研究论文

西南干旱河谷植物群落组分生物量的纬度格局及其影响因素

展开
  • 1中国科学院山地生态恢复与生物资源利用重点实验室, 生态恢复与生物多样性保育四川省重点实验室, 中国科学院成都生物研究所, 成都 610041
    2中国科学院大学, 北京 100049

收稿日期: 2021-06-26

  录用日期: 2021-10-13

  网络出版日期: 2021-12-16

基金资助

国家重点研发计划(2017YFC0505105);国家科技基础资源调查专项(2019FY202300)

Latitudinal patterns and underlying factors of component biomass in plant communities in the arid valley of southwest China

Expand
  • 1CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Ecological Restoration and Biodiversity, Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
    2University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2021-06-26

  Accepted date: 2021-10-13

  Online published: 2021-12-16

Supported by

National Key R&D Program of China(2017YFC0505105);Special Foundation for National Science and Technology Basic Resources Investigation of China(2019FY202300)

摘要

研究植物群落不同组分生物量的纬度格局及其与生物、非生物因子的定量关系有助于揭示植物对环境的适应性, 能够解释生态系统结构和功能的空间差异性及其成因。该研究在西南干旱河谷跨越9个纬度(23.23°-32.26° N), 布置101个群落 样方(4 m × 6 m)。采用收割法测定群落及组分生物量, 分析生物量在纬度梯度上的变化规律及其影响因子。结果显示, 干旱河谷群落平均生物量为(17.05 ± 1.09) t·hm-2, 其中, 灌木平均生物量为(11.51 ± 1.03) t·hm-2, 占60.2%; 草本平均生物量为(2.11 ± 0.21) t·hm-2, 占15.6%; 凋落物平均生物量为(3.41 ± 0.34) t·hm-2, 占24.1%。群落生物量和灌木生物量随纬度升高而显著增加, 草本生物量随纬度升高无明显变化, 凋落物生物量随纬度的升高而显著降低。随着纬度增加, 灌木生物量的比例明显增大, 草本生物量的比例无明显变化, 凋落物生物量的比例明显降低。灌木优势度及丰富度的变化是驱动干旱河谷植被生物量在纬度梯度上变化的主要内在因子, 而外在因子中, 气候因子对群落及组分生物量的影响显著高于土壤因子。

本文引用格式

王子龙, 胡斌, 包维楷, 李芳兰, 胡慧, 韦丹丹, 杨婷惠, 黎小娟 . 西南干旱河谷植物群落组分生物量的纬度格局及其影响因素[J]. 植物生态学报, 2022 , 46(5) : 539 -551 . DOI: 10.17521/cjpe.2021.0237

Abstract

Aims The study of the pattern of biomass variations and their drivers along environmental gradients commonly contributes to the understanding of plant’s adaptability to environmental changes, further explains the spatial differences in vegetation and ecosystem processes. We investigated the biomass latitudinal patterns of plant communities and its components and revealed the quantitative relationships of biomass with climatic, soil and community structure as well as species diversity.

Methods In order to analyze the variation patterns of biomass along the latitude gradient and the drivers, we set up a total of 101 plots (4 m × 6 m) across nine region along latitude in the arid valley of southwest China (23.23°-32.26° N), to investigate biomass and species composition of plant communities and its components.

Important findings In the arid valley, the average biomass of community was (17.05 ± 1.09) t·hm-2, of which the average biomass of shrub, herb and litter were (11.51 ± 1.03), (2.11 ± 0.21) and (3.41 ± 0.34) t·hm-2, respectively, with each of them accounting for 60.2%, 15.6%, and 24.1% of the community biomass. With the increase of latitude, community biomass increased significantly. Shrub biomass and their proportion also increased significantly, herb biomass and their proportion remained consistent, whereas litter biomass decreased significantly. The changes of shrub dominance and abundance were the main internal factor for vegetation biomass variation along the latitude gradient. Additionally, compared with soil factors, climatic factors had a more significant impact on the biomass changes of communities and its components.

参考文献

[1] Bai YF, Wu JG, Xing Q, Pan QM, Huang JH, Yang DL, Han XG (2008). Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology, 89, 2140-2153.
[2] Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006). Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecology Letters, 9, 1146-1156.
[3] Bao WK, Pang XY, Li FL, Zhou ZQ (2012). A Study of Ecological Restoration and Sustainable Management of the Arid Minjiang River Valley, China. Science Press, Beijing.
[3] [ 包维楷, 庞学勇, 李芳兰, 周志琼 (2012). 干旱河谷生态恢复与持续管理的科学基础. 科学出版社, 北京.]
[4] Bosatta E, Ågren GI (1999). Soil organic matter quality interpreted thermodynamically. Soil Biology & Biochemistry, 31, 1889-1891.
[5] Chen H, Li YQ, Zheng SW, Mu CL, Liu J (2007). Research on the correlations of shrub biomass with slope-aspect and altitude in dry valley of the upper reach of the Minjiang River. Journal of Chengdu University (Natural Science Edition), 26(1), 14-18.
[5] [ 陈泓, 黎燕琼, 郑绍伟, 慕长龙, 刘军 (2007). 岷江上游干旱河谷灌丛生物量与坡向及海拔梯度相关性研究. 成都大学学报(自然科学版), 26(1), 14-18.]
[6] Cuesta B, Villar-Salvador P, Puértolas J, Rey Benayas JM, Michalet R (2010). Facilitation of Quercus ilex in Mediterranean shrubland is explained by both direct and indirect interactions mediated by herbs. Journal of Ecology, 98, 687-696.
[7] de Bie S, Ketner P, Paasse M, Geerling C (1998). Woody plant phenology in the West Africa savanna. Journal of Biogeography, 25, 883-900.
[8] Deng L, Shangguan ZP (2012). Distribution of natural grassland biomass and its relationship with influencing factors in Shaanxi. Acta Agrestia Sinica, 20, 825-835.
[8] [ 邓蕾, 上官周平 (2012). 陕西省天然草地生物量空间分布格局及其影响因素. 草地学报, 20, 825-835.]
[9] Du MQ, Zhang HS, Peng D, Zha TG (2020). Distribution of shrub-herb community biomass and its relationship with soil factors in middle and low mountainous areas of northwest Hebei Province. Pratacultural Science, 37, 1-9.
[9] [ 杜美琪, 张恒硕, 彭栋, 查同刚 (2020). 冀西北中低山区灌草群落生物量分配及其与土壤因子的关系. 草业科学, 37, 1-9.]
[10] Epstein HE, Lauenroth WK, Burke IC (1997). Effects of temperature and soil texture on ANPP in the U.S. Great Plains. Ecology, 78, 2628-2631.
[11] Fan JR, Yang C, Bao WK, Liu JL, Li X (2020). Distribution scope and district statistical analysis of dry valleys in southwest China. Mountain Research, 38, 303-313.
[11] [ 范建容, 杨超, 包维楷, 刘佳丽, 李炫 (2020). 西南地区干旱河谷分布范围及分区统计分析. 山地学报, 38, 303- 313.]
[12] Fang JY, Tang YH, Son Y (2010). Why are East Asian ecosystems important for carbon cycle research. Scientia Sinica Vitae, 40, 561-565.
[12] [ 方精云, 唐艳鸿, Son Y (2010). 碳循环研究: 东亚生态系统为什么重要. 中国科学: 生命科学, 40, 561-565.]
[13] Fang JY, Wang XP, Shen ZH, Tang ZY, He JS, Yu D, Jiang Y, Wang ZH, Zheng CY, Zhu JL, Guo ZD (2009). Methods and protocols for plant community inventory. Biodiversity Science, 17, 533-548.
[13] [ 方精云, 王襄平, 沈泽昊, 唐志尧, 贺金生, 于丹, 江源, 王志恒, 郑成洋, 朱江玲, 郭兆迪 (2009). 植物群落清查的主要内容、方法和技术规范. 生物多样性, 17, 533-548.]
[14] Fick SE, Hijmans RJ (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315.
[15] Fierer N, Craine JM, Mclauchlan K, Schimel JP (2005). Litter quality and the temperature sensitivity of decomposition. Ecology, 86, 320-326.
[16] Finér L, Zverev V, Palviainen M, Romanis T, Kozlov MV (2019). Variation in fine root biomass along a 1000 km long latitudinal climatic gradient in mixed boreal forests of North-East Europe. Forest Ecology and Management, 432, 649-655.
[17] Gruner DS, Bracken MES, Berger SA, Eriksson BK, Gamfeldt L, Matthiessen B, Moorthi S, Sommer U, Hillebrand H (2017). Effects of experimental warming on biodiversity depend on ecosystem type and local species composition. Oikos, 126, 8-17.
[18] Guo YP, Schöb C, Ma WH, Mohammat A, Liu HY, Yu SL, Jiang YX, Schmid B, Tang ZY (2019). Increasing water availability and facilitation weaken biodiversity-biomass relationships in shrublands. Ecology, 100, e02624. DOI: 10.1002/ecy.2624.
[19] Han B, Fan JW, Zhong HP (2006). Grassland biomass of communities along gradients of the Inner Mongolia grassland transect. Journal of Plant Ecology (Chinese Version), 30, 553-562.
[19] [ 韩彬, 樊江文, 钟华平 (2006). 内蒙古草地样带植物群落生物量的梯度研究. 植物生态学报, 30, 553-562.]
[20] Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, Gonzalez A, Duffy JE, Gamfeldt L, O’Connor MI (2012). A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature, 486, 105-108.
[21] Hu H, Yang Y, Bao WK, Liu X, Li FL (2020). Effects of microhabitat changes on seedling establishment of native plants in a dry valley. Chinese Journal of Plant Ecology, 44, 1028-1039.
[21] [ 胡慧, 杨雨, 包维楷, 刘鑫, 李芳兰 (2020). 干旱河谷微生境变化对乡土植物幼苗定植的影响. 植物生态学报, 44, 1028-1039.]
[22] Jassal RS, Black TA, Novak MD, Gaumont-Guay D, Nesic Z (2008). Effect of soil water stress on soil respiration and its temperature sensitivity in an 18-year-old temperate Douglas- fir stand. Global Change Biology, 14, 1305-1318.
[23] Jin ZZ, Ou XK (2000). Vegetation of Yuan River, Nu River, Jinsha River, and Lancang River Dry-hot Valleys. Yunnan University Press, Kunming. 285-286.
[23] [ 金振洲, 欧晓昆 (2000). 元江、怒江、金沙江、澜沧江干热河谷植被. 云南大学出版社, 昆明. 285-286.]
[24] Jin ZZ, Ou XK, Zhou Y (1987). The general situation of natural vegetation in dry-hot river valley of Yuanmou, Yunnan Province. Acta Phytoecologica et Geobotanica Sinica, 11, 308-317.
[24] [ 金振洲, 欧晓昆, 周跃 (1987). 云南元谋干热河谷植被概况. 植物生态学与地植物学学报, 11, 308-317.]
[25] Li FL, Zhu LH, Bao WK (2009). Effects of environmental stress on seedlings root growth and nodulation of leguminous shrubs in the dry valley of Minjiang River. Chinese Journal of Applied Ecology, 20, 1825-1831.
[25] [ 李芳兰, 朱林海, 包维楷 (2009). 环境胁迫对岷江干旱河谷豆科灌木幼苗根系生长及其结瘤的影响. 应用生态学报, 20, 1825-1831.]
[26] Li T, Deng Q, Yuan ZY, Jiao F (2015). Latitude gradient changes on herbaceous biomass and leaf N and P stoichiometry characteristics in Loess Plateau. Journal of Plant Nutrition and Fertilizer, 21, 743-751.
[26] [ 李婷, 邓强, 袁志友, 焦峰 (2015). 黄土高原纬度梯度下草本植物生物量的变化及其氮、磷化学计量学特征. 植物营养与肥料学报, 21, 743-751.]
[27] Liu GH, Ma KM, Fu BJ, Guan WB, Kang YX, Zhou JY, Liu SL (2003). Aboveground biomass of main shrubs in dry valley of Minjiang River. Acta Ecologica Sinica, 23, 1757-1764.
[27] [ 刘国华, 马克明, 傅伯杰, 关文彬, 康永祥, 周建云, 刘世梁 (2003). 岷江干旱河谷主要灌丛类型地上生物量研究. 生态学报, 23, 1757-1764.]
[28] Liu LH (1989). Vegetational types of the arid valleys in the Hengduan mountainous region. Mountain Research, 7, 175-182.
[28] [ 刘伦辉 (1989). 横断山区干旱河谷植被类型. 山地学报, 7, 175-182.]
[29] Liu S, Luo D, Yang HG, Shi ZM, Liu QL, Zhang L, Kang Y, Ma Q (2018). Fine root biomass, productivity and turnover of Abies faxoniana primary forest in subalpine region of western Sichuan, China. Chinese Journal of Ecology, 37, 987-993.
[29] [ 刘顺, 罗达, 杨洪国, 史作民, 刘千里, 张利, 康英, 马青 (2018). 川西亚高山岷江冷杉原始林细根生物量、生产力和周转. 生态学杂志, 37, 987-993.]
[30] Liu Y, Li P, Xu Y, Shi SL, Ying LX, Zhang WJ, Peng PH, Shen ZH (2016a). Quantitative classification and ordination for plant communities in dry valleys of southwest China. Biodiversity Science, 24, 378-388.
[30] [ 刘晔, 李鹏, 许玥, 石松林, 应凌霄, 张婉君, 彭培好, 沈泽昊 (2016a). 中国西南干旱河谷植物群落的数量分类和排序分析. 生物多样性, 24, 378-388.]
[31] Liu Y, Xu Y, Shi SL, Peng PH, Shen ZH (2016b). Quantitative classification and environmental interpretations for the structural differentiation of the plant communities in the dry valley of Jinshajiang River. Biodiversity Science, 24, 407-420.
[31] [ 刘晔, 许玥, 石松林, 彭培好, 沈泽昊 (2016b). 金沙江干旱河谷植物群落的数量分类及其结构分异的环境解释. 生物多样性, 24, 407-420.]
[32] Lu ZL, Gong XS (2009). Progress on the research of shrub biomass estimation. Forest Inventory and Planning, 34, 37-40.
[32] [ 卢振龙, 龚孝生 (2009). 灌木生物量测定的研究进展. 林业调查规划, 34, 37-40.]
[33] Ma AN, Yu GR, He NP, Wang QF, Peng SL (2014). Above- and below-ground biomass relationships in Chinaʼs grassland vegetation. Quaternary Sciences, 34, 769-776.
[33] [ 马安娜, 于贵瑞, 何念鹏, 王秋凤, 彭舜磊 (2014). 中国草地植被地上和地下生物量的关系分析. 第四纪研究, 34, 769-776.]
[34] Ma WH, He JS, Yang YH, Wang XP, Liang CZ, Anwar M, Zeng H, Fang JY, Schmid B (2010). Environmental factors covary with plant diversity-productivity relationships among Chinese grassland sites. Global Ecology and Biogeography, 19, 233-243.
[35] Ma WH, Yang YH, He JS, Zeng H, Fang JY (2008). Above- and belowground biomass in relation to environmental factors in temperate grasslands, Inner Mongolia. Science in China Series C: Life Sciences, 51, 263-270.
[36] Maestre FT, Bautista S, Cortina J (2003). Positive, negative, and net effects in grass-shrub interactions in Mediterranean semiarid grasslands. Ecology, 84, 3186-3197.
[37] Nie XQ, Yang LC, Li CB, Zhou GY (2016). Patterns of biomass partitioning across alpine shrubs in the Three-river Source Region. Chinese Journal of Applied and Environmental Biology, 22, 538-545.
[37] [ 聂秀青, 杨路存, 李长斌, 周国英 (2016). 三江源地区高寒灌丛生物量空间分布格局. 应用与环境生物学报, 22, 538-545.]
[38] Palpurina S, Wagner V, von Wehrden H, Hájek M, Horsák M, Brinkert A, Hölzel N, Wesche K, Kamp J, Hájková P, Danihelka J, Lustyk P, Merunková K, Preislerová Z, Kočí M, et al. (2017). The relationship between plant species richness and soil pH vanishes with increasing aridity across Eurasian dry grasslands. Global Ecology and Biogeography, 26, 425-434.
[39] Pugnaire FI, Valladares F (2007). Functional Plant Ecology. 2nd ed. CRC Press, Boca Raton, USA. 435-447.
[40] Qi YL, Wei W, Chen CG, Chen LD (2019). Plant root-shoot biomass allocation over diverse biomes: a global synthesis. Global Ecology and Conservation, 18, e00606. DOI: 10.1016/j.gecco.2019.
[41] Sala OE, Parton WJ, Joyce LA, Lauenroth WK (1988). Primary production of the central grassland region of the United States. Ecology, 69, 40-45.
[42] Scolforo HF, Scolforo JRS, Mello CR, Mello JM, Ferraz Filho AC, (2015). Spatial distribution of aboveground carbon stock of the arboreal vegetation in Brazilian biomes of Savanna, Atlantic Forest and Semi-arid woodland. PLOS ONE, 10, e0128781. DOI: 10.1371/journal.pone.0128781.
[43] Shen ZH (2016). Plant diversity in the dry valleys of Southwest China: spatial deviation and determinants for flora and plant communities. Biodiversity Science, 24, 363-366.
[43] [ 沈泽昊 (2016). 中国西南干旱河谷的植物多样性: 区系和群落结构的空间分异与成因. 生物多样性, 24, 363- 366.]
[44] Shen ZH, Zhang ZM, Hu JM, Han J, Yang JD, Ying LX (2016). Protection and utilization of plant biodiversity resources in dry valleys of Southwest China. Biodiversity Science, 24, 475-488.
[44] [ 沈泽昊, 张志明, 胡金明, 韩杰, 杨济达, 应凌霄 (2016). 西南干旱河谷植物多样性资源的保护与利用. 生物多样性, 24, 475-488.]
[45] Tang LT, Zi HB, Hu L, Ade LJ, Wang CT (2019). Forest biomass and its influencing factors in Qinghai Province. Acta Ecologica Sinica, 39, 3677-3686.
[45] [ 唐立涛, 字洪标, 胡雷, 阿的鲁骥, 王长庭 (2019). 青海省森林细根生物量及其影响因子. 生态学报, 39, 3677-3686.]
[46] Wang B, Zha TS, Jia X, Wu B, Zhang YQ, Qin SG (2014). Soil moisture modifies the response of soil respiration to temperature in a desert shrub ecosystem. Biogeosciences, 11, 259-268.
[47] Xie ZQ, Tang ZY, Liu Q, Xu WT (2019). Carbon Budget of Shrub Ecosystems in China. Science Press, Beijing.
[47] [ 谢宗强, 唐志尧, 刘庆, 徐文婷 (2019). 中国灌丛生态系统碳收支研究. 科学出版社, 北京.]
[48] Xu MJ, Ji HB, Zhuang SY (2018). Carbon stock of Moso bamboo (Phyllostachys pubescens) forests along a latitude gradient in the subtropical region of China. PLOS ONE, 13, e0193024. DOI: 10.1371/journal.pone.0193024.
[49] Zhang DQ, Hui DF, Luo YQ, Zhou GY (2008). Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology, 1, 85-93.
[50] Zhang H, Wang KL, Xu XL, Song TQ, Xu YF, Zeng FP (2015). Biogeographical patterns of biomass allocation in leaves, stems, and roots in China’s forests. Scientific Reports, 5, 15997. DOI: 10.1038/srep15997.
[51] Zhang JY, Liu TX, Luo YY, Duan LM, Li W, Yang L, Scharaw B (2020). Temporal and spatial distribution of aboveground biomass of vegetation and quantitative analysis of impact factors in semi-arid grassland basin. Chinese Journal of Ecology, 39, 364-375.
[51] [ 张俊怡, 刘廷玺, 罗艳云, 段利民, 李玮, 杨璐, Scharaw B (2020). 半干旱草原型流域植被地上生物量时空分布特征及其影响因子. 生态学杂志, 39, 364-375.]
[52] Zhang RZ (1992). The Dry Valleys of the Hengduan Mountains Region. Science Press, Beijing.
[52] [ 张荣祖 (1992). 横断山区干旱河谷. 科学出版社, 北京.]
[53] Zhang Y, Chen HYH, Taylor AR (2017). Positive species diversity and above-ground biomass relationships are ubiquitous across forest strata despite interference from overstorey trees. Functional Ecology, 31, 419-426.
文章导航

/

005-264X/bottom_cn.htm"-->