温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系
收稿日期: 2022-01-06
录用日期: 2022-04-28
网络出版日期: 2022-05-02
基金资助
国家自然科学基金(32071533)
Leaf economics spectrum of broadleaved seedlings and its relationship with defense traits in a temperate forest
Received date: 2022-01-06
Accepted date: 2022-04-28
Online published: 2022-05-02
Supported by
National Natural Science Foundation of China(32071533)
植物叶片功能性状之间的权衡关系一直是生态学研究的热点问题。其中叶经济谱相关性状的研究较多, 但叶片防御性状方面的研究, 尤其是幼苗阶段的研究较少。该研究以黑龙江凉水国家级自然保护区典型阔叶红松(Pinus koraiensis)林和谷地云冷杉林内共有的8种阔叶乔木和11种阔叶灌木物种的幼苗叶片为研究对象, 通过测定5个叶经济谱性状和4个叶片防御性状, 分析了叶性状在不同生活型、林型间的差异以及性状之间的协调关系。结果表明: 所有叶片性状在乔木和灌木幼苗之间不存在显著差异, 谷地云冷杉林中的幼苗的叶总酚含量和单宁含量显著高于阔叶红松林中的幼苗, 其原因为谷地云冷杉林林下光照强度弱于阔叶红松林, 且空气和土壤湿度较高, 该环境更有利于自然天敌的聚集, 可能有更强的天敌破坏效应, 而这种更强的生物相互作用反过来驱动幼苗提高其防御能力; 幼苗叶绿素含量与比叶面积呈极显著正相关关系, 与叶氮含量、叶磷含量呈显著正相关关系; 幼苗叶氮含量与叶磷含量呈显著正相关关系; 幼苗叶防御性状之间呈显著正相关关系; 幼苗叶绿素含量与叶总酚含量、单宁含量和类黄酮含量呈显著负相关关系, 叶氮含量与叶总酚含量、单宁含量呈显著负相关关系, 与类黄酮含量呈极显著负相关关系; 说明幼苗叶经济谱性状与防御性状之间存在权衡关系, 即对叶片碳代谢性状的更多投资意味着对叶防御性状更少的投资; 乔、灌木幼苗具有相似的资源利用策略。
程思祺, 姜峰, 金光泽 . 温带森林阔叶植物幼苗叶经济谱及其与防御性状的关系[J]. 植物生态学报, 2022 , 46(6) : 678 -686 . DOI: 10.17521/cjpe.2022.0005
Aims Understanding the trade-offs between leaf functional traits has long been a hot topic in ecological research.
Methods In a broadleaved Korean pine (Pinus koraiensis) forest and a spruce-fir valley forest in the Liangshui National Nature Reserve, Heilongjiang Province, we measured 5 leaf economic traits and 4 leaf defense traits for seedlings of 8 tree species and 11 shrub species, to evaluate trait variation across species life forms and forest types, as well as trait correlations.
Important findings There was no significant difference in leaf traits between the seedlings of trees and shrubs. The total phenolic content and tannin content of plants in the spruce-fir valley forest were significantly higher than those in broadleaved Korean pine forest. Compared with broadleaved Korean pine forest, the spruce-fir valley forest has lower under-canopy light intensity but higher air and soil moisture, which is more conducive to the aggregation of natural enemies. This stronger biological interaction may in turn drives seedlings to invest more on their defense traits in spruce-fir forest. Leaf chlorophyll content was positively correlated with specific leaf area, leaf nitrogen and phosphorus content. Leaf nitrogen content was positively correlated with leaf phosphorus content. Moreover, there was a significant and positive correlation between leaf defense traits. Leaf chlorophyll and nitrogen content were negatively correlated with total phenolic content, tannin content and content of flavonoids. This suggests the existence of a trade-off between leaf carbon economics and defense. The seedlings of trees and shrubs had similar carbon economics strategies. The results of this study have implications for predicting forest dynamics and community composition based on leaf functional traits.
[1] | Abdala-Roberts L, Galmán A, Petry WK, Covelo F, de la Fuente M, Glauser G, Moreira X (2018). Interspecific variation in leaf functional and defensive traits in oak species and its underlying climatic drivers. PLOS ONE, 13, e202548. DOI: 10.1371/journal.pone.0202548. |
[2] | Barbehenn RV, Constabel CP (2011). Tannins in plant-herbivore interactions. Phytochemistry, 72, 1551-1565. |
[3] | Berenbaum MR, Zangerl AR (1996). Phytochemical Diversity and Redundancy in Ecological Interactions. Springer, Boston, USA. |
[4] | Betsi AN, Tchicaya ES, Koudou BG (2012). Forte prolifération de larves d'An. gambiae et An. funestus en milieux rizicoles irrigués et non irrigués dans la région forestière ouest de la Côte-d'Ivoire. Bulletin de la Société de Pathologie Exotique, 105, 220-229. |
[5] | Chauvin KM, Asner GP, Martin RE, Kress WJ, Wright SJ, Field CB (2018). Decoupled dimensions of leaf economic and anti-herbivore defense strategies in a tropical canopy tree community. Oecologia, 186, 765-782. |
[6] | Clarke PJ (2002). Experiments on tree and shrub establishment in temperate grassy woodlands: seedling survival. Austral Ecology, 27, 606-615. |
[7] | Coley PD, Bryant JP, Chapin III FS (1985). Resource availability and plant antiherbivore defense. Science, 230, 895-899. |
[8] | Du XJ, Guo QF, Gao XM, Ma KP (2007). Seed rain, soil seed bank, seed loss and regeneration of Castanopsis fargesii (Fagaceae) in a subtropical evergreen broad-leaved forest. Forest Ecology and Management, 238, 212-219. |
[9] | Fan JP (2006). Study on the Extraction and Separation of the Active Components in the Leaves of Diospyros kaki. PhD dissertation, Zhejiang University, Hangzhou. 70-72. |
[9] | [范杰平 (2006). 柿叶中有效成分的提取与分离研究. 博士学位论文, 浙江大学, 杭州. 70-72.] |
[10] | Gao LH, Sun H, Bai XK, Dai S, Fan YW, Liu C, Wang XP, Yin WL (2020). Effects of climate and phylogeny on the relationship between specific leaf area and leaf element concentration of trees and shrubs in Changbai Mountain of northeastern China. Journal of Beijing Forestry University, 42(2), 19-30. |
[10] | [高林浩, 孙晗, 白雪卡, 代爽, 樊艳文, 刘超, 王襄平, 尹伟伦 (2020). 气候、系统发育对长白山乔灌木比叶面积与叶元素含量关系的影响. 北京林业大学学报, 42(2), 19-30.] |
[11] | Garnier E, Laurent G (1994). Leaf anatomy, specific mass and water content in congeneric annual and perennial grass species. New Phytologist, 128, 725-736. |
[12] | Han WX, Fang JY, Guo DL, Zhang Y (2005). Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytologist, 168, 377-385. |
[13] | Jiang Y, Zang RG, Lu XH, Huang YF, Ding Y, Liu WD, Long WD, Zhang JY, Zhang ZD (2015). Effects of soil and microclimatic conditions on the community-level plant functional traits across different tropical forest types. Plant and Soil, 390, 351-367. |
[14] | Klipel J, Bergamin RS, Seger GDDS, Carlucci MB, Müller SC (2021). Plant functional traits explain species abundance patterns and strategies shifts among saplings and adult trees in Araucaria forests. Austral Ecology, 46, 1084-1096. |
[15] | Koricheva J (2002). Meta-analysis of sources of variation in fitness costs of plant antiherbivore defenses. Ecology, 83, 176-190. |
[16] | Lavorel S, Garnier E (2002). Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology, 16, 545-556. |
[17] | Liu XJ, Ma KP (2015). Plant functional traits-Concepts, applications and future directions. Scientia Sinica (Vitae), 45, 325-339. |
[17] | [刘晓娟, 马克平 (2015). 植物功能性状研究进展. 中国科学: 生命科学, 45, 325-339.] |
[18] | Luo HT, Xu MY, Jia XD, Zhai M, Li YR, Xuan JP, Zhang JY, Guo ZR (2018). Analyses on phenolics content and difference in antioxidant ability of kernel of Carya illinoinensis and superior individuals screening. Journal of Plant Resources and Environment, 27(4), 63-71. |
[18] | [罗会婷, 许梦洋, 贾晓东, 翟敏, 李永荣, 宣继萍, 张计育, 郭忠仁 (2018). 薄壳山核桃种仁中酚类成分含量和抗氧化能力差异分析及优株筛选. 植物资源与环境学报, 27(4), 63-71.] |
[19] | Makkar HPS, Blümmel M, Borowy NK, Becker K (1993). Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. Journal of the Science of Food and Agriculture, 61, 161-165. |
[20] | Modrzyński J, Chmura DJ, Tjoelker MG (2015). Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species. Tree Physiology, 35, 879-893. |
[21] | Oren R, Schulze ED, Matyssek R, Zimmermann R (1986). Estimating photosynthetic rate and annual carbon gain in conifers from specific leaf weight and leaf biomass. Oecologia, 70, 187-193. |
[22] | Ossipov V, Loponen J, Ossipova S, Haukioja E, Pihlaja K (1997). Gallotannins of birch Betula pubescens leaves: HLPC separation and quantification. Biochemical Systematics Ecology, 25, 493-504. |
[23] | Poorter H, Evans JR (1998). Photosynthetic nitrogen-use efficiency of species that differ inherently in specific leaf area. Oecologia, 116, 26-37. |
[24] | Porter LJ, Hrstich LN, Chan BG (1986). The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry, 25, 223-230. |
[25] | Reich PB, Walters MB, Ellsworth DS (1997). From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences of the United States of America, 94, 13730-13734. |
[26] | Reich PB, Walters MB, Ellsworth DS, Vose JM, Volin JC, Gresham C, Bowman WD (1998). Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups. Oecologia, 114, 471-482. |
[27] | Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB (2003). The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences, 164, S143-S164. |
[28] | Tripathi S, Bhadouria R, Srivastava P, Devi RS, Chaturvedi R, Raghubanshi AS (2020). Effects of light availability on leaf attributes and seedling growth of four tree species in tropical dry forest. Ecological Proce sses, 9, 2. DOI: 10.1186/s13717-019-0206-4. |
[29] | Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007). Let the concept of trait be functional! Oikos, 116, 882-892. |
[30] | Wang L, Han XH, Yin QL, Wang GX, Xu JS, Chai YF, Yue M (2021). Differences in leaf phenological traits between trees and shrubs are closely related to functional traits in a temperate forest. Acta Oecologica, 112, 103760. DOI: 10.1016/j.actao.2021.103760. |
[31] | Wang XF, Gao WQ, Liu JF, Ni YY, Jiang ZP (2015). Plant defensive strategies and environment-driven mechanisms. Chinese Journal of Ecology, 34, 3542-3552. |
[31] | [王小菲, 高文强, 刘建锋, 倪妍妍, 江泽平 (2015). 植物防御策略及其环境驱动机制. 生态学杂志, 34, 3542-3552.] |
[32] | Wang XJ, Zhang K, Xiao D, Hou JH (2015). Leaf traits and their interrelationships of main plant species in Liangshui natural broadleaved Korean pine mixed forest. Journal of Central South University of Forestry & Technology, 35(9), 52-58. |
[32] | [王晓洁, 张凯, 肖迪, 侯继华 (2015). 凉水天然红松阔叶混交林主要植物叶片性状相互关系研究. 中南林业科技大学学报, 35(9), 52-58.] |
[33] | Wei YX, Liu PF, Du QX, Du HY (2016). Comparison in contents of polyphenol and flavonoid in leaves of Eucommia ulmoides germplasm. Forest Research, 29, 529-535. |
[33] | [魏艳秀, 刘攀峰, 杜庆鑫, 杜红岩 (2016). 不同种质杜仲叶中多酚和黄酮含量差异性分析. 林业科学研究, 29, 529-535.] |
[34] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[35] | Wright SJ, Kitajima K, Kraft NJB, Reich PB, Wright IJ, Bunker DE, Condit R, Dalling JW, Davies SJ, Díaz S, Engelbrecht BMJ, Harms KE, Hubbell SP, Marks CO, Ruiz-Jaen MC, Salvador CM, Zanne AE (2010). Functional traits and the growth-mortality trade-off in tropical trees. Ecology, 91, 3664-3674. |
[36] | Xu LN, Jin GZ (2012). Species composition and community structure of a typical mixed broadleaved-Korean pine (Pinus koraiensis) forest plot in Liangshui Nature Reserve, Northeast China. Biodiversity Science, 20, 470-481. |
[36] | [徐丽娜, 金光泽 (2012). 小兴安岭凉水典型阔叶红松林动态监测样地:物种组成与群落结构. 生物多样性, 20, 470- 481.] |
[37] | Xue L, Cao H (2010). Changes of leaf traits of plants under stress resistance. Ecology and Environmental Sciences, 19, 2004-2009. |
[37] | [薛立, 曹鹤 (2010). 逆境下植物叶性状变化的研究进展. 生态环境学报, 19, 2004-2009.] |
[38] | Xun YH, Di XY, Jin GZ (2020). Vertical variation and economic strategy of leaf trait of major tree species in a typical mixed broadleaved-Korean pine forest. Chinese Journal of Plant Ecology, 44, 730-741. |
[38] | [荀彦涵, 邸雪颖, 金光泽 (2020). 典型阔叶红松林主要树种叶性状的垂直变异及经济策略. 植物生态学报, 44, 730-741.] |
[39] | Yang CQ, Yang WY, Liu J (2018). Advances on chemical ecology of plant flavonoids. Natural Product Research and Development, 30, 2009-2016. |
[39] | [杨才琼, 杨文钰, 刘江 (2018). 植物类黄酮的化学生态学意义. 天然产物研究与开发, 30, 2009-2016.] |
[40] | Yu HL, Fan JW, Li YZ (2017). Foliar carbon, nitrogen, and phosphorus stoichiometry in a grassland ecosystem along the Chinese grassland transect. Acta Ecologica Sinica, 37, 133-139. |
[41] | Yu HY, Chen YT, Xu ZZ, Zhou GS (2014). Analysis of relationships among leaf functional traits and economics spectrum of plant species in the desert steppe of Nei Mongol. Chinese Journal of Plant Ecology, 38, 1029-1040. |
[41] | [于鸿莹, 陈莹婷, 许振柱, 周广胜 (2014). 内蒙古荒漠草原植物叶片功能性状关系及其经济谱分析. 植物生态学报, 38, 1029-1040.] |
[42] | Zhang M, Mi XC, Jin GZ (2014). Composition and spatial patterns of the Liangshui spruce-fir valley forest in the Xiao Hinggan Mountains. Chinese Science Bulletin, 59, 2377- 2391. |
[42] | [张觅, 米湘成, 金光泽 (2014). 小兴安岭凉水谷地云冷杉林群落组成与空间格局. 科学通报, 59, 2377- 2391.] |
[43] | Zhou G, Xu WZ, Wan J, Wang YN, Liu LT, Liu QJ (2021). Seasonal dynamics of energy and nutrients of Pinus koraiensis seedlings in different successional stages of broadleaved Korean pine forest in Changbai Mountain, China. Chinese Journal of Applied Ecology, 32, 1663-1672. |
[43] | [周光, 徐玮泽, 万静, 汪雁楠, 刘丽婷, 刘琪璟 (2021). 长白山阔叶红松林不同演替阶段林下红松幼苗能量与养分季节动态. 应用生态学报, 32, 1663-1672.] |
/
〈 |
|
〉 |