7451, p < 0.0001). Subtropical forest showed a unique pattern in this cross-biome analysis but needs further studies in the future.

参考文献

[1] Baldocchi D (2014). Measuring fluxes of trace gases and energy between ecosystems and the atmosphere―The state and future of eddy covariance method.Global Change Biology, 20, 3600-3609.
[2] Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer Ch, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oechel W, Paw U KT, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001). FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities.Bulletin of American Meteorological Society, 82, 2415-2434.
[3] Campbell GS, Norman JM (1998). An Introduction to Environmental Biophysics. 2nd edn. Springer Press, New York, USA.
[4] Chapin III FS, Matson PA, Vitousek PM (2012). Principles of Terrestrial Ecosystem Ecology. 2nd edn. Springer Press, New York, USA.
[5] Chen JQ, Franklin JF, Spies TA (1993). Contrasting microclimates among clearcut, edge and interior of old-growth Douglas-fir forest.Agricultural and Forest Meteorology, 63, 219-237.
[6] Gamo M, Panuthai S, Maeda T, Toma T, Ishida A, Hayashi M, Warsudi, Dianna R, Diloksumpun S, Phanumard L, Sta- porn D, Ishizuka M, Saigusa N, Kondo H (2005). Carbon flux observation in the tropical seasonal forests and trop- ical rain forest. In: Proceedings of the International Work- shop on Advanced Flux Network and Flux Evaluation (AsiaFlux Workshop 2005). Fujiyoshida, Japan, 86.
[7] Geiger R, Aron RH, Todhunter P (1965). The Climate Near the Ground. 4th edn. Das Klima Der Bodennahen Luftschicht, Braunschweig, German.
[8] Guan DX, Wu JB, Zhao XS, Han SJ, Yu GR, Sun XM, Jin CJ (2006). CO2 fluxes over an old, temperate mixed forest in northeastern China.Agricultural and Forest Meteorology, 137, 138-149.
[9] Hamada S, Ohta T, Hiyama T, Kuwada T, Takahashi A, Maximov TC (2004) Hydrometeorological behavior of pine and larch forests in Eastern Siberia.Hydrological Processes, 18, 23-39.
[10] He QT (2001). Chinese Forestry Meteorology. Chinese Forestry Publishing House, Beijing.(in Chinese)
[10] [贺庆棠 (2001). 中国森林气象学. 中国林业出版社, 北京.]
[11] Higuchi A, Kondoh A, Kishi S (2000). Relationship among the surface albedo, spectral reflectance of canopy, and evaporative fraction at grassland and paddy field.Advances in Space Research, 26, 1043-1046.
[12] Hirano T, Hirata R, Fujinuma Y, Saigusa N, Yamamoto S, Harazono Y, Takada M, Inukai K, Inoue G (2003). CO2 and water vapor exchange of a larch forest in northern Japan.Tellus B, 55, 244-257.
[13] Hong QF, Wang YZ, Wu SZ, Cao ZK, Huang JG, Liu HQ, Wang ZS, Wan ZH, Zhou BL (1963). The microclimate of Pinus massoniana forest.Scientia Silvae Sinicae, 8, 275-289.(in Chinese with English abstract)
[13] [洪启法, 王仪洲, 吴淑贞, 曹仲恺, 黄建国, 刘怀屺, 王志胜, 宛志沪, 周本琳 (1963). 马尾松幼林小气候. 林业科学, 8, 275-289.]
[14] Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen JQ, De Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu QZ, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K (2010). Recent decline in the global land evapotranspiration trend due to limited moisture supply.Nature, 467, 951-954.
[15] Kitamura K, Nakai Y, Suzuki S, Ohtani Y, Yamanoi K, Saka- moto T (2012). Interannual variability of net ecosystem production for a broadleaf deciduous forest in Sapporo, northern Japan.Journal of Forest Research, 17, 323-332.
[16] Kominami Y, Jomura M, Dannoura M, Goto Y, Tamai K, Mi- yama T, Kanazawa Y, Kaneko S, Okumura M, Misawa N, Hamada S, Sasaki T, Kimura H, Ohtani Y (2008). Biometric and eddy-covariance-based estimates of carbon balance for a warm-temperate mixed forest in Japan.Agricultural and Forest Meteorology, 148, 723-737.
[17] Kosugi Y, Takanashi S, Ohkubo S, Matsuo N, Tani M, Mitani T, Tsutsumi D, Nik AR (2008). CO2 exchange of a tropical rainforest at Pasoh in Peninsular Malaysia.Agricultural and Forest Meteorology, 148, 439-452.
[18] Kustas WP, Schmugge TJ, Humes KS, Jackson TJ, Parry R, Weltz MA, Moran MS (1993). Relationships between evaporative fraction and remotely sensed vegetation index and microwave brightness temperature for semiarid range- lands.Journal of Applied Meteorology, 32, 1781-1790.
[19] Lee XH, Goulden ML, Hollinger DY, Barr A, Black TA, Bohrer G, Bracho R, Drake B, Goldstein A, Gu LH, Katul G, Kolb T, Law BE, Margolis H, Meyers T, Monson R, Munger W, Oren R, Paw U KT, Richardson AD, Schmid HP, Staebler R, Wofsy S, Zhao L (2011). Observed increase in local cooling effect of deforestation at higher latitudes.Nature, 479, 384-387.
[20] Li SG, Asanuma J, Kotani A, Eugster W, Davaa G, Oyunbaatar D, Sugita M (2005). Year-round measurements of net ecosystem CO2 flux over a montane larch forest in Mongolia.Journal of Geophysical Research, 110, D09303, doi: 10.1029/2004JD005453.
[21] Mildenberger K, Beiderwieden E, Hsia Y-J, Klemm O (2009). CO2 and water vapor fluxes above a subtropical mountain cloud forest―The effect of light conditions and fog.Agricultural and Forest Meteorology, 149, 1730-1736.
[22] Mizoguchi Y, Ohtani Y, Takanashi S, Iwata H, Yasuda Y, Nakai Y (2012). Seasonal and interannual variation in net ecosystem production of an evergreen needleleaf forest in Japan.Journal of Forest Research, 17, 283-295.
[23] Nutini F, Boschetti M, Candiani G, Bocchi S, Brivio PA (2014). Evaporative fraction as an indicator of moisture condition and water stress status in semi-arid rangeland ecosystems.Remote Sensing, 6, 6300-6323.
[24] Ohta T, Maximov TC, Dolman AJ, Nakai T, van der Molen MK, Kononov AV, Maximov AP, Hiyama T, Iijima Y, Moors EJ, Tanaka H, Toba T, Yabuki H (2008). Interannual variation of water balance and summer evapotranspiration in an eastern Siberian larch forest over a 7-year period (1998-2006).Agricultural and Forest Meteorology, 148, 1941-1953.
[25] Pan YD, Birdsey RA, Fang JY, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, Jackson RB, Pacala SW, McGuire AD, Piao SL, Rautiainen A, Sitch S, Hayes D (2011). A large and persistent carbon sink in the world’s forests.Science, 333, 988-993.
[26] Saigusa N, Li SG, Kwon H, Takagi K, Zhang LM, Ide R, Ueyama M, Asanuma J, Choi YJ, Chun JH, Han SJ, Hirano T, Hirata R, Kang M, Kato T, Kim J, Li YN, Maeda T, Miyata A, Mizoguchi Y, Murayama S, Nakai Y, Ohta T, Saitoh TM, Wang HM, Yu GR, Zhang YP, Zhao FH (2013). Dataset of CarboEastAsia and uncertainties in the CO2 budget evaluation caused by different data processing.Journal of Forest Research, 18, 41-48.
[27] Sang WG, Zheng Y, Zhang DQ (2001). Research on radiation flux dynamics of canopy surface in warm temperate zone deciduous broadleaved forests.Journal of Northeast Forestry University, 29(3), 40-43.(in Chinese with English abstract)
[27] [桑卫国, 郑豫, 张德全 (2001). 暖温带落叶阔叶林林冠层表面辐射通量动态与特点. 东北林业大学学报, 29(3), 40-43.]
[28] Shimizu A, Shimizu T, Miyabuchi Y, Ogawa Y (2003). Evapotranspiration and runoff in a forest watershed, western Japan.Hydrological Processes, 17, 3125-3139.
[29] Trenberth KE, Fasullo JT, Kiehl J (2009). Earth’s global energy budget.Bulletin of the American Meteorological Society, 90, 311-323.
[30] Venturini V, Islam S, Rodriguez L (2008). Estimation of evaporative fraction and evapotranspiration from MODIS products using a complementary based model.Remote Sensing of Environment, 112, 132-141.
[31] Wofsy SC, Goulden ML, Munger JW, Fan SM, Bakwin PS, Daube BC, Bassow SL, Bazzaz FA (1993). Net exchange of CO2 in a mid-latitude forest.Science, 260, 1314-1317.
[32] Yasuda Y, Saito T, Hoshino D, Ono K, Ohtani Y, Mizoguchi Y, Morisawa T (2012). Carbon balance in a cool-temperate deciduous forest in northern Japan: Seasonal and interannual variations, and environmental controls of its annual balance.Journal of Forest Research, 17, 253-267.
[33] Yasuda Y, Watanabe T (2001). Comparative measurements of CO2 flux over a forest using closed-path and open-path CO2 analysers.Boundary-Layer Meteorology, 100, 191-208.
[34] Yu GR, Chen Z, Piao SL, Peng CH, Ciais P, Wang QF, Li XR, Zhu XJ (2014). High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region.Proceedings of the National Academy of Sciences, 111, 4910-4915.
[35] Yu GR, Zhang LM, Sun XM, Fu YL, Wen XF, Wang QF, Li SG, Ren CY, Song X, Liu YF, Han SJ, Yan JH (2008). Environmental controls over carbon exchange of three forest ecosystems in eastern China.Global Change Biology, 14, 2555-2571.
[36] Zhang YP, Dou JX, Yu GR, Zhao SJ, Song QH, Sun XM (2005). Characteristics of solar radiation and its distribu- tion above the canopy of tropical seasonal rain forest in Xishuangbanna, Southwest China.Journal of Beijing Forestry University, 27(5), 17-25.(in Chinese with English abstract)
[36] [张一平, 窦军霞, 于贵瑞, 赵双菊, 宋清海, 孙晓敏 (2005). 西双版纳热带季节雨林太阳辐射特征研究. 北京林业大学学报, 27(5), 17-25.]
文章导航

/