研究论文

不同生境对藏东南地面生苔藓多样性和生物量的影响

展开
  • 1西藏农牧学院高原生态研究所, 西藏林芝 860000
    2西藏高原森林生态教育部重点实验室, 西藏林芝 860000
    3西藏林芝高山森林生态系统国家野外科学观测研究站, 西藏林芝 860000
* E-mail: 285477889@qq.com ORCID:马和平: 0000-0002-6803-7059

收稿日期: 2021-03-26

  录用日期: 2021-09-28

  网络出版日期: 2021-11-11

基金资助

国家自然科学基金(32060264)

Effects of different habitats on the diversity and biomass of ground moss in the southeast Xizang, China

Expand
  • 1Institute of Tibet Plateau Ecology, Tibet Agriculture and Animal Husbandry University, Nyingchi, Xizang 860000, China
    2Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education, Nyingchi, Xizang 860000, China
    3National Forest Ecosystem Observation & Research Station of Nyingchi Tibet, Nyingchi, Xizang 860000, China

Received date: 2021-03-26

  Accepted date: 2021-09-28

  Online published: 2021-11-11

Supported by

National Natural Science Foundation of China(32060264)

摘要

为解析苔藓在藏东南森林生态系统中的重要生态作用, 以及森林干扰对林内地面生苔藓的影响, 该研究以藏东南色季拉山地面生苔藓植物为调查对象, 选取林分、坡向、坡度和地势组成等相似的7块100 m × 100 m的样地, 每块样地以林窗为中心, 在其东、南、西、北4个方向选取林窗、林缘和林下3种不同生境设置50 cm × 50 cm的样方, 每块样地共12个样方, 共计168个样方。通过对每个样方进行苔藓植物调查采集, 研究了西藏色季拉山苔藓多样性和不同生境条件下地面生苔藓单位面积生物量特征。主要结果: (1)研究区共有苔藓植物24科63属110种。其中, 优势科有8个, 分别是丛藓科、曲尾藓科、金发藓科、提灯藓科、真藓科、紫萼藓科、青藓科和灰藓科。苔藓各科分布规律明显, 曲尾藓科和真藓科广泛分布于各个海拔, 金发藓科、真藓科和提灯藓科分布在海拔3 700-4 300 m, 而丛藓科多分布在4 300 m以上。(2)林窗生境较林缘和林下复杂, 它干扰了苔藓物种组成和群落结构, 其苔藓种类最多、结构最复杂, 而林下的苔藓种类最少, 群落结构最简单。林窗地面生苔藓生物量最高, 其次为林缘, 林下苔藓生物量最低。(3)地面生苔藓生物量大小不仅受其物种组成、盖度、体形和群落结构的影响, 而且是众多因子共同作用的结果, 而非某一因子起主导作用。

本文引用格式

马和平, 王瑞红, 屈兴乐, 袁敏, 慕金勇, 李金航 . 不同生境对藏东南地面生苔藓多样性和生物量的影响[J]. 植物生态学报, 2022 , 46(5) : 552 -560 . DOI: 10.17521/cjpe.2021.0114

Abstract

Aims In order to explore the important ecological function of moss in forest ecosystems in the southeast Xizang and provide a theoretical basis for the influence of forest disturbance on forest surface vegetation, the diversity and biomass characteristics of ground moss per unit area in different habitats in the Sygera Mountain of southeast Xizang.

Methods We collected the surface moss in the Sygera Mountain of the southeast Xizang as the investigation object, and selected 7 sample plots with similar forest stand, slope direction, slope and terrain composition, with each plot size of 100 m × 100 m. We took canopy gap of each sample plot as the center, and three different habitats (canopy gap, forest edge and understory) were selected in four directions to set 50 cm × 50 cm quadrats, with 12 quadrats for each sample plot and 168 quadrats in total. Moss survey and collection were carried out in each quadrat.

Important findings (1) 24 families, 63 genera and 110 species of moss were found in the study area, in which there were 8 dominant families, which were Pottiaceae, Dicranaceae, Polytrichaceae, Mniaceae, Bryaceae, Grimmiaceae, Brachytheciaceae and Hypnaceae. There were obvious distribution rules of different moss families, such as Dicranaceae and Bryaceae were widely distributed at all elevations, and Polytrichaceae, Bryaceae and Mniaceae were distributed at altitudes from 3 700 to 4 300 m. Most of Pottiaceae were distributed over 4 300 m. (2) The habitat of canopy gap was more complex than those of forest edge and understory and it interfered with moss composition and community structure, in which the moss community had the most species and the most complex structure. However, the moss community in understory had the least species and the simplest structure. The biomass of ground moss was the highest in the gap, followed by the edge and the lowest in the understory. (3) The biomass of ground moss was not only affected by species composition, coverage, body shape and community structure, but also resulted from the interaction of many factors rather than any one single factor.

参考文献

[1] Biswas SR, Mallik AU (2010). Disturbance effects on species diversity and functional diversity in riparian and upland plant communities. Ecology, 91, 28-35.
[2] Che ZX (2004). Study on moss distribution law in different altitude on north slope of Qilian Mountains. Journal of Gansu Forestry Science and Technology, 29(3), 22-25.
[2] [ 车宗玺 (2004). 祁连山北坡不同海拔梯度苔藓分布规律研究. 甘肃林业科技, 29(3), 22-25.]
[3] Gao Q (1994). Flora Bryophytarum Sinicorum: Vol. 1. Science Press, Beijing.
[3] [ 高谦 (1994). 中国苔藓志: 第一卷. 科学出版社, 北京.]
[4] Gao Q (1996). Flora Bryophytarum Sinicorum, Vol. 2. Science Press, Beijing.
[4] [ 高谦 (1996). 中国苔藓志: 第二卷. 科学出版社, 北京.]
[5] Gardner RH, Engelhardt KAM (2008). Spatial processes that maintain biodiversity in plant communities. Perspectives in Plant Ecology, Evolution and Systematics, 9, 211-228.
[6] Hu RL, Wang YF (2005). Flora Bryophytarum Sinicorum: Vol. 7. Science Press, Beijing.
[6] [ 胡人亮, 王幼芳 (2005). 中国苔藓志: 第七卷. 科学出版社, 北京.]
[7] Li JF, Jia SH, Wang ZH, Zhang ZH (2015). The diversity of bryophytes and their distribution associated with environmental factors during the process of karst rocky desertification. Ecological Science, 34(1), 68-73.
[7] [ 李军峰, 贾少华, 王智慧, 张朝晖 (2015). 喀斯特石漠化过程中苔藓植物多样性及分布与环境的关系. 生态科学, 34(1), 68-73.]
[8] Li XJ (1985). Tibetan Bryophyte Sinicorum. Science Press, Beijing.
[8] [ 黎兴江 (1985). 西藏苔藓植物志. 科学出版社, 北京.]
[9] Li XJ (2000). Flora Bryophytarum Sinicorum: Vol. 3. Science Press, Beijing.
[9] [ 黎兴江 (2000). 中国苔藓志: 第三卷. 科学出版社, 北京.]
[10] Li XJ (2006). Flora Bryophytarum Sinicorum: Vol. 4. Science Press, Beijing.
[10] [ 黎兴江 (2006). 中国苔藓志: 第四卷. 科学出版社, 北京.]
[11] Liang XD, Ye WH (2001). Advances in study on forest gaps. Journal of Tropical and Subtropical Botany, 9, 355-364.
[12] Ling L, Wei Q, Chai CS, Qi JL, Wang DF, Tao JX (2016). Biomass of moss and its affecting factors of the main forest type of Xinglong Mountain in Gansu Province. Journal of Soil and Water Conservation of China, (10), 60-64.
[12] [ 凌雷, 魏强, 柴春山, 戚建莉, 王多锋, 陶继新 (2016). 甘肃兴隆山主要森林类型苔藓生物量及其影响因子. 中国水土保持, (10), 60-64.]
[13] Liu JH, Bao WK (2006). Major bryophyte patch biomass and relation with environmental factors in a coniferous forest of the eastern Qinghai-Tibetan Plateau. Chinese Bulletin of Botany, 23, 684-690.
[13] [ 刘俊华, 包维楷 (2006). 冷杉天然林下地表主要苔藓斑块生物量及其影响因素. 植物学通报, 23, 684-690.]
[14] Liu JH, Bao WK, Li FL (2005). Major bryophyte patch structures and their relationships with environmental factors under a coniferous forest of eastern Tibetan Plateau. Ecology and Environment, 14, 735-741.
[14] [ 刘俊华, 包维楷, 李芳兰 (2005). 青藏高原东部原始林下地表主要苔藓斑块特征及其影响因素. 生态环境, 14, 735-741.]
[15] Liu WJ, Li QJ, Zhang GM, Shi JP, Bai KJ, Wang CM (2000). The microclimatic differences between and within canopy gaps in the dry-hot season in Shorea chinensis forest. Acta Ecologica Sinica, 20, 932-937.
[15] [ 刘文杰, 李庆军, 张光明, 施济普, 白坤甲, 王昌命 (2000). 西双版纳望天树林干热季不同林窗间的小气候差异. 生态学报, 20, 932-937.]
[16] Liu XC, Shao XM, Jiang YB, Sun Y, Hu WY (2010). Relationship between bryophytes distribution and environmental factors in urban Beijing. Journal of Wuhan Botanical Research, 28, 171-178.
[16] [ 刘欣超, 邵小明, 姜炎彬, 孙宇, 胡伟毅 (2010). 北京市区苔藓植物空间分布与环境关系的研究. 武汉植物学研究, 28, 171-178.]
[17] Liu Y, Cao T, Wang J, Cao Y (2008). Relationships between distribution of soil-born bryophytes in urban area of Hangzhou and related ecological factors. Chinese Journal of Applied Ecology, 19, 775-781.
[17] [ 刘艳, 曹同, 王剑, 曹阳 (2008). 杭州市区土生苔藓植物分布与生态因子的关系. 应用生态学报, 19, 775-781.]
[18] Ma HP, Zheng WL, Shi YL, Dong Z (2019). A preliminary study on vertical distribution of bryophytes in Sygera Mountains in southeast of Tibet. Journal of Northwest A&F University (Natural Science Edition), 47(5), 102-109.
[18] [ 马和平, 郑维列, 石玉龙, 东主 (2019). 藏东南色季拉山苔藓植物垂直分布特征初步研究. 西北农林科技大学学报(自然科学版), 47(5), 102-109.]
[19] Ma WZ, Liu WY, Yang LP, Yang GP (2008). Edge effects on epiphytes in montane moist evergreen broad-leaved forest. Biodiversity Science, 16, 245-254.
[19] [ 马文章, 刘文耀, 杨礼攀, 杨国平 (2008). 边缘效应对山地湿性常绿阔叶林附生植物的影响. 生物多样性, 16, 245-254.]
[20] Pickett STA, Wu J, Cadenasso ML (1999). Patch dynamics and the ecology of disturbed ground:a framework for synthesis //Walker LR. Ecosystems of Disturbed Ground. Elsevier, Amsterdam, the Netherlands. 707-722.
[21] Thomas SC, Liguori DA, Halpern CB (2001). Corticolous bryophytes in managed Douglas-fir forests: habitat differentiation and responses to thinning and fertilization. Canadian Journal of Botany, 79, 886-896.
[22] Tian YL, Li JQ, Shi AP, Yu JJ, Wang WH (2013). Species diversity of epiphytic bryophytes in Baihua Mountain National Nature Reserve, Beijing. Chinese Journal of Ecology, 32, 838-844.
[22] [ 田晔林, 李俊清, 石爱平, 于建军, 王文和 (2013). 北京百花山自然保护区树附生苔藓植物物种多样性. 生态学杂志, 32, 838-844.]
[23] Wang Q, Yang WQ, Wu FZ, Chang CH, Cao R, Wang Z, Tang GQ, Jiang YR (2019). Effects of forest gap and coarse woody debris on biomass and diversity of epixylous moss in an alpine forest. Acta Ecologica Sinica, 39, 6651-6659.
[23] [ 汪沁, 杨万勤, 吴福忠, 常晨晖, 曹瑞, 王壮, 汤国庆, 蒋雨芮 (2019). 高山森林林窗和粗木质残体对木生苔藓生物量和多样性的影响. 生态学报, 39, 6651-6659.]
[24] Wang YY, Wang YF, Wang DH, Li M, Zuo Q (2011). Effect of habitat fragmentation on bryophytes diversity in the Thousand-Island Lake region. Plant Science Journal, 29, 435-445.
[24] [ 王莹莹, 王幼芳, 汪岱华, 李敏, 左勤 (2011). 千岛湖生境片断化对苔藓植物多样性的影响. 植物科学学报, 29, 435-445.]
[25] Wu PC (2002). Flora Bryophytarum Sinicorum: Vol. 6. Science Press, Beijing.
[25] [ 吴鹏程 (2002). 中国苔藓志: 第六卷. 科学出版社, 北京.]
[26] Wu PC, Jia Y (2004). Flora Bryophytarum Sinicorum: Vol. 8. Science Press, Beijing.
[26] [ 吴鹏程, 贾渝 (2004). 中国苔藓志: 第八卷. 科学出版社, 北京.]
[27] Wu PC, Jia Y (2011). Flora Bryophytarum Sinicorum: Vol. 5. Science Press, Beijing.
[27] [ 吴鹏程, 贾渝 (2011). 中国苔藓志: 第五卷. 科学出版社, 北京. ]
[28] Yang LL, Wang ZS, Zhou LY, Ma YS, Wang ZK, Ying T, Song YY, Xu WX (2012). Response and bioindicator of bryophyte and lichen as cryptogamae plants to environmental change. Journal of Nanjing Forestry University (Natural Sciences Edition), 36(3), 137-143.
[28] [ 杨琳璐, 王中生, 周灵燕, 马元屾, 王志科, 营婷, 宋圆圆, 徐卫祥 (2012). 苔藓和地衣对环境变化的响应和指示作用. 南京林业大学学报(自然科学版), 36(3), 137-143.]
[29] Ye J, Hao ZQ, Dai GH (2004). Bryophyte biomass in dark coniferous forest of Changbai Mountain. Chinese Journal of Applied Ecology, 15, 737-740.
[29] [ 叶吉, 郝占庆, 戴冠华 (2004). 长白山暗针叶林苔藓植物生物量的研究. 应用生态学报, 15, 737-740.]
[30] Zhang YD, Liu SR, Ma JM, Shi ZM, Liu XL (2005). Woodland hydrological effects of birch forests in sub-alpine region of western Sichuan, China. Acta Ecologica Sinica, 25, 2939-2946.
[30] [ 张远东, 刘世荣, 马姜明, 史作民, 刘兴良 (2005). 川西亚高山桦木林的林地水文效应. 生态学报, 25, 2939-2946.]
文章导航

/