研究论文

种源地对两种红树叶片结构和功能的影响: 对温度的适应性遗传

展开
  • 1广西大学亚热带农业生物资源保护与利用国家重点实验室, 南宁 530004
    2广西大学林学院广西森林生态与保育重点实验室, 南宁 530004
    3Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 9071541, Japan

收稿日期: 2021-06-09

  录用日期: 2021-08-31

  网络出版日期: 2021-09-29

基金资助

国家自然科学基金(31670406);广西八桂学者人才项目(33600992001)

Effects of provenance on leaf structure and function of two mangrove species: the genetic adaptation to temperature

Expand
  • 1State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, China
    2Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning 530004, China
    3Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 9071541, Japan

Received date: 2021-06-09

  Accepted date: 2021-08-31

  Online published: 2021-09-29

Supported by

National Natural Science Foundation of China(31670406);Bagui Scholar Talent Project of Guangxi(33600992001)

摘要

植物叶片具有根据不同环境状况调整表型特征的能力, 叶片性状对环境的适应能力直接影响植物在气候变化背景下的生存、分布和迁移。受全球气候变暖的影响, 红树林正向高纬度地区扩张, 然而关于红树植物叶片性状对不同生长地点温度变异的适应性遗传仍缺乏了解。该研究采用同质园法以来自6个不同纬度种群的木榄(Bruguiera gymnorhiza)和5个不同纬度种群的秋茄树(Kandelia obovata)幼苗为研究对象, 测定了其叶片解剖结构和生理功能参数, 分析红树幼苗叶片的解剖结构特征与生理功能之间的关系及对种源地温度的适应性遗传。结果发现: 木榄幼苗的叶片厚度、栅栏组织和表皮厚度与种源地年平均气温均呈显著负相关关系, 角质层厚度随年平均气温的升高呈下降的趋势; 与木榄幼苗相比, 秋茄树幼苗叶片具有较厚的表皮和角质层, 较小的气孔密度和叶脉密度, 叶片解剖结构未与种源地年平均气温表现出相关性。两种红树不同种源地幼苗的数据合在一起, 叶片栅栏组织和海绵组织厚度均与光合速率呈正相关关系, 与海绵组织厚度的相关性更强, 说明叶肉组织厚度变化对红树光合作用有影响; 叶脉密度与气孔密度、最大气孔导度也均呈显著正相关关系, 说明两种红树在遗传适应上能够维持叶片水平的水分供需平衡。综上所述, 两种红树叶片解剖结构存在差异, 对种源地温度的适应性遗传有显著区别, 木榄对长期生长环境形成适应性遗传; 秋茄树通过建成性的叶片结构特征遗传适应种源地温度; 叶片结构的差异引起了红树光合作用、最大气孔导度等生理功能发生相应的变化, 从而有利于红树在气候变化的背景下得以生存和繁衍。

本文引用格式

张小燕, WEE Kim Shan Alison, KAJITA Tadashi, 曹坤芳 . 种源地对两种红树叶片结构和功能的影响: 对温度的适应性遗传[J]. 植物生态学报, 2021 , 45(11) : 1241 -1250 . DOI: 10.17521/cjpe.2021.0221

Abstract

Aims Plant leaves have the ability to adjust phenotypic characteristics according to different environmental conditions. The adaptability of leaf traits to the environment directly affects the survival, distribution and migration of plants under climate change. With global warming, mangrove forests have been expanding to higher latitudes. However, there is still a lack of understanding about the genetic adaptation of leaf traits of different mangrove species to temperature variation of native habitats.
Methods The leaf anatomical structure and physiological function parameters of the seedlings from 6 provenances of Bruguiera gymnorhiza and 5 provenances of Kandelia obovata were measured, which were grown in a common garden. The relationships between the leaf anatomical traits and physiological function of mangrove seedlings were analyzed, and the genetic adaptation of two mangrove species to the temperature of provenance was analyzed.
Important findings The leaf thickness, thickness of palisade tissue, cuticle and epidermis of B. gymnorhiza seedlings were significantly negatively correlated with the mean annual temperature of their native habitats. Compared with the seedlings of B. gymnorhiza, the K. obovata seedlings had thicker leaf epidermis and cuticle, and the anatomical traits of K. obovata were not correlated with the annual average temperature of the provenances. Pooling the data of the seedlings of different provenances of the two species together, the palisade tissue and to a lesser extend spongy tissue were positively correlated with photosynthetic rate, suggesting an important role of palisade tissue for photosynthesis in mangroves. There was also a significant positive correlation between vein density and stomatal density, maximum stomatal conductance, revealing genetic adaptation for the balance between leaf transpirational demand and water supply. In conclusion, B. gymnorhiza showed the significant genetic adaptation to the temperature of the provenance, while K. obovata did not. The leaf anatomical structure of K. obovata adapts to the temperature of provenance through the persistent inheritance of stress resistance of leaf structure. The differences of leaf structure lead to the corresponding changes of physiological functions such as photosynthesis and maximum stomatal conductance of mangroves, which is conducive to the survival and reproduction of mangroves under the climate change.

参考文献

[1] Alberto FJ, Aitken SN, Alía R, González-Martínez SC, Hänninen H, Kremer A, Lefèvre F, Lenormand T, Yeaman S, Whetten R, Savolainen O (2013). Potential for evolutionary responses to climate change—Evidence from tree populations. Global Change Biology, 19, 1645-1661.
[2] Brodersen CR, Vogelmann TC (2007). Do epidermal lens cells facilitate the absorptance of diffuse light? American Journal of Botany, 94, 1061-1066.
[3] Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytologist, 192, 437-448.
[4] Burrows MT, Schoeman DS, Richardson AJ, Molinos JG, Hoffmann A, Buckley LB, Moore PJ, Brown CJ, Bruno JF, Duarte CM, Halpern BS, Hoegh-Guldberg O, Kappel CV, Kiessling W, O’Connor MI, et al. (2014). Geographical limits to species-range shifts are suggested by climate velocity. Nature, 507, 492-495.
[5] Caringella MA, Bongers FJ, Sack L (2015). Leaf hydraulic conductance varies with vein anatomy across Arabidopsis thaliana wild-type and leaf vein mutants. Plant, Cell & Environment, 38, 2735-2746.
[6] Chen BY, Wang CH, Tian YK, Chu QG, Hu CH (2015). Anatomical characteristics of young stems and mature leaves of dwarf pear. Scientia Horticulturae, 186, 172-179.
[7] Chen Y, Liu KD, Li HL, Xu FH, Zhong JD, Cheng XL, Yuan CC (2014). Leaf structures and stress resistance in five mangrove species. Journal of Northeast Forestry University, 42(7), 27-31.
[7] [ 陈燕, 刘锴栋, 黎海利, 许方宏, 钟军弟, 成夏岚, 袁长春 (2014). 5种红树植物的叶片结构及其抗逆性比较. 东北林业大学学报, 42(7), 27-31.]
[8] Corlett RT, Westcott DA (2013). Will plant movements keep up with climate change? Trends in Ecology & Evolution, 28, 482-488.
[9] DeLucia EH, Nelson K, Vogelmann TC, Smith WK (1996). Contribution of intercellular reflectance to photosynthesis in shade leaves. Plant, Cell & Environment, 19, 159-170.
[10] Domínguez E, Cuartero J, Heredia A (2011). An overview on plant cuticle biomechanics. Plant Science, 181, 77-84.
[11] Drake JE, Aspinwall MJ, Pfautsch S, Rymer PD, Reich PB, Smith RA, Crous KY, Tissue DT, Ghannoum O, Tjoelker MG (2015). The capacity to cope with climate warming declines from temperate to tropical latitudes in two widely distributed Eucalyptus species. Global Change Biology, 21, 459-472.
[12] Ellison JC, Stoddart DR (1991). Mangrove ecosystem collapse during predicted sea-level rise: holocene analogues and implications. Journal of Coastal Research, 7, 151-165.
[13] González-Orozco CE, Pollock LJ, Thornhill AH, Mishler BD, Knerr N, Laffan SW, Miller JT, Rosauer DF, Faith DP, Nipperess DA, Kujala H, Linke S, Butt N, Külheim C, Crisp MD, Gruber B (2016). Phylogenetic approaches reveal biodiversity threats under climate change. Nature Climate Change, 6, 1110-1114.
[14] Gorsuch PA, Pandey S, Atkin OK (2010). Temporal heterogeneity of cold acclimation phenotypes in Arabidopsis leaves. Plant, Cell & Environment, 33, 244-258.
[15] Han XB, Li RQ, Wang JB (1997). Cellular structural comparison between different thermo-resistant cultivars of Raphanus sativus L. under heat stress. Journal of Wuhan Botanical Research, 15, 173-178.
[15] [ 韩笑冰, 利容千, 王建波 (1997). 热胁迫下萝卜不同耐热性品种细胞组织结构比较. 武汉植物学研究, 15, 173-178.]
[16] Hanba YT, Miyazawa SI, Terashima I (1999). The influence of leaf thickness on the CO2 transfer conductance and leaf stable carbon isotope ratio for some evergreen tree species in Japanese warm-temperate forests. Functional Ecology, 13, 632-639.
[17] Ji RX, Yu X, Chang Y, Shen C, Bai XK, Xia XL, Yin WL, Liu C (2020). Geographical provenance variation of leaf anatomical structure of Caryopteris mongholica and its significance in response to environmental changes. Chinese Journal of Plant Ecology, 44, 277-286.
[17] [ 纪若璇, 于笑, 常远, 沈超, 白雪卡, 夏新莉, 尹伟伦, 刘超 (2020). 蒙古莸叶片解剖结构的地理种源变异及其对环境变化响应的意义. 植物生态学报, 44, 277-286.]
[18] Ji ZJ, Quan XK, Wang CK (2013). Variations in leaf anatomy of Larix gmelinii reflect adaptation of its photosynthetic capacity to climate changes. Acta Ecologica Sinica, 33, 6967-6974.
[18] [ 季子敬, 全先奎, 王传宽 (2013). 兴安落叶松针叶解剖结构变化及其光合能力对气候变化的适应性. 生态学报, 33, 6967-6974.]
[19] Kröber W, Heklau H, Bruelheide H (2015). Leaf morphology of 40 evergreen and deciduous broadleaved subtropical tree species and relationships to functional ecophysiological traits. Plant Biology, 17, 373-383.
[20] Li YY, Lin P (2006). Anatomical characteristics of leaves in three mangrove species. Journal of Tropical and Subtropical Botany, 14, 301-306.
[20] [ 李元跃, 林鹏 (2006). 三种红树植物叶片的比较解剖学研究. 热带亚热带植物学报, 14, 301-306.]
[21] Liao BW, Zhang QM (2014). Area, distribution and species composition of mangroves in China. Wetland Science, 12, 435-440.
[21] [ 廖宝文, 张乔民 (2014). 中国红树林的分布、面积和树种组成. 湿地科学, 12, 435-440.]
[22] Ma XF, Wang XF, Li Q, He X (2013). The analysis of drought resistance and the comparison of anatomical structures of the leave of Xanthoceras sorbifolia Bunge introduced from different regions. Journal of Arid Land Resources and Environment, 27, 92-96.
[22] [ 马小芬, 王兴芳, 李强, 贺晓 (2013). 不同种源地文冠果叶片解剖结构比较及抗旱性分析. 干旱区资源与环境, 27, 92-96.]
[23] McCann S, Greenlees MJ, Newell D, Shine R (2014). Rapid acclimation to cold allows the cane toad to invade montane areas within its Australian range. Functional Ecology, 28, 1166-1174.
[24] Méndez-Alonzo R, López-Portillo J, Rivera-Monroy VH (2008). Latitudinal variation in leaf and tree traits of the mangrove Avicennia germinans (Avicenniaceae) in the central region of the Gulf of Mexico. Biotropica, 40, 449-456.
[25] Miao C, Li RQ, Wang JB (1994). Leaf structural changes of Brassica campestris and B. oleracea in response to heat stress. Journal of Wuhan Botanical Research, 12, 207-211.
[25] [ 苗琛, 利容千, 王建波 (1994). 热胁迫下不结球白菜和甘蓝叶片组织结构的变化. 武汉植物学研究, 12, 207-211.]
[26] Oguchi R, Hikosaka K, Hirose T (2005). Leaf anatomy as a constraint for photosynthetic acclimation: differential responses in leaf anatomy to increasing growth irradiance among three deciduous trees. Plant, Cell & Environment, 28, 916-927.
[27] Parkhurst DF (1994). Diffusion of CO2 and other gases inside leaves. New Phytologist, 126, 449-479.
[28] Poulson ME, Vogelmann TC (1990). Epidermal focussing and effects upon photosynthetic light-harvesting in leaves of Oxalis. Plant, Cell & Environment, 13, 803-811.
[29] Rueden CT, Hiner MC, Eliceiri KW (2016). ImageJ: image analysis interoperability for the next generation of biological image data. Microscopy and Microanalysis, 22, 2066-2067.
[30] Suarez AV, Tsutsui ND (2008). The evolutionary consequences of biological invasions. Molecular Ecology, 17, 351-360.
[31] Tian SQ, Zhu SD, Zhu JJ, Shen ZH, Cao KF (2016). Impact of leaf morphological and anatomical traits on mesophyll conductance and leaf hydraulic conductance in mangrove plants. Plant Science Journal, 34, 909-919.
[31] [ 田尚青, 朱师丹, 朱俊杰, 申智骅, 曹坤芳 (2016). 红树林植物叶片形态和解剖特征对叶肉导度、叶片导水率的影响. 植物科学学报, 34, 909-919.]
[32] Vogelmann TC, Martin G (1993). The functional significance of palisade tissue: penetration of directional versus diffuse light. Plant, Cell & Environment, 16, 65-72.
[33] Vogelman TC, Nishio JN, Smith WK (1996). Leaves and light capture: light propagation and gradients of carbon fixation within leaves. Trends in Plant Science, 1, 65-70.
[34] Wen Y, Zhao WL, Cao KF (2020). Global convergence in the balance between leaf water supply and demand across vascular land plants. Functional Plant Biology, 47, 904-911.
[35] Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827.
[36] Xiong DL, Flexas J, Yu TT, Peng SB, Huang JL (2017). Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO2 in Oryza. New Phytologist, 213, 572-583.
[37] Zheng JJ, Lu W, Chen LH, Li PC (1996). Relationship between leaf rate of leaf air space in longan and Chinese olive and cold resistance. Journal of Fujian Agricultural University, 25(2), 40-43.
[37] [ 郑家基, 卢炜, 陈利恒, 李平聪 (1996). 龙眼、橄榄叶片空隙率与耐寒性的关系. 福建农业大学学报, 25(2), 40-43.]
文章导航

/

005-264X/bottom_cn.htm"-->