研究论文

模拟增温改变青藏高原植物繁殖物候及植株高度

展开
  • 1中国科学院西北高原生物研究所, 青海海北高寒草地生态系统国家野外科学观测研究站, 高原生物适应与进化重点实验室, 西宁 810008
    2北京大学城市与环境学院, 地表过程分析与模拟重点实验室, 北京 100871
    3青海大学生态环境工程学院, 西宁 810016
    4中国科学院大学, 北京 100049
张振华:ORCID:0000-0002-1862-0473(zhenhua@nwipb.cas.cn)

收稿日期: 2021-12-06

  录用日期: 2022-04-20

  网络出版日期: 2022-06-09

基金资助

国家自然科学基金(31971467);国家自然科学基金(31630009);第二次青藏高原综合科学考察研究项目(2019QZKK0302)

Experimental warming changed reproductive phenology and height of alpine plants on the Qingzang Plateau

Expand
  • 1Qinghai Haibei National Field Research Station of Alpine Grassland Ecosystem, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
    2Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
    3College of Eco-Environmental Engineering, Qinghai University, Xining 810016, China
    4University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2021-12-06

  Accepted date: 2022-04-20

  Online published: 2022-06-09

Supported by

National Natural Science Foundation of China(31971467);National Natural Science Foundation of China(31630009);Second Tibetan Plateau Scientific Expedition and Research (STEP) Program of China(2019QZKK0302)

摘要

气候变化显著影响了高寒植物物候期及生长模式, 从而改变了高寒生态系统功能。而高寒植物物候期和生长状况对气候变化的响应程度, 与其自身资源分配策略有关。为了更好地探究气候变化下高寒植物繁殖物候及生长的规律, 该研究以青藏高原高寒草甸为研究对象, 按生物量从高到低选取15种常见植物, 其生物量之和占样地总生物量80%以上, 采用红外辐射器模拟增温的方法, 利用同质园实验, 观测无种间竞争条件下, 增温2年间植物返青、现蕾、开花以及结实物候, 并监测了植株高度。研究结果表明: (1)在功能群水平上, 增温使豆科类植物的返青、现蕾和开花时间分别显著提前了(8.21 ± 1.81)、(9.14 ± 2.41)和(10.14 ± 2.05) d, 使其开花持续时间显著延长了(6.14 ± 1.52) d, 而增温对其他功能群物候事件无显著影响。增温对高寒植物物候的影响存在种间及年际间差异, 但总体上增温使大多数高寒植物繁殖物候提前并且开花持续时间延长, 将更多的资源更多地分配到繁殖生长上。(2)增温显著降低了杂类草植物的植株高度(平均降低(3.58 ± 0.96) cm), 但对豆科类、禾草类及莎草类功能群植株高度没有显著影响。 增温对高寒植物植株高度的影响存在显著的种间差异以及年际差异。综上所述, 未来气候变暖背景下, 青藏高原高寒植物群落可能更早进入繁殖阶段, 从而降低在营养生长上的资源分配。另外, 由于各物种繁殖能力和营养生长对温度变化响应的差异, 气候变暖将导致高寒植物群落中各物种盖度的变化, 进而改变群落物种组成, 从而影响高寒生态系统的功能。

本文引用格式

魏瑶, 马志远, 周佳颖, 张振华 . 模拟增温改变青藏高原植物繁殖物候及植株高度[J]. 植物生态学报, 2022 , 46(9) : 995 -1004 . DOI: 10.17521/cjpe.2021.0450

Abstract

Aims Climate change is significantly altering the phenology and growth pattern of alpine plants related to their resource allocation strategies, thereby changing the functioning of alpine ecosystems. The aim of this study is to explore responses of reproductive phenology and vegetative growth of alpine plants to climate warming on the Qingzang Plateau.

Methods Experimental warming was achieved using infrared heating. From 2017 to 2018, we measured the reproductive phenology (leaf out, flower bud, flower and fruit time) and maximum height of 15 common alpine plants (account more than 80% of the total above biomass) under non-competitive condition via common garden experiment.

Important findings Our results showed that: (1) Experimental warming significantly advanced the leaf out, flower bud and first flowering day of legumes by (8.21 ± 1.81), (9.14 ± 2.41) and (10.14 ± 2.05) d, respectively. In addition, warming significantly prolonged the flowering duration of legumes by (6.14 ± 1.52) d. This result implied that different functional groups showed different responses under warming. The reproductive phenology of most alpine plants advanced, and the flowering duration was prolonged under warming, suggesting that more resources was allocated to reproductive growth. (2) In addition, experimental warming significantly reduced the height of forbs by (3.58 ± 0.96) cm, but not of other functional groups. Different species have differential responses to warming in different year. In summary, the alpine plant community on the Qingzang Plateau may start the reproductive stage earlier, hence reducing the resource allocation for vegetative growth under future warming conditions. In addition, due to different responses of the reproductive capacity and vegetative growth of various species to temperature change, climate warming may change the coverage of various species, and then alter the composition of species in the community, and then change the function of alpine ecosystem.

参考文献

[1] álvarez-Cansino L, Zunzunegui M, Díaz Barradas MC, Esquivias MP (2010). Gender-specific costs of reproduction on vegetative growth and physiological performance in the dioecious shrub Corema album. Annals of Botany, 106, 989-998.
[2] Bjorkman AD, Myers-Smith IH, Elmendorf SC, Normand S, Rüger N, Beck PSA, Blach-Overgaard A, Blok D, Cornelissen JHC, Forbes BC, Georges D, Goetz SJ, Guay KC, Henry GHR, HilleRisLambers J, et al. (2018). Plant functional trait change across a warming tundra biome. Nature, 562, 57-62.
[3] Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007). Shifting plant phenology in response to global change. Trends in Ecology & Evolution, 22, 357-365.
[4] Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, B?nisch G, Westoby M, Poorter H, Reich PB, et al. (2016). The global spectrum of plant form and function. Nature, 529, 167-171.
[5] Dorji T, Hopping KA, Meng FD, Wang SP, Jiang LL, Klein JA (2020). Impacts of climate change on flowering phenology and production in alpine plants: the importance of end of flowering. Agriculture, Ecosystems & Environment, 291, 106795. DOI: 10.1016/j.agee.2019.106795.
[6] Dorji T, Totland ?, Moe SR, Hopping KA, Pan JB, Klein JA (2013). Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Global Change Biology, 19, 459-472.
[7] Fitchett JM, Grab SW, Thompson DI (2015). Plant phenology and climate change: progress in methodological approaches and application. Progress in Physical Geography, 39, 460-482.
[8] [IPCC (The Intergovernmental Panel on Climate Change)(2021). Climate Change 2021: The Physical Science Basis: Summary for Policymakers. [2021-11-28]. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf.
[9] Jiang LL, Wang SP, Meng FD, Duan JC, Niu HS, Xu GP, Zhu XX, Zhang ZH, Luo CY, Cui SJ, Li YM, Li XE, Wang Q, Zhou Y, Bao XY, et al. (2016). Relatively stable response of fruiting stage to warming and cooling relative to other phenological events. Ecology, 97, 1961-1969.
[10] Klein JA, Harte J, Zhao XQ (2008). Decline in medicinal and forage species with warming is mediated by plant traits on the Tibetan Plateau. Ecosystems, 11, 775-789.
[11] K?rner C (1998). A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115, 445-459.
[12] K?rner C (2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Springer, Heidelberg, Germany.
[13] Li P, Liu ZL, Zhou XL, Xie BG, Li ZW, Luo YP, Zhu QA, Peng CH (2021). Combined control of multiple extreme climate stressors on autumn vegetation phenology on the Tibetan Plateau under past and future climate change. Agricultural and Forest Meteorology, 308-309, 108571. DOI: 10.1016/j.agrformet.2021.108571.
[14] Li XE, Jiang LL, Meng FD, Wang SP, Niu HS, Iler AM, Duan JC, Zhang ZH, Luo CY, Cui SJ, Zhang LR, Li YM, Wang Q, Zhou Y, Bao XY, et al. (2016). Responses of sequential and hierarchical phenological events to warming and cooling in alpine meadows. Nature Communications, 7, 12489. DOI: 10.1038/ncomms12489.
[15] Liu HY, Mi ZR, Lin L, Wang YH, Zhang ZH, Zhang FW, Wang H, Liu LL, Zhu B, Cao GM, Zhao XQ, Sanders NJ, Classen AT, Reich PB, He JS (2018). Shifting plant species composition in response to climate change stabilizes grassland primary production. Proceedings of the National Academy of Sciences of the United States of America, 115, 4051-4056.
[16] Ma ZY (2020). The Effects of Climate Change on Plant Community Diversity and Ecosystem Function in an Alpine Grassland on the Tibetan Plateau. PhD dissertation, Peking University, Beijing. 102-119.
[16] [ 马志远 (2020). 气候变化对高寒草地植物群落多样性和生态系统功能的影响.博士学位论文, 北京大学, 北京. 102-119.]
[17] Ma ZY, Liu HY, Mi ZR, Zhang ZH, Wang YH, Xu W, Jiang L, He JS (2017). Climate warming reduces the temporal stability of plant community biomass production. Nature Communications, 8, 15378. DOI: 10.1038/ncomms15378.
[18] Meng FD, Jiang LL, Zhang ZH, Cui SJ, Duan JC, Wang SP, Luo CY, Wang Q, Zhou Y, Li XE, Zhang LR, Li BW, Dorji T, Li YN, Du MY (2017). Changes in flowering functional group affect responses of community phenological sequences to temperature change. Ecology, 98, 734-740.
[19] Molau U (1993). Relationships between flowering phenology and life history strategies in tundra plants. Arctic and Alpine Research, 25, 391. DOI: 10.2307/1551922.
[20] Park T, Chen C, Macias-Fauria M, T?mmervik H, Choi S, Winkler A, Bhatt US, Walker DA, Piao SL, Brovkin V, Nemani RR, Myneni RB (2019). Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Global Change Biology, 25, 2382-2395.
[21] Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE, Urcelay C, Veneklaas EJ, Reich PB, Poorter L, Wright IJ, et al. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61, 167-234.
[22] Reich PB, Sendall KM, Rice KR, Rich RL, Stefanski A, Hobbie SE, Montgomery RA (2015). Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species. Nature Climate Change, 5, 148-152.
[23] Shen MG, Piao SL, Dorji T, Liu Q, Cong N, Chen XQ, An S, Wang SP, Wang T, Zhang GX (2015). Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. National Science Review, 2, 454-467.
[24] Shen ZX, Zhou XM, Chen ZZ, Zhou HK (2002). Response of plant groups to simulated rainfall and nitrogen supply in alpine Kobresia humilis meadow. Acta Phytoecologica Sinica, 26, 288-294.
[24] [沈振西, 周兴民, 陈佐忠, 周华坤 (2002). 高寒矮嵩草草甸植物类群对模拟降水和施氮的响应. 植物生态学报, 26, 288-294.]
[25] Suonan J, Classen AT, Sanders NJ, He JS (2019). Plant phenological sensitivity to climate change on the Tibetan Plateau and relative to other areas of the world. Ecosphere, 10, e02543. DOI: 10.1002/ecs2.2543.
[26] Suonan J, Classen AT, Zhang ZH, He JS (2017). Asymmetric winter warming advanced plant phenology to a greater extent than symmetric warming in an alpine meadow. Functional Ecology, 31, 2147-2156.
[27] Wang CY, Cheng HY, Wei M, Wang S, Wu BD, Du DL (2021). Plant height and leaf size: Which one is more important in affecting the successful invasion of Solidago canadensis and Conyza canadensis in urban ecosystems? Urban Forestry & Urban Greening, 59, 127033. DOI: 10.1016/j.ufug.2021.127033.
[28] Wang H, Liu HY, Cao GM, Ma ZY, Li YK, Zhang FW, Zhao X, Zhao XQ, Jiang L, Sanders NJ, Classen AT, He JS (2020). Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecology Letters, 23, 701-710.
[29] Wang SP, Duan JC, Xu GP, Wang YF, Zhang ZH, Rui YC, Luo CY, Xu B, Zhu XX, Chang XF, Cui XY, Niu HS, Zhao XQ, Wang WY (2012). Effects of warming and grazing on soil N availability, species composition, and ANPP in an alpine meadow. Ecology, 93, 2365-2376.
[30] Wang SP, Meng FD, Duan JC, Wang YF, Cui XY, Piao SL, Niu HS, Xu GP, Luo CY, Zhang ZH, Zhu XX, Shen MG, Li YN, Du MY, Tang YH, et al. (2014a). Asymmetric sensitivity of first flowering date to warming and cooling in alpine plants. Ecology, 95, 3387-3398.
[31] Wang SP, Wang CS, Duan JC, Zhu XX, Xu GP, Luo CY, Zhang ZH, Meng FD, Li YN, Du MY (2014b). Timing and duration of phenological sequences of alpine plants along an elevation gradient on the Tibetan Plateau. Agricultural and Forest Meteorology, 189- 190, 220-228.
[32] Wang XH, Piao SL, Ciais P, Li JS, Friedlingstein P, Koven C, Chen AP (2011). Spring temperature change and its implication in the change of vegetation growth in North America from 1982 to 2006. Proceedings of the National Academy of Sciences of the United States of America, 108, 1240-1245.
[33] Wang ZP, Zhang XZ, He YT, Shi PL, Zu JX, Niu B, Li M (2018). Effects of precipitation changes on the precipitation use efficiency and aboveground productivity of alpine steppe-meadow on northern Tibetan Plateau, China. Chinese Journal of Applied Ecology, 29, 1822-1828.
[33] [王志鹏, 张宪洲, 何永涛, 石培礼, 俎佳星, 牛犇, 李猛 (2018). 降水变化对藏北高寒草原化草甸降水利用效率及地上生产力的影响. 应用生态学报, 29, 1822-1828.]
[34] Xia JY, Niu SL, Ciais P, Janssens IA, Chen JQ, Ammann C, Arain A, Blanken PD, Cescatti A, Bonal D, Buchmann N, Curtis PS, Chen SP, Dong JW, Flanagan LB, et al. (2015). Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proceedings of the National Academy of Sciences of the United States of America, 112, 2788-2793.
[35] Xu W, Zhu MY, Zhang ZH, Ma ZY, Liu HY, Chen LT, Cao GM, Zhao XQ, Schmid B, He JS (2018). Experimentally simulating warmer and wetter climate additively improves rangeland quality on the Tibetan Plateau. Journal of Applied Ecology, 55, 1486-1497.
[36] Yu HY, Xu JC (2009). Effects of climate change on vegetations on Qinghai-Tibet Plateau: a review. Chinese Journal of Ecology, 28, 747-754.
[36] [于海英, 许建初 (2009). 气候变化对青藏高原植被影响研究综述. 生态学杂志, 28, 747-754.]
[37] Zhang L, Wang GX, Ran F, Peng AH, Xiao Y, Yang Y, Yang Y (2018). Experimental warming changed plants’ phenological sequences of two dominant species in an alpine meadow, western of Sichuan. Chinese Journal of Plant Ecology, 42, 20-27.
[37] [张莉, 王根绪, 冉飞, 彭阿辉, 肖瑶, 杨阳, 杨燕 (2018). 模拟增温改变川西高山草甸优势植物繁殖物候序列特征. 植物生态学报, 42, 20-27.]
[38] Zhao XQ, Zhou XM (1999). Ecological basis of alpine meadow ecosystem management in Tibet: Haibei alpine meadow ecosystem research station. Ambio, 28, 642-647.
[39] Zhu JT (2016). Effects of experimental warming on plant reproductive phenology in Xizang alpine meadow. Chinese Journal of Plant Ecology, 40, 1028-1036.
[39] [朱军涛 (2016). 实验增温对藏北高寒草甸植物繁殖物候的影响. 植物生态学报, 40, 1028-1036.]
文章导航

/