研究论文

植物气孔导度对CO2响应模型的构建

展开
  • 1井冈山大学数理学院, 江西吉安 343009
    2温州市农业科学研究院, 浙江温州 325006
    3温州市农林渔生态系统增汇减排重点实验室, 浙江温州 325006
    4浙江省浙南作物育种重点实验室, 浙江温州 325006

收稿日期: 2020-10-09

  录用日期: 2021-01-16

  网络出版日期: 2021-03-09

基金资助

国家自然科学基金(31960054);国家自然科学基金(31560069)

Investigation on CO2-response model of stomatal conductance for plants

Expand
  • 1College of Math and Physics, Jinggangshan University, Ji’an, Jiangxi 343009, China
    2Wenzhou Academy of Agricultural Sciences, Wenzhou, Zhejiang 325006, China
    3Wenzhou Key Laboratory of Adding Carbon Sinks and Reducing Carbon Emissions of Agriculture, Forestry and Fishery Ecosystem, Wenzhou, Zhejiang 325006, China
    4Southern Zhejiang Key Laboratory of Crop Breeding of Zhejiang Provence, Wenzhou, Zhejiang 325006, China

Received date: 2020-10-09

  Accepted date: 2021-01-16

  Online published: 2021-03-09

Supported by

National Natural Science Foundation of China(31960054);National Natural Science Foundation of China(31560069)

摘要

构建一个普适性的植物叶片气孔导度(gs)对CO2浓度响应(gs-Ca)的模型, 对定量研究植物叶片gs对CO2浓度的响应变化尤为必要。该研究运用便携式光合仪(LI-6400)测量了大豆(Glycine max)和小麦(Triticum aestivum)光合作用对CO2的响应曲线(An-Ca), 在比较传统的Michaelis-Menten模型(M-M模型)和叶子飘构建的CO2响应模型拟合大豆和小麦An-Ca效果的基础上, 构建了gs-Ca响应新模型。然后用新构建的模型拟合大豆和小麦的gs-Ca曲线, 并将拟合结果与传统模型的拟合结果, 以及与其对应的观测数据进行比较, 以判断所构建模型是否合理。结果显示: 叶子飘构建的An-Ca模型可较好地拟合大豆和小麦的An-Ca曲线, 确定系数(R2)均高达0.999。M-M模型拟合大豆和小麦的An-Ca曲线时的R2虽然也较高, 但在较高CO2浓度时的拟合曲线偏离观测曲线。因此, 基于叶子飘的An-Ca模型构建gs-Ca模型更为可行。新构建的gs-Ca模型可较好地拟合大豆和小麦的gs-Ca曲线, R2分别为0.995和0.994, 而且还可以直接给出最大气孔导度(gs-max)、最小气孔导度(gs-min), 以及与gs-min相对应的CO2浓度值(Cs-min)。拟合得到大豆和小麦的gs-max分别为0.686和0.481 mol·m-2·s-1, 与其对应的观测值(分别为0.666和0.471 mol·m-2·s-1)之间均不存在显著差异; 同样, 拟合得到的大豆和小麦的gs-min分别为0.271和0.297 mol·m-2·s-1, 与其对应的观测值(分别为0.279和0.293 mol·m-2·s-1)之间也均不存在显著差异; 此外, 新构建的gs-Ca模型给出大豆和小麦的Cs-min值分别为741.45和1 112.43 μmol·mol -1, 与其对应的观测值(732.78和1 200.34 μmol·mol -1)也不存在显著差异。由此可见, 该研究新构建的gs-Ca模型可作为定量研究植物叶片气孔导度对CO2浓度变化的有效数学工具。

本文引用格式

叶子飘, 于冯, 安婷, 王复标, 康华靖 . 植物气孔导度对CO2响应模型的构建[J]. 植物生态学报, 2021 , 45(4) : 420 -428 . DOI: 10.17521/cjpe.2020.0326

Abstract

Aims To quantify the responses of stomatal conductance (gs) to CO2 concentration (gs-Ca) under current and future climate conditions, it is necessary to build a generally applicable model suitable for simulating this process at plant leaf levels.

Methods The response curves (An-Ca) of photosynthesis of soybean (Glycine max) and wheat (Triticum aestivum) to CO2 were fitted using data collected from a portable photosynthetic apparatus (LI-6400). Based on the comparison between the traditional Michaelis-Menten model (M-M model) and the CO2 response model developed by Ye, a new gs-Ca response model was proposed. Then, the measured gs-Ca curves of soybean and wheat were fitted with the new model. The model results were compared with those of the traditional model and the corresponding observation data to judge the rationality of the model.

Important findings The An-Ca model developed by Ye could fit well the An-Ca curve of soybean and wheat, and the coefficient of determination (R2) is as high as 0.999. Although the R 2 values of M-M model fitting the An-Ca curves of soybean and wheat were also high, the fitting curves deviated from the observation at higher CO2 concentrations. Meanwhile, M-M model greatly overestimated the maximum photosynthetic rate and could not estimate the saturation CO2 concentrations. Therefore, it was more feasible to developgs-Ca model based on the An-Ca model of Ye. The new model of gs-Ca could fit well the gs-Ca curves of soybean and wheat, and the R 2 were 0.995 and 0.994, respectively. Moreover, the maximum stomatal conductance (gs-max), the minimum stomatal conductance (gs-min) and the CO2 concentration corresponding to gs-min (Cs-min) could also be generated directly. gs-max of soybean and wheat fitted by the gs-Ca model was 0.686 and 0.481 mol·m-2·s-1, respectively, and there was no significant difference between the fitted values and corresponding observation values (0.666 and 0.471 mol·m-2·s-1, respectively). The new model of gs-Ca could also obtain the minimum gs (gs-min) of soybean and wheat (0.271 and 0.297 mol·m-2·s-1, respectively), and there was also no significant difference between the fitted values and corresponding observation values (0.279 and 0.293 mol·m-2·s-1, respectively). In addition, the new model of gs-Ca generated the Cs-min values of 741.45 and 1 112.43 μmol·mol -1for soybean and wheat, respectively, and also showed no significant difference from the observed value (732.78 and 1 200.34 μmol·mol-1, respectively). Consequently, the gs-Ca model developed in this paper can be used as an effective mathematical tool to quantitatively study the effect of stomatal conductance on CO2 concentration.

参考文献

[1] Allen LH, Kakani VG, Vu JCV, Boote KJ (2011). Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and Sorghum. Journal of Plant Physiology, 168,1909-1918.
[2] Ball JT, Woodrow IE, Berry JA (1987). A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions //Biggens J. Progress in Photosynthesis Research. Martinus Nijhoff Publishers,Dordrecht. 221-224.
[3] Batke SP, Yiotis C, Elliott-Kingston C, Holohan A, McElwain J (2020). Plant responses to decadal scale increments in atmospheric CO2 concentration: comparing two stomatal conductance sampling methods. Planta, 251, 52. DOI: 10.1007/s00425-020-03343-z.
[4] Bonan GB (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444-1449.
[5] Buckley TN, Mott KA (2013). Modelling stomatal conductance in response to environmental factors. Plant, Cell & Environment, 36, 1691-1699.
[6] Cheng XF, Zhang FY, Chai SX ( 2010). Stomatal response of spring wheat and related affecting factors under different irrigation treatments. Chinese Journal of Applied Ecology, 21, 36-40.
[6] [ 成雪峰, 张凤云, 柴守玺 ( 2010). 春小麦对不同灌水处理的气孔反应及其影响因子. 应用生态学报, 21, 36-40.]
[7] Ding LK, Kan F, Li L, Yue N, Zhou LL, Wei GX ( 2019). Response model of maize to light and CO2 concentration in semi-arid area of central Gansu Province . Jiangsu Agricultural Sciences, 47, 86-91.
[7] [ 丁林凯, 阚飞, 李玲, 岳宁, 周琳琳, 魏国孝 ( 2019). 陇中半干旱区玉米对光和CO2浓度的响应模型. 江苏农业科学, 47, 86-91.]
[8] Drake JE, Power SA, Duursma RA, Medlyn BE, Aspinwall MJ, Choat B, Creek D, Eamus D, Maier C, Pfautsch S, Smith RA, Tjoelker MG, Tissue DT (2017). Stomatal and non-stomatal limitations of photosynthesis for four tree species under drought: a comparison of model formulations. Agricultural and Forest Meteorology, 247, 454-466.
[9] Farquhar GD, Caemmerer S, Berry JA (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149, 78-90.
[10] Flexas J, Díaz-Espejo A, Conesa MA, Coopman RE, Douthe C, Gago J, Gallé A, Galmés J, Medrano H, Ribas-Carbo M, Tomàs M, Niinemets Ü (2016). Mesophyll conductance to CO2 and Rubisco as targets for improving intrinsic water use efficiency in C3 plants. Plant, Cell & Environment, 39, 965-982.
[11] Gao GL, Feng Q, Liu XD, Li W ( 2020). Simulating the leaf stomatal conductance of the desert riparian Tamarix ramosissima Ledeb. based on three empirical models. Acta Ecologica Sinica, 40, 3486-3494.
[11] [ 高冠龙, 冯起, 刘贤德, 李伟 ( 2020). 三种经验模型模拟荒漠河岸柽柳叶片气孔导度. 生态学报, 40, 3486-3494.]
[12] Guo BH, Wang RS, Xiao HJ ( 2018). Response of leaf water potential and stomatal conductance of sea-buckthorn to water stress during seedling stage. Journal of Nuclear Agricultural Sciences, 32, 609-616.
[12] [ 郭冰寒, 王若水, 肖辉杰 ( 2018). 沙棘苗期叶水势与气孔导度对水分胁迫的响应. 核农学报, 32, 609-616.]
[13] Guo FY, Ha R, Ma YP, Cao B ( 2019). Effects of elevated CO2 concentration on photosynthesis characteristics and biomass allocation of Lycium barbarum seedlings. Acta Botanica Boreali-Occidentalia Sinica, 39, 302-309.
[13] [ 郭芳芸, 哈蓉, 马亚平, 曹兵 ( 2019). CO2浓度升高对宁夏枸杞苗木光合特性及生物量分配影响. 西北植物学报, 39, 302-309.]
[14] Guo RP, Lin ZH, Mo XG, Yang CL (2010). Responses of crop yield and water use efficiency to climate change in the North China Plain. Agricultural Water Management, 97, 1185-1194.
[15] Harley PC, Thomas RB, Reynolds JF, Strain BR (1992). Modelling photosynthesis of cotton grown in elevated CO2. Plant, Cell & Environment, 15, 271-282.
[16] Jarvis PG (1976). The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 273, 593-610.
[17] Köhler IH, MacDonald AJ, Schnyder H (2016). Last-century increases in intrinsic water-use efficiency of grassland communities have occurred over a wide range of vegetation composition, nutrient inputs, and soil pH. Plant Physiology, 170, 881-890.
[18] Leuning R (1990). Modelling stomatal behavior and photosynthesis of Eucalyptus grandis. Australian Journal of Plant Physiology, 17, 159-175.
[19] Leuning R (1995). A critical appraisal of a combined stomatal- photosynthesis model for C3 plants. Plant, Cell & Environment, 18, 339-355.
[20] Li F, Liu L, Zhang H, Wang QT, Guo LL, Hao LH, Zhang XX, Cao X, Liang WJ, Zheng YP ( 2018). Effects of CO2 concentrations on stomatal traits and gas exchange in leaves of soybean . Acta Agronomica Sinica, 44, 1212-1220.
[20] [ 李菲, 刘亮, 张浩, 王清涛, 郭丽丽, 郝立华, 张茜茜, 曹旭, 梁伟佳, 郑云普 ( 2018). CO2浓度对大豆叶片气孔特征和气体交换参数的影响. 作物学报, 44, 1212-1220.]
[21] Li LX, Liu JM, Huang XL, Wang JC, Luo C, Liu JJ, Xiong X ( 2017). Response characteristic of Cinnamomum migaoseedling’s photosynthesis to CO2 in different conditions of nitrogen . Journal of Northeast Agricultural University, 48, 29-36.
[21] [ 李丽霞, 刘济明, 黄小龙, 王军才, 骆畅, 柳嘉佳, 熊雪 ( 2017). 不同氮素条件米槁幼苗光合作用对CO2响应特征. 东北农业大学学报, 48, 29-36.]
[22] Li YX, Lou YS, Zhang FC ( 2011). Comparison of stomatal conductance models for winter wheat. Chinese Journal of Agrometeorology, 32, 106-110.
[22] [ 李永秀, 娄运生, 张富存 ( 2011). 冬小麦气孔导度模型的比较. 中国农业气象, 32, 106-110.]
[23] Liu Y, Lei SG, Cheng LS, Cheng W, Bian ZF ( 2018). Effects of soil water content on stomatal conductance, transpiration, and photosynthetic rate of Caragana korshinskii under the influence of coal mining subsidence . Acta Ecologica Sinica, 38, 3069-3077.
[23] [ 刘英, 雷少刚, 程林森, 程伟, 卞正富 ( 2018). 采煤塌陷影响下土壤含水量变化对柠条气孔导度、蒸腾与光合作用速率的影响. 生态学报, 38, 3069-3077.]
[24] Medlyn BE, Duursma RA, Eamus D, Ellsworth DS, Prentice IC, Barton CVM, Crous KY, Angelis PDE, Freeman M, Wingate L (2011). Reconciling the optimal and empirical approaches to modelling stomatal conductance. Global Change Biology, 17, 2134-2144.
[25] Miner GL, Bauerle WL (2017). Seasonal variability of the parameters of the Ball-Berry model of stomatal conductance in maize (Zea mays L.) and sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant, Cell & Environment, 40, 1874-1886.
[26] Ren B, Li J, Tong XJ, Mu YM, Meng P, Zhang JS ( 2018). Simulation on photosynthetic-CO2 response of Quercus variabilis and Robinia pseudoacacia in the southern foot of the Taihang Mountain, China . Chinese Journal of Applied Ecology, 29, 1-10.
[26] [ 任博, 李俊, 同小娟, 母艳梅, 孟平, 张劲松 ( 2018). 太行山南麓栓皮栎和刺槐光合作用-CO2响应模拟. 应用生态学报, 29, 1-10.]
[27] Su WH, Zhang GF ( 2002). The effect of soil and air temperature on photosynthesis and transpiration of Primula sinopurpurea . Acta Botanica Boreali-Occidentalia Sinica, 22, 824-830.
[27] [ 苏文华, 张光飞 ( 2002). 土壤温度与气温对紫花雪山报春光合作用和蒸腾作用的影响. 西北植物学报, 22, 824-830.]
[28] Tang XL, Cao YH, Zhou BZ, Zhou Y, Gu LH ( 2017). Comparison of light response modeling of photosynthesis in Castanopsis sclerophyllaleaves under different CO2 concentrations . Chinese Journal of Ecology, 36, 2060-2067.
[28] [ 唐星林, 曹永慧, 周本智, 周燕, 顾连宏 ( 2017). 不同CO2浓度下苦槠(Castanopsis sclerophylla)叶片光合光响应模型模拟比较. 生态学杂志, 36, 2060-2067.]
[29] Tao FL, Hayashi Y, Zhang Z, Sakamoto T, Yokozawa M (2008). Global warming, rice production and water use in China: developing a probabilistic assessment. Agricultural and Forest Meteorology, 148, 94-110.
[30] Tuzet A, Perrier A, Leuning R (2003). A coupled model of stomatal conductance, photosynthesis and transpiration. Plant, Cell & Environment, 26, 1097-1116.
[31] Wang HZ, Han L, Xu YL, Niu JL ( 2015). Model analysis of the stomatal conductance response to light in Populus pruinosa at different temperatures in the Taklimakan desert . Ecology and Environmental Sciences, 24, 741-748.
[31] [ 王海珍, 韩路, 徐雅丽, 牛建龙 ( 2015). 不同温度下灰胡杨叶片气孔导度对光强响应的模型分析. 生态环境学报, 24, 741-748.]
[32] Wang JL ( 2009). Response of photosynthetic rate and stomatal conductance of oat to light intensity and CO2 concentration and its modeling . Acta Agriculturae Boreali-Sinica, 24, 134-137.
[32] [ 王建林 ( 2009). 燕麦叶片光合速率、气孔导度对光强和CO2的响应与模拟. 华北农学报, 24, 134-137.]
[33] Wang JL, Wen XF ( 2010). Modeling the response of stomatal conductance to variable CO2 concentration and its physiological mechanism . Acta Ecologica Sinica, 30, 4815-4820.
[33] [ 王建林, 温学发 ( 2010). 气孔导度对CO2浓度变化的模拟及其生理机制. 生态学报, 30, 4815-4820.]
[34] Wang JL, Wen XF, Zhao FH, Fang QX, Yang XM ( 2012). Effects of doubled CO2 concentration on leaf photosynthesis, transpiration and water use efficiency of eight crop species . Chinese Journal of Plant Ecology, 36, 438-446.
[34] [ 王建林, 温学发, 赵风华, 房全孝, 杨新民 ( 2012). CO2浓度倍增对8种作物叶片光合作用、蒸腾作用和水分利用效率的影响. 植物生态学报, 36, 438-446.]
[35] Wang QL, Zhou GS ( 2018). Comparisons between common stomatal conductance models under progressive drought in spring maize. Acta Ecologica Sinica, 38, 6846-6856.
[35] [ 王秋玲, 周广胜 ( 2018). 春玉米持续干旱过程中常用气孔导度模型的比较研究. 生态学报, 38, 6846-6856.]
[36] Xing HL, Zhou WB, Hao WP, Li L, Wang C, Ma HY, Wang YS ( 2020). Inhibition of nitrogen increasing on maize growth under water stress. Chinese Journal of Agrometeorology, 41, 240-252.
[36] [ 邢换丽, 周文彬, 郝卫平, 李丽, 王超, 马海洋, 王耀生 ( 2020). 水分胁迫下氮素增加对玉米生长的抑制作用. 中国农业气象, 41, 240-252.]
[37] Ye ZP (2007). A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica, 45, 637-640.
[38] Ye ZP ( 2010). A review on modeling of responses of photosynthesis to light and CO2 . Chinese Journal of Plant Ecology, 34, 727-740.
[38] [ 叶子飘 ( 2010). 光合作用对光和CO2响应模型的研究进展. 植物生态学报, 34, 727-740.]
[39] Ye ZP, Yu Q (2008). A coupled model of stomatal conductance and photosynthesis for winter wheat. Photosynthetica, 46, 637-640.
[40] Ye ZP, Yu Q ( 2009a). Mechanism model of stomatal conductance. Chinese Journal of Plant Ecology, 33, 772-782.
[40] [ 叶子飘, 于强 ( 2009a). 植物气孔导度的机理模型. 植物生态学报, 33, 772-782.]
[41] Ye ZP, Yu Q ( 2009b). A comparison of response curves of winter wheat photosynthesis to flag leaf intercellular and air CO2 concentrations . Chinese Journal of Ecology, 28, 2233-2238.
[41] [ 叶子飘, 于强 ( 2009b). 光合作用对胞间和大气CO2响应曲线的比较. 生态学杂志, 28, 2233-2238.]
[42] Yu Q, Zhang YQ, Liu YF, Shi PL (2004). Simulation of the stomatal conductance of winter wheat in response to light, temperature and CO2 changes. Annals of Botany, 93, 435-441.
[43] Zheng FY, Peng SL ( 2003). Responses of plant stomatal conductance to elevated CO2 at different scales . Chinese Journal of Ecology, 22, 26-30.
[43] [ 郑凤英, 彭少麟 ( 2003). 不同尺度上植物叶气孔导度对升高CO2的响应. 生态学杂志, 22, 26-30.]
[44] Zhong C, Zhu Y ( 2013). Response of stomatal conductance to light in tobacco plants. Chinese Journal of Eco- Agriculture, 21, 966-972.
[44] [ 钟楚, 朱勇 ( 2013). 烟草气孔导度对光强的响应. 中国生态农业学报, 21, 966-972.]
文章导航

/