研究论文

植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响

展开
  • 1北京林业大学水土保持学院, 北京 100083
    2宁夏盐池毛乌素沙地生态系统国家定位观测研究站, 北京 100083
    3北京林业大学水土保持国家林业和草原局重点实验室, 北京 100083
(xinjia@bjfu.edu.cn)
ORCID:贾昕: 0000-0003-4800-4273

收稿日期: 2020-11-23

  录用日期: 2021-05-25

  网络出版日期: 2021-06-28

基金资助

国家自然科学基金(32071843);国家自然科学基金(31670708);国家自然科学基金(32071842);国家自然科学基金(31670710);中央高校基本科研业务费专项资金(2015ZCQ-SB-02)

Effects of land cover and phenology changes on the gross primary productivity in an Artemisia ordosica shrubland

Expand
  • 1School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
    2Yanchi Ecology Research Station of Mau Us Desert, Beijing 100083, China
    3Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China

Received date: 2020-11-23

  Accepted date: 2021-05-25

  Online published: 2021-06-28

Supported by

National Natural Science Foundation of China(32071843);National Natural Science Foundation of China(31670708);National Natural Science Foundation of China(32071842);National Natural Science Foundation of China(31670710);Fundamental Research Funds for the Central Universities(2015ZCQ-SB-02)

摘要

气候变化和人类活动是植被生产力年际尺度变化的重要驱动因素, 明晰二者对植被生产力的共同影响对于生态系统可持续管理至关重要。气候变化可能导致植被物候变化, 进而影响植被生产力。目前尚不清楚毛乌素沙地典型植被物候如何响应气候变化, 并因此影响生态系统总初级生产力(GPP)。此外, 植被恢复(覆盖度增加)和物候变化对GPP的共同影响有待明确。该研究选取典型黑沙蒿(Artemisia ordosica)灌丛生态系统, 结合MODIS遥感数据与涡度相关数据, 利用植被光合模型(VPM), 模拟并分析了2005-2018年间植被覆盖度和物候变化对GPP的影响。结果表明: (1) VPM模型能够较好地模拟涡度相关法观测的GPP动态(GPPFlux), 而MODIS遥感产品(MOD17A2H)则显著低估GPPFlux; (2)研究期内年均归一化差异植被指数(NDVI)、最大NDVI (NDVImax)和年总GPP均显著增加, 表明植被恢复促进了植被生产力增加; (3)基于NDVI和GPP日序列估算的生长季开始日期显著提前(2.1 d·a-1), 生长季结束日期显著推迟(1.5 d·a-1), 二者共同促使生长季长度延长(3.6 d·a-1); (4)物候期延长促进了GPP增加, 生长季长度每延长1天, 全年GPP显著增加6.44 g C·m-2·a-1; (5)植被覆盖度增加和生长季延长分别可以解释79%和57%的GPP增加; (6)尽管植被覆盖度和物候变化均促进GPP增加, 但前者是其增加的主要驱动因素。鉴于植被覆盖度增加和生长季延长也可能导致生态系统呼吸和蒸散发增加, 未来研究仍需探究生态系统碳汇能力、水分利用效率和水分承载力对气候变化和人类活动的响应。此外, 该研究主要探讨GPP在年际尺度的变化趋势及影响因素, 未来需要研究GPP的年际变异规律及驱动因素, 尤其是对降水年际变异和极端干旱事件的响应。

本文引用格式

原媛, 母艳梅, 邓钰洁, 李鑫豪, 姜晓燕, 高圣杰, 查天山, 贾昕 . 植被覆盖度和物候变化对典型黑沙蒿灌丛生态系统总初级生产力的影响[J]. 植物生态学报, 2022 , 46(2) : 162 -175 . DOI: 10.17521/cjpe.2020.0387

Abstract

Aims We aimed to examine how changes in vegetation cover and phenology affect the trend of gross primary productivity (GPP) in an Artemisia ordosica shrubland in the Mau Us Desert during the first two decades of the 21th century.

Methods We used the vegetation photosynthesis model (VPM) in combination with remote sensing data (MODIS) to simulate GPP dynamics during 2005-2018. Eddy covariance (EC) measurements of GPP (GPPFlux) were used to parameterize and validate the VPM model. The “derivation and threshold” approach was used to determine the start (SOS) and the end of the growing season (EOS), as well as the length of the growing season (LOS) for each year. Ordinary least squares (OLS) regression was used to examine the variations in temperature, normalized differences vegetation index (NDVI), and GPP over time. OLS, multiple, and partial correlation analyses were used to test the relationships among temperature, NDVI, phenology, and GPP.

Important findings (1) Modeled GPP well captured the dynamics of GPPFlux, whereas the MODIS product (MOD17A2H) significantly underestimated GPPFlux. (2) NDVI, annual maximum NDVI(NDVImax), and annual GPP all showed an increasing trend during 2005-2018, indicating the role of vegetation recovery in promoting GPP. (3) SOS showed an advancing trend (2.1 d·a-1) and EOS showed a delaying trend (1.5 d·a-1), and therefore both SOS and EOS contributed to the increasing trend of LOS (3.6 d·a-1). (4) Annual GPP was higher with greater LOS (6.44 g C·m-2·a-1 for 1 day increase in LOS). (5) Increases in vegetation cover and growing season length explained 79% and 57% of the variations in GPP, respectively. (6) Increases in vegetation cover played a more important role than growing season extension in promoting GPP.

参考文献

[1] Bai YX, Michalet R, She WW, Qiao YG, Liu L, Miao C, Qin SG, Zhang YQ (2021). Contrasting responses of different functional groups stabilize community responses to a dominant shrub under global change. Journal of Ecology, 109, 1676-1689.
[2] Barichivich J, Briffa KR, Myneni RB, Osborn TJ, Melvin TM, Ciais P, Piao SL, Tucker C (2013). Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at high northern latitudes from 1950 to 2011. Global Change Biology, 19, 3167-3183.
[3] Buermann W, Forkel M, OʼSullivan M, Sitch S, Friedlingstein P, Haverd V, Jain AK, Kato E, Kautz M, Lienert S, Lombardozzi D, Nabel JEMS, Tian HQ, Wiltshire AJ, Zhu D, Smith WK, Richardson AD (2018). Widespread seasonal compensation effects of spring warming on northern plant productivity. Nature, 562, 110-114.
[4] Chen C, Park T, Wang XH, Piao SL, Xu BD, Chaturvedi RK, Fuchs R, Brovkin V, Ciais P, Fensholt R, Tømmervik H, Bala G, Zhu ZC, Nemani RR, Myneni RB (2019). China and India lead in greening of the world through land-use management. Nature Sustainability, 2, 122-129.
[5] Cong N, Wang T, Nan H, Ma Y, Wang X, Myneni RB, Piao S (2013). Changes in satellite-derived spring vegetation green- up date and its linkage to climate in China from 1982 to 2010: a multimethod analysis. Global Change Biology, 19, 881-891.
[6] Du QY, Lin AW, Fu X (2018). Comparison of multiple GPP models using remote sensing and American carbon flux data. Geomatics & Spatial Information Technology, 41(2), 138-141.
[6] [ 杜启勇, 林爱文, 付醒 (2018). 基于遥感和美国碳通量观测数据的GPP模型比较研究. 测绘与空间地理信息, 41(2), 138-141.]
[7] Fang JY, Yu GR, Liu LL, Hu SJ, Chapin III FS (2018). Climate change, human impacts, and carbon sequestration in China. Proceedings of the National Academy of Sciences of the United States of America, 115, 4015-4020.
[8] Fu Z, Stoy PC, Luo YQ, Chen JQ, Sun J, Montagnani L, Wohlfahrt G, Rahman AF, Rambal S, Bernhofer C, Wang JS, Shirkey G, Niu S (2017). Climate controls over the net carbon uptake period and amplitude of net ecosystem production in temperate and boreal ecosystems. Agricultural and Forest Meteorology, 243, 9-18.
[9] Hu J, Moore DJP, Burns SP, Monson RK (2010). Longer growing seasons lead to less carbon sequestration by a subalpine forest. Global Change Biology, 16, 771-783.
[10] Jeganathan C, Dash J, Atkinson PM (2014). Remotely sensed trends in the phenology of northern high latitude terrestrial vegetation, controlling for land cover change and vegetation type. Remote Sensing of Environment, 143, 154-170.
[11] Jeong SJ, Ho CH, Gim HJ, Brown ME (2011). Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982-2008. Global Change Biology, 17, 2385-2399.
[12] Jia X, Mu Y, Zha TS, Wang B, Qin SG, Tian Y (2020). Seasonal and interannual variations in ecosystem respiration in relation to temperature, moisture, and productivity in a temperate semi-arid shrubland. Science of the Total Environment, 709, 136210. DOI: 10.1016/j.scitotenv.2019.136210.
[13] Jia X, Zha TS, Gong JN, Wang B, Zhang YQ, Wu B, Qin SG, Peltola H (2016). Carbon and water exchange over a temperate semi-arid shrubland during three years of contrasting precipitation and soil moisture patterns. Agricultural and Forest Meteorology, 228- 229, 120-129.
[14] Jia X, Zha TS, Wu B, Zhang YQ, Gong JN, Qin SG, Chen GP, Kellomäki S, Peltola H (2014). Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China. Biogeosciences Discussions, 11, 5089- 5122.
[15] Kang X, Wang Y, Chen H, Tian J, Cui X, Rui Y, Zhong L, Kardol P, Hao Y, Xiao X (2014). Modeling carbon fluxes using multi-temporal MODIS imagery and CO2 eddy flux tower data in Zoige alpine wetland, South-West China. Wetlands, 34, 603-618.
[16] Kang XM, Hao YB, Cui XY, Chen H, Huang SX, Du YG, Li W, Kardol P, Xiao XM, Cui LJ (2016). Variability and changes in climate, phenology, and gross primary production of an alpine wetland ecosystem. Remote Sensing, 8, 391. DOI: 10.3390/rs8050391.
[17] Keenan TF, Hollinger DY, Bohrer G, Dragoni D, Munger JW, Schmid HP, Richardson AD (2014). Keenan et al. reply. Nature, 507, E2-E3.
[18] Liu H, Tian F, Hu HC, Hu HP, Sivapalan M (2013). Soil moisture controls on patterns of grass green-up in Inner Mongolia: an index based approach. Hydrology and Earth System Sciences, 17, 805-815.
[19] Liu HY, Jiao FS, Yin JQ, Li TY, Gong HB, Wang ZY, Lin ZS (2020). Nonlinear relationship of vegetation greening with nature and human factors and its forecast-A case study of southwest china. Ecological Indicators, 111, 106009. DOI: 10.2307/2389824.
[20] Lloyd J, Taylor J A (1994). On the temperature dependence of soil respiration. Functional Ecology, 8, 315-323.
[21] Lu F, Hu HF, Sun WJ, Zhu JJ, Liu GB, Zhou WM, Zhang QF, Shi PL, Liu XP, Wu X, Zhang L, Wei XH, Dai LM, Zhang KR, Sun YR, et al. (2018). Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proceedings of the National Academy of Sciences of the United States of America, 115, 4039-4044.
[22] Luo J, Yin S, Bao YH, Wang YF, Li CL (2014). Analysis on dynamic changes characteristics of vegetation cover and climate response from 2000 to 2010//Huang CF, Bao YH, Zhao SJ. Information Technology in Risk Analysis and Crisis Response. Atlantis Press, Paris. 517-522.
[22] [ 罗娟, 银山, 包玉海, 王永芳, 李春兰 (2014). 2000-2010年毛乌素沙地植被覆盖动态变化特征分析及其气候响应//黄崇福, 包玉海, 赵思健. 风险分析和危机反应中的信息技术. 亚特兰蒂斯出版社, 巴黎. 517-522.]
[23] Ma T, Zhou CH (2012). Climate-associated changes in spring plant phenology in China. International Journal of Biometeorology, 56, 269-275.
[24] Miao L, Luan Y, Luo X, Liu Q, Moore J, Nath R, He B, Zhu F, Cui X (2013). Analysis of the phenology in the Mongolian plateau by inter-comparison of global vegetation datasets. Remote Sensing, 5, 5193-5208.
[25] Piao S, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang J, Barr A, Chen A, Grelle A, Hollinger DY, Laurila T, Lindroth A, Richardson AD, Vesala T (2008). Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451, 49-52.
[26] Piao S, Cui M, Chen A, Wang X, Ciais P, Liu J, Tang Y (2011a). Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agricultural and Forest Meteorology, 151, 1599-1608.
[27] Piao S, Fang J, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009). The carbon balance of terrestrial ecosystems in China. Nature, 458, 1009-1013.
[28] Piao S, Friedlingstein P, Ciais P, Viovy N, Demarty J (2007). Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Global Biogeochemical Cycles, 21, GB3018. DOI: 10.1029/2006GB002888.
[29] Piao S, Wang X, Ciais P, Zhu B, Wang T, Liu J (2011b). Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Global Change Biology, 17, 3228-3239.
[30] Piao S, Yin G, Tan J, Cheng L, Huang M, Li Y, Liu R, Mao J, Myneni RB, Peng S, Poulter B, Shi X, Xiao Z, Zeng N, Zeng Z, Wang Y (2015). Detection and attribution of vegetation greening trend in China over the last 30 years. Global Change Biology, 21, 1601-1609.
[31] Qu S, Wang LC, Lin AW, Zhu HJ, Yuan MX (2018). What drives the vegetation restoration in Yangtze River basin, China: climate change or anthropogenic factors? Ecological Indicators, 90, 438-450.
[32] Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, et al. (2005). On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology, 11, 1424-1439.
[33] Richardson AD, Black TA, Ciais P, Delbart N, Friedl MA, Gobron N, Hollinger DY, Kutsch WL, Longdoz B, Luyssaert S, Migliavacca M, Montagnani L, Munger JW, Moors E, Piao SL, et al. (2010). Influence of spring and autumn phenological transitions on forest ecosystem productivity. Philosophical Transactions of the Royal Society of London: Series B, 365, 3227-3246.
[34] Sacks WJ, Schimel DS, Monson RK (2007). Coupling between carbon cycling and climate in a high-elevation, subalpine forest: a model-data fusion analysis. Oecologia, 151, 54-68.
[35] Shi L, Zhao SQ, Tang ZY, Fang JY (2011). The changes in chinaʼs forests: an analysis using the forest identity. PLOS ONE, 6, e20778. DOI: 10.1371/journal.pone.0020778.
[36] Shi PJ, Sun S, Wang M, Li Ning, Wang JA, Jin YY, Gu XT, Yin WX (2014). Climate change regionalization in China (1961-2010). Scientia China: Earth Sciences, 44, 2294- 2306.
[36] [ 史培军, 孙劭, 汪明, 李宁, 王静爱, 金赟赟, 顾孝天, 尹卫霞 (2014). 中国气候变化区划(1961-2010年). 中国科学: 地球科学, 44, 2294-2306.]
[37] Sims DA, Rahman AF, Cordova VD, Baldocchi DD, Flanagan LB, Goldstein AH, Hollinger DY, Misson L, Monson RK, Schmid HP, Wofsy SC, Xu L (2005). Midday values of gross CO2 flux and light use efficiency during satellite overpasses can be used to directly estimate eight-day mean flux. Agricultural and Forest Meteorology, 131, 1-12.
[38] Song Y, Ma MG (2011). A statistical analysis of the relationship between climatic factors and the Normalized Difference Vegetation Index in China. International Journal of Remote Sensing, 32, 3947-3965.
[39] Sparks TH, Jeffree EP, Jeffree CE (2000). An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. International Journal of Biometeorology, 44, 82-87.
[40] Tang H, Li ZW, Ding L, Shen BB, Wang X, Xu LJ, Xin XP (2018). Validation of GPP remote sensing products using eddy covariance flux observations in the grassland area of China. Pratacultural Science, 35, 2568-2583.
[40] [ 唐欢, 李振旺, 丁蕾, 沈贝贝, 王旭, 徐丽君, 辛晓平 (2018). 基于地面涡度数据的中国草原区GPP遥感产品验证. 草业科学, 35, 2568-2583.]
[41] Tang LQ, Liu H, Hu B, Xiao TG, Liu GR, Wang YS, Shi YY (2017). A dataset of reconstructed photosynthetically active radiation in China (1961-2014). China Scientific Data, 2(3), 40-51.
[41] [ 唐利琴, 刘慧, 胡波, 肖天贵, 刘广仁, 王跃思, 史莹莹 (2017). 1961-2014年中国光合有效辐射重构数据集. 中国科学数据, 2(3), 40-51.]
[42] Tong XW, Brandt M, Yue YM, Horion S, Wang KL, Keersmaecker WD, Tian F, Schurgers G, Xiao XM, Luo YQ, Chen C, Myneni R, Shi Z, Chen HS, Fensholt R (2018). Increased vegetation growth and carbon stock in China karst via ecological engineering. Nature Sustainability, 1, 44-50.
[43] Ueyama M, Iwata H, Harazono Y (2014). Autumn warming reduces the CO2 sink of a black spruce forest in interior Alaska based on a nine-year eddy covariance measurement. Global Change Biology, 20, 1161-1173.
[44] Wang JP, Liu LY, Jia K, Tian LH (2015). Spatiotemporal variation of vegetation phenology and its affecting factors in the Mu Us Sandy Land. Journal of Desert Research, 35, 624-631.
[44] [ 王静璞, 刘连友, 贾凯, 田丽慧 (2015). 毛乌素沙地植被物候时空变化特征及其影响因素. 中国沙漠, 35, 624-631.]
[45] Wang T, Yang MH (2017). Dynamic change of NDVI and its response to climate change and human activities in Yulin, Shaanxi Province, China. Arid Zone Research, 34, 1133- 1140.
[45] [ 王涛, 杨梅焕 (2017). 榆林地区植被指数动态变化及其对气候和人类活动的响应. 干旱区研究, 34, 1133- 1140.]
[46] Wang XY, Li YL, Lian J, Duan YL, Wang LL (2021). Relationship between vegetation coverage and climate change in semiarid sandy land and the significance to ecological construction. Journal of Desert Research, 41, 183-194.
[46] [ 王旭洋, 李玉霖, 连杰, 段育龙, 王立龙 (2021). 半干旱典型风沙区植被覆盖度演变与气候变化的关系及其对生态建设的意义. 中国沙漠, 41, 183-194.]
[47] Wei ZF, Ren ZY, Zhang C, Li XY, Zhang JQ (2014). Impact of climate on vegetation phenology on Loess Plateau in Shaanxi-Gansu-Ningxia Region during 1999-2010. Bulletin of Soil and Water Conservation, 34, 232-236.
[47] [ 韦振锋, 任志远, 张翀, 李小燕, 张嘉琪 (2014). 1999-2010年陕甘宁黄土高原区气候对植被物候的影响. 水土保持通报, 34, 232-236.]
[48] Wu W (2001). Study on process of desertification in Mu Us Sandy Land for last 50 years, China. Journal of Desert Research, 21, 164-169.
[48] [ 吴薇 (2001). 近50年来毛乌素沙地的沙漠化过程研究. 中国沙漠, 21, 164-169.]
[49] Wutzler T, Lucas-Moffat A, Migliavacca M, Knauer J, Sickel K, Šigut L, Menzer O, Reichstein M (2018). Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeoences, 15, 5015-5030.
[50] Xia JY, Niu SL, Ciais P, Janssens IA, Chen JQ, Ammann C, Arain A, Blanken PD, Cescatti A, Bonal D, Buchmann N, Curtis PS, Chen SP, Dong JW, Flanagan LB, et al. (2015). Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proceedings of the National Academy of Sciences of the United States of America, 112, 2788-2793.
[51] Xiao X, Zhang Q, Braswell B, Urbanski S, Boles S, Wofsy S, Moore III B, Ojima D (2004). Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sensing of Environment, 91, 256-270.
[52] Yu F, Price KP, Ellis J, Kastens D (2004). Satellite observations of the seasonal vegetation growth in central Asia: 1982-1990. Photogrammetric Engineering & Remote Sensing, 70, 461-469.
[53] Yu K, Hu CM (2013). Changes in vegetative coverage of the Hongze lake national wetland nature reserve: a decade- long assessment using MODIS medium-resolution data. Journal of Applied Remote Sensing, 7, 3589. DOI: 10.1117/1.JRS.7.073589.
[54] Zeng HQ, Jia GS, Epstein H (2011). Recent changes in phenology over the northern high latitudes detected from multi-satellite data. Environmental Research Letters, 6, 045508. DOI: 10.1088/1748-9326/6/4/045508.
[55] Zhang XS (1994). Principles and optimal models for development of Maowusu Sandy grassland. Acta Phytoecologica Sinica, 18, 1-16.
[55] [ 张新时 (1994). 毛乌素沙地的生态背景及其草地建设的原则与优化模式. 植物生态学报, 18, 1-16.]
[56] Zhang Y, Xiao X, Jin C, Dong J, Zhou S, Wagle P, Joiner J, Guanter L, Zhang Y, Zhang G, Qin Y, Wang J, Moore III B (2016). Consistency between sun-induced chlorophyll fluorescence and gross primary production of vegetation in North America. Remote Sensing of Environment, 183, 154- 169.
[57] Zhou S, Zhang Y, Caylor KK, Luo Y, Xiao X, Ciais P, Huang Y, Wang G (2016). Explaining inter-annual variability of gross primary productivity from plant phenology and physiology. Agricultural and Forest Meteorology, 226-227, 246-256.
[58] Zhu YK, Qin SG, Zhang YQ, Zhang JT, Shao YY, Gao Y (2018). Vegetation phenology dynamic and its responses to meteorological factor changes in the Mu Us Desert of northern China. Journal of Beijing Forestry University, 40(9), 98-106.
[58] [ 朱娅坤, 秦树高, 张宇清, 张举涛, 邵艳莹, 高岩 (2018). 毛乌素沙地植被物候动态及其对气象因子变化的响应. 北京林业大学学报, 40(9), 98-106.]
文章导航

/