综述

樟子松固沙林林水关系研究进展及对营林实践的指导

展开
  • 1中国林业科学研究院生态保护与修复研究所, 中国林业科学研究院荒漠化研究所, 北京 100091
    2辽宁省沙地治理与利用研究所, 辽宁章古台科尔沁沙地生态系统国家定位观测研究站, 辽宁阜新 123000
    3陕西省治沙研究所, 陕西榆林毛乌素沙地荒漠生态系统国家定位观测研究站, 陕西榆林 719000
    4内蒙古红花尔基樟子松林国家级自然保护区管理局, 内蒙古呼伦贝尔 021112
    5甘肃省治沙研究所, 甘肃省荒漠化与风沙灾害防治国家重点实验室培育基地, 兰州 730070
党宏忠:ORCID:0000-0003-4428-3834 E-mail: hzdang@caf.ac.cn

收稿日期: 2022-02-18

  录用日期: 2022-05-05

  网络出版日期: 2022-07-15

基金资助

国家自然科学基金(32071836);国家自然科学基金(31570704);辽宁省自然科学基金项目(2019-MS-201);陕西省防护林建设科学技术研究项目(2020)

Research advances on forest-water relationships in Pinus sylvestris var. mongolica plantations for sand dune immobilization and guidance to forest management practices

Expand
  • 1Institute of Ecosystem Conservation and Restoration, Institute of Desertification Studies, Chinese Academy of Forestry, Beijing 100091, China
    2Institute of Sandyland Governance and Utilization of Liaoning, Zhanggutai Horqin Sandyland Ecosystem National Station, Fuxin, Liaoning 123000, China
    3Shaanxi Institute of Sand Control, Mau Us Sandy Land Ecosystem National Observation Station, Yulin, Shaanxi 719000, China
    4Honghuaerji Mongolian Scots Pine Plantation National Nature Reserve Administration, Hulun Buir, Nei Mongol 021112, China
    5Gansu Institute of Sand Control, State Key Laboratory Breeding Base of Desertification and Aeolian Sand Disaster Control, Lanzhou 730070, China

Received date: 2022-02-18

  Accepted date: 2022-05-05

  Online published: 2022-07-15

Supported by

National Natural Science Foundation of China(32071836);National Natural Science Foundation of China(31570704);Natural Science Foundation Project of Liaoning Province, China(2019-MS-201);Shaanxi Shelterbelt Construction Science and Technology Research Project(2020)

摘要

中国有着世界上最大面积的人工林, 如何维持人工林的可持续性已成为气候变化背景下需要面对的重大挑战。樟子松(Pinus sylvestris var. mongolica)以其抗旱、抗寒、耐贫瘠等优良特性成为中国北方生态治理中最主要的常绿针叶树种之一, 近70年来发挥了巨大的防风固沙与生态固碳功能。然而, 随着林分的生长与气候变化, 樟子松人工固沙林正经历着越来越严峻的环境胁迫, 部分地区出现了林分“早衰”或死亡的现象, 引起了人们对樟子松固沙林适应与应对气候变化能力的担忧。该文在回溯樟子松基本生物学特征与引种推广历史, 系统总结近年来樟子松林林水关系研究新成果的基础上, 全面分析了樟子松固沙林林水关系存在的主要矛盾, 并提出了基于林水关系相协调的林分经营措施的调整: 由倡导防护功能为主的单一目标向包含林分稳定性、生态固碳功能、可持续发展等多目标平衡方向调整; 由以沙地森林景观培育为主向以良好土壤生境培育为主的方向调整; 由倡导天然更新为主向以人工造林与天然更新相结合的世代更新方向调整。在立足于北方沙地脆弱生境与气候变化客观现实的基础背景下, 应坚持樟子松在固沙林生态系统演化过程中的先锋种与建群种地位, 基于“以水定绿”原则, 采取“隔行带伐+再造林”等方式开展林分密度动态调控, 促进林分向异龄林结构演化, 促进樟子松固沙林生态服务的优质化和生态固碳功能的最大化。

本文引用格式

党宏忠, 张学利, 韩辉, 石长春, 葛玉祥, 马全林, 陈帅, 刘春颖 . 樟子松固沙林林水关系研究进展及对营林实践的指导[J]. 植物生态学报, 2022 , 46(9) : 971 -983 . DOI: 10.17521/cjpe.2022.0068

Abstract

China has the largest area of tree plantations in the world, and how to maintain the long-term stability of plantations has become one of the major challenges in the context of climate change. Pinus sylvestris var. mongolica is one of the most important coniferous evergreen tree species in the well-known “Three-North” Shelterbelt Construction Program in China, due to its properties of tolerance to drought, low temperature, and open land condition. Afforestation with P. sylvestris var. mongolica in northern China provides great benefits to environmental protection and ecosystem carbon fixation. However, with the growth of the stands and the ongoing climate change, P. sylvestris var. mongolica plantations in a fragile habitat of sandy land have been subjected to increasingly severe water stresses. Typically, the phenomenon of premature dieback has occurred in some of the P. sylvestris var. mongolica plantations, such as at the sites of Zhanggutai in the southern edge of Horqin Sandy Land, which causes great concerns on the stability of the local ecosystems. Based on recollections of studies on the basic biological characteristics and introduction history of P. sylvestris var. mongolica, we summarized the recent research achievements in understanding the forest-water relationships in P. sylvestris var. mongolica plantations, and examined the main contradictions in the forest-water relationships in P. sylvestris var. mongolica plantations under the climate change scenario. We recommend adjustment of several stand management measures based on the compromised forest-water relationships: (1) turning the single goal for environmental protection into multi-objectives with balanced consideration for stand structural stability, carbon sequestration, and sustainable development; (2) adopting more measures for improving soil conditions rather than for developing forest landscapes; and (3) establishing the sustainable shelterbelts by combining afforestation with natural regeneration rather than by merely depending on natural regeneration processes. Based on the condition of fragile sandy land and climate change, we should still regard P. sylvestris var. mongolica as a pioneer and construction tree species. In consideration of the principle of “determining forest cover by water supply”, the uneven-aged forest stands can be established by conducting alternate-row harvesting followed by replanting. As a result, the environmental protection function and carbon sequestration capacity can be continuously improved, the ecological services and productivity can be maximized, and the biodiversity and stability of the ecosystem can be protected and guaranteed. The findings from this study can be of important values for guiding the systematic management of northern ecological shelterbelts.

参考文献

[1] Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, et al. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660-684.
[2] Bai XF, Han H, Zhou FY, Yang SJ, Liu BC, Lei ZY, Jin Z (2008). Analysis on dynamic change of relative water content and needle water conservation of Pinus sylvestris var. mongolica on sandy land. Protection Forest Science and Technology, (3), 51-53.
[2] [白雪峰, 韩辉, 周凤艳, 杨树军, 刘伯超, 雷泽勇, 金震 (2008). 沙地樟子松针叶保水力及相对含水量动态变化分析. 防护林科技, (3), 51-53.]
[3] Bao G (2015). Mongolian pines (Pinus sylvestris var. mongolica) in the Hulun Buir steppe, China, respond to climate in adjustment to the local water supply. International Journal of Biometeorology, 59, 1-10.
[4] Barbeta A, Mejía-Chang M, Ogaya R, Voltas J, Dawson TE, Pe?uelas J (2015). The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Global Change Biology, 21, 1213-1225.
[5] Chang CC, Turner BL (2019). Ecological succession in a changing world. Journal of Ecology, 107, 503-509.
[6] Chen C, Park T, Wang XH, Piao SL, Xu BD, Chaturvedi RK, Fuchs R, Brovkin V, Ciais P, Fensholt R, T?mmervik H, Bala G, Zhu ZC, Nemani RR, Myneni RB (2019). China and India lead in greening of the world through land-use management. Nature Sustainability, 2, 122-129.
[7] Chen LH, Li FX, Di XM, Zhang JX (1998). Eolian Sandy Soil in China. Science Press, Beijing.
[7] [陈隆亨, 李福兴, 邸醒民, 张继贤 (1998). 中国风砂土. 科学出版社, 北京.]
[8] Cook BI, Mankin JS, Anchukaitis KJ (2018). Climate change and drought: from past to future. Current Climate Change Reports, 4, 164-179.
[9] Dang HZ, Han H, Chen S, Li MY (2021). A fragile soil moisture environment exacerbates the climate change- related impacts on the water use by Mongolian Scots pine (Pinus sylvestris var. mongolica) in northern China: long- term observations. Agricultural Water Management, 251, 106857. DOI: 10.1016/j.agwat.2021.106857.
[10] Dang HZ, Lu P, Yang WB, Han H, Zhang J (2019a). Drought- induced reductions and limited recovery in the radial growth, transpiration, and canopy stomatal conductance of Mongolian Scots pine (Pinus sylvestris var. mongolica Litv.): a five-year observation. Forests, 10, 1143. DOI: 10.3390/f10121143.
[11] Dang HZ, Zhang LZ, Yang WB, Feng JC, Han H, Chen YB (2019b). Severe drought strongly reduces water use and its recovery ability of mature Mongolian Scots pine (Pinus sylvestris var. mongolica Litv.) in a semi-arid sandy environment of northern China. Journal of Arid Land, 11, 880-891.
[12] Fan XY, Liao CY, Xie Y, Gao BS (2008). Investigation and analysis on the growth of Pinus sylvestris var. momgolica in southeast Mu Us desert areas. Journal of Northwest Forestry University, 23(4), 112-116.
[12] [樊晓英, 廖超英, 谢燕, 高宝山 (2008). 毛乌素沙地东南部樟子松生长状况调查分析. 西北林学院学报, 23(4), 112-116.]
[13] Fang J, Wei YF, Liu S, Zhao XY, Li SG (2011). Stable isotopic analysis on water utilization sources of Pinus sylvestris var. mongolica plantations in inter-dune lowland in Horqin Sandy Land. Chinese Journal of Ecology, 30, 1894-1900.
[13] [方杰, 魏雅芬, 刘帅, 赵学勇, 李胜功 (2011). 科尔沁沙地丘间低地樟子松人工林水分利用来源的稳定同位素解析. 生态学杂志, 30, 1894-1900.]
[14] García-Valdés R, Estrada A, Early R, Lehsten V, Morin X (2020). Climate change impacts on long-term forest productivity might be driven by species turnover rather than by changes in tree growth. Global Ecology and Biogeography, 29, 1360-1372.
[15] Giuggiola A, Kuster T, Saha S (2010). Drought-induced mortality of Scots pines at the southern limits of its distribution in Europe: causes and consequences. iForest- Biogeosciences and Forestry, 3, 95-97.
[16] Han H, Bai XF, Xu GJ, Zhang BX, You GC, Shang SC (2012). Study on water balance of Pinus sylvestris var. mongolica planted forest in Zhanggutai area. Liaoning Forestry Science and Technology, (6), 8-11.
[16] [韩辉, 白雪峰, 徐贵军, 张柏习, 尤国春, 商胜才 (2012). 章古台地区樟子松人工林水量平衡初步研究. 辽宁林业科技, (6), 8-11.]
[17] Han H, Zhang XL, Dang HZ, Xu GJ, Zhang BX, You GC (2015). Study on proper stand density of Pinus sylvestris var. mongolica plantation in sandy land based on stem sap flow velocity. Forest Research, 28, 797-803.
[17] [韩辉, 张学利, 党宏忠, 徐贵军, 张柏习, 尤国春 (2015). 基于树干液流通量的沙地樟子松合理林分密度的确定. 林业科学研究, 28, 797-803.]
[18] Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004). Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia, 141, 254-268.
[19] Jean-Francois B, Yelena F, Claude G, Danilo M, Marcelo R, Devin R, Constantin MZ, Thomas WC (2019). The global tree restoration potential. Science, 365, 76-79.
[20] Jia WW, Li FR, Dong LH, Zhao X (2012). Carbon density and storage for Pinus sylvestris var. mongolica plantation based on compatible biomass models. Journal of Beijing Forestry University, 34(1), 6-13.
[20] [贾炜玮, 李凤日, 董利虎, 赵鑫 (2012). 基于相容性生物量模型的樟子松林碳密度与碳储量研究. 北京林业大学学报, 34(1), 6-13.]
[21] Jiang DM, Liu ZM, Cao CY, Kou ZW, Wang RY (2003). Desertification and Ecological Restoration of Horqin Sandy Land. China Environmental Science Press, Beijing. 515.
[21] [蒋德明, 刘志民, 曹成有, 寇振武, 王汝槦 (2003). 科尔沁沙地荒漠化过程与生态恢复. 中国环境科学出版社, 北京. 515.]
[22] Jiang FQ, Cao CY, Zeng DH (2002).Degradation and Restoration of Ecosystems in Horqin Sand Land. China Forestry Publishing House, Beijing. 282.
[22] [姜凤岐, 曹成有, 曾德慧 (2002). 科尔沁沙地生态系统退化与恢复.中国林业出版社, 北京. 282.]
[23] Jiang FQ, Yu ZY, Zeng DH, Zhu JJ (2009). Effects of climate change on the Three-north Shelter Forest Program and corresponding strategies. Chinese Journal of Ecology, 28, 1702-1705.
[23] [姜凤岐, 于占源, 曾德慧, 朱教君 (2009). 气候变化对三北防护林的影响与应对策略. 生态学杂志, 28, 1702-1705.]
[24] Jiang FQ, Zeng DH, Fan ZP, Zhu JJ (1996). Simulation of individual tree growth of Mongolian pine forest in sandy land. Chinese Journal of Applied Ecology, 7, 1-5.
[24] [姜凤岐, 曾德慧, 范志平, 朱教君 (1996). 沙地樟子松林草木生长的研究. 应用生态学报, 7, 1-5.]
[25] Jiang FQ, Zeng DH, Yu ZY (2006). Decline of protective forest and its prevention strategies from viewpoint of restoration ecology: taking Pinus sylvestris var. mongolica plantation in Zhanggutai as an example. Chinese Journal of Applied Ecology, 17, 2229-2235.
[25] [姜凤岐, 曾德慧, 于占源 (2006). 从恢复生态学视角透析防护林衰退及其防治对策: 以章古台地区樟子松林为例. 应用生态学报, 17, 2229-2235.]
[26] Jiao SR (1986). The influence of aridity on the growth of Mongolian pine plantation in Zhanggutai sandy land, Liaoning Province. Scientia Silvae Sinicae, 22, 419-425.
[26] [焦树仁 (1986). 干旱对章古台沙地樟子松人工林生长的影响. 林业科学, 22, 419-425.]
[27] Jiao SR (1987). Analysis of ecological benefit of windbreak and sand-fixation forest. Liaoning Forestry Science and Technology, (4), 46-51.
[27] [焦树仁 (1987). 防风固沙林的生态效益分析. 辽宁林业科技, (4), 46-51.]
[28] Jiao SR (2001). Causes and control measures of early decline of Pinus sylvestris var. mongolica sand-fixation forest in Zhanggutai, Liaoning Province. Scientia Silvae Sinicae, 37(2), 131-138.
[28] [焦树仁 (2001). 辽宁省章古台樟子松固沙林提早衰弱的原因与防治措施. 林业科学, 37(2), 131-138.]
[29] Jiao SR (2006). Study on distribution and succession process of the vegetations in sandy land in Zhanggutai, Liaoning Province of China. Protection Forest Science and Technology, (4), 11-13.
[29] [焦树仁 (2006). 辽宁省章古台沙地植被的分布状况与演替过程的研究. 防护林科技, (4), 11-13.]
[30] Jiao SR (2015). Relationship Between Water Condition and Growth and Stability of Sand Fixation Forest in Horqin Sandy Land. Liaoning University Press, Shenyang. 186.
[30] [焦树仁 (2015). 科尔沁沙地水分条件与固沙林生长和稳定的关系. 辽宁大学出版社, 沈阳. 186 ]
[31] Jiao SR, Xing ZK, Wu XY (2001). Study on early regeneration of Mongolian pine sand-fixation plantation in Zhanggutai. Journal of Liaoning Forestry Science and Technology, (2), 1-3.
[31] [焦树仁, 邢兆凯, 吴祥云 (2001). 辽宁省章古台樟子松固沙林更新的研究. 辽宁林业科技, (2), 1-3.]
[32] Leo M, Oberhuber W, Schuster R, Grams TEE, Matyssek R, Wieser G (2013). Evaluating the effect of plant water availability on inner alpine coniferous trees based on sap flow measurements. European Journal of Forest Research, 133, 691-698.
[33] Li CJ, Fu BJ, Wang S, Stringer LC, Wang YP, Li ZD, Liu YX, Zhou WX (2021). Drivers and impacts of changes in China’s drylands. Nature Reviews Earth & Environment, 2, 858-873.
[34] Li LL, Li LG, Chen ZJ, Zhou YB, Zhang XL, Bai XP, Chang YX, Xiao JQ (2015). Response of radial growth of Pinus sylvestris var. mongolica plantation to hydrothermal gradient in Liaoning Province. Acta Ecologica Sinica, 35, 4508-4517.
[34] [李露露, 李丽光, 陈振举, 周永斌, 张先亮, 白学平, 常永兴, 肖建强 (2015). 辽宁省人工林樟子松径向生长对水热梯度变化的响应. 生态学报, 35, 4508-4517.]
[35] Li MM, Ding GD, Gao GL, Zhao YY, Yu MH, Wang DY (2016). Introduction suitability of Pinus sylvestris var. mongholica in 10 northern provinces of China. Journal of Desert Research, 36, 1021-1028.
[35] [李蒙蒙, 丁国栋, 高广磊, 赵媛媛, 于明含, 王德英 (2016). 樟子松(Pinus sylvestris var. mongholica)在中国北方10省(区)引种的适宜性. 中国沙漠, 36, 1021-1028.]
[36] Li SG (1994). A preliminary study on adaptation of Mongolian Scots pine to sandy land. Journal of Desert Research, 14, 60-67.
[36] [李胜功 (1994). 樟子松沙地适应性的初步研究. 中国沙漠, 14, 60-67.]
[37] Li XR, He MZ, Duan ZH, Xiao HL, Jia XH (2007). Recovery of topsoil physicochemical properties in revegetated sites in the sand-burial ecosystems of the Tengger Desert, Northern China. Geomorphology, 88, 254-265.
[38] Li YC (2001). Three North Sheltbelt Construction: achievements, experiences, problems, and countermeasures. Forestry Economics, 23(5), 3-7.
[38] [李育材 (2001). 三北防护林建设: 成就、经验、问题及对策. 林业经济, 23(5), 3-7.]
[39] Liu F, Zhang YX, Ma YB, Dong LL, Yu XC, Huang YR (2015). Growth rhythm of Pinus sylvestris var. mongolica in the Ulan Buh Desert. Journal of Desert Research, 35, 1234-1238.
[39] [刘芳, 章尧想, 马迎宾, 董礼隆, 余新春, 黄雅茹 (2015). 乌兰布和沙漠绿洲樟子松(Pinus sylvestris var. mongolica)生长规律初探. 中国沙漠, 35, 1234-1238.]
[40] Liu GF, Yang CP, Yang SW, Xia DA, Zhang PG (1990). Adaptative scope of Pinus sylvestris var. mongolica as exotic species. Journal of Northeast Forestry University, 18(S2), 122-128.
[40] [刘桂丰, 杨传平, 杨书文, 夏德安, 张培杲(1990). 樟子松引种适生范围的研究. 东北林业大学学报, 18(S2), 122-128.]
[41] Liu Y, Linderholm H, Song HM, Cai QF, Tian QH, Sun JY, Chen DL, Simelton E, Seftigen K, Tian H, Wang RY, Bao G, An Z (2009). Temperature variations recorded in Pinus tabulaeformis tree rings from the southern and northern slopes of the central Qinling Mountains, central China. Boreas, 38, 285-291.
[42] Liu YY, Wang AY, An YN, Lian PY, Wu DD, Zhu JJ, Meinzer FC, Hao GY (2018). Hydraulics play an important role in causing low growth rate and dieback of aging Pinus sylvestris var. mongolica trees in plantations of Northeast China. Plant, Cell & Environment, 41, 1500-1511.
[43] Llorens P, Poyatos R, Latron J, Delgado J, Oliveras I, Gallart F (2010). A multi-year study of rainfall and soil water controls on Scots pine transpiration under Mediterranean Mountain conditions. Hydrological Processes, 24, 3053-3064.
[44] McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719-739.
[45] Meng P, Zhang BX, Wang M (2018). Biomass distribution and architecture of roots in Pinus densiflora and Pinus sylvestris var. mongolica in Horqin Sandy Land. Chinese Journal of Ecology, 37, 2935-2941.
[45] [孟鹏, 张柏习, 王曼(2018). 科尔沁沙地赤松和樟子松根系生物量分配与构型特征. 生态学杂志, 37, 2935-2941.]
[46] Merlin M, Perot T, Perret S, Korboulewsky N, Vallet P (2015). Effects of stand composition and tree size on resistance and resilience to drought in sessile oak and Scots pine. Forest Ecology and Management, 339, 22-33.
[47] Novick KA, Ficklin DL, Stoy PC, Williams CA, Bohrer G, Oishi AC, Papuga SA, Blanken PD, Noormets A, Sulman BN, Scott RL, Wang LX, Phillips RP (2016). The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nature Climate Change, 6, 1023-1027.
[48] Palmroth S, Berninger F, Nikinmaa E, Lloyd J, Pulkkinen P, Hari P (1999). Structural adaptation rather than water conservation was observed in Scots pine over a range of wet to dry climates. Oecologia, 121, 302-309.
[49] Poyatos R, Llorens P, Gallart F (2005). Transpiration of montane Pinus sylvestris L. and Quercus pubescens Willd. forest stands measured with sap flow sensors in NE Spain. Hydrology and Earth System Sciences, 9, 493-505.
[50] Qin DH (2009). Climate change and drought. Science & Technology Review, 27, 3.
[50] [秦大河(2009). 气候变化与干旱. 科技导报 27, 3.
[51] Song LN, Zhu JJ, Li MC, Yan T, Zhang JX (2012). Needles stable carbon isotope composition and traits of Pinus sylvestris var. mongolica in sparse wood grassland in south edge of Horqin Sandy Land under the conditions of different precipitation. Chinese Journal of Applied Ecology, 23, 1435-1440.
[51] [宋立宁, 朱教君, 李明财, 闫涛, 张金鑫(2012). 不同降水条件下科尔沁沙地南缘疏林草地樟子松针叶δ13C和叶性状特征. 应用生态学报, 23, 1435-1440.]
[52] Song LN, Zhu JJ, Li MC, Zhang JX, Zheng X, Wang K (2018). Canopy transpiration of Pinus sylvestris var. mongolica in a sparse wood grassland in the semiarid sandy region of Northeast China. Agricultural and Forest Meteorology, 250-251, 192-201.
[53] Song LN, Zhu JJ, Zheng X (2017). Forestation and management scheme of Pinus sylvestris var. mongolica plantations in sandy lands based on their decline mechanisms. Chinese Journal of Ecology, 36, 3249-3256.
[53] [宋立宁, 朱教君, 郑晓 (2017). 基于沙地樟子松人工林衰退机制的营林方案. 生态学杂志, 36, 3249-3256.]
[54] Song LN, Zhu JJ, Zheng X, Wang K, Lü LY, Zhang XL, Hao GY (2020). Transpiration and canopy conductance dynamics of Pinus sylvestris var. mongolica in its natural range and in an introduced region in the sandy plains of Northern China. Agricultural and Forest Meteorology, 281, 107830. DOI: 10.1016/j.agrformet.2019.107830.
[55] Song XD (1988). Introduction of Pinus sylvestris var. mongolica in sandstorm areas in northern China. Liaoning Forestry Science and Technology, (5), 7-10.
[55] [宋晓东 (1988). “三北”风沙区樟子松引种综述. 辽宁林业科技, (5), 7-10.]
[56] Stocker TF, Qin D, Plattner G, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013). Climate Change 2013. The Physical Science Basis. Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, London.
[57] Su FL, Liu MG, Guo CJ, Zhang Q (2006). Characteristics of vertical distribution of root system of Mongolian Scotch pine growing in sandy area and influence to the soil. Soil and Water Conservation in China, (1), 20-22.
[57] [苏芳莉, 刘明国, 郭成久, 张清 (2006). 沙地樟子松根系垂直分布特征及对土壤的影响. 中国水土保持, (1), 20-22.]
[58] Verbyla D (2008). The greening and browning of Alaska based on 1982-2003 satellite data. Global Ecology and Biogeography, 17, 547-555.
[59] Vincke C, Thiry Y (2008). Water table is a relevant source for water uptake by a Scots pine (Pinus sylvestris L.) stand: evidences from continuous evapotranspiration and water table monitoring. Agricultural and Forest Meteorology, 148, 1419-1432.
[60] Wang JH, Man DQ, Liu HJ (1999). Adaptability and developing potential of Pinus sylvestris var. mongolica in Gansu arid area. Journal of Desert Research, 19, 390-394.
[60] [王继和, 满多清, 刘虎俊 (1999). 樟子松在甘肃干旱区的适应性及发展潜力研究. 中国沙漠, 19, 390-394.]
[61] Wang K, Song LN, Lü LY, Zhang L, Qin ZY (2014a). Fine root adaptive strategy of main afforestation tree species in Horqin sandy land. Journal of Arid Land Resources and Environment, 28, 128-131.
[61] [王凯, 宋立宁, 吕林有, 张亮, 秦峥媛 (2014a). 科尔沁沙地主要造林树种细根适应策略. 干旱区资源与环境, 28, 128-131.]
[62] Wang K, Song LN, Lü LY, Zhu C (2014b). Fine root vertical distribution characters of different aged Pinus sylvestris var. mongolica plantations on sandy land. Journal of Northeast Forestry University, 42(3), 1-4.
[62] [王凯, 宋立宁, 吕林有, 祝畅 (2014b). 不同林龄沙地樟子松人工林细根垂直分布特征. 东北林业大学学报, 42(3), 1-4.]
[63] Weber P, Bugmann H, Rigling A (2007). Radial growth responses to drought of Pinus sylvestris and Quercus pubescens in an inner-Alpine dry valley. Journal of Vegetation Science, 18, 777-792.
[64] Wei YF, Fang J, Zhao XY, Li SG (2011). Eco-physiological traits of different-age needles of Pinus sylvestris var. mongolica plantation in Horqin Sandy Land of China. Chinese Journal of Plant Ecology, 35, 1271-1280
[64] [魏雅芬, 方杰, 赵学勇, 李胜功 (2011). 科尔沁沙地樟子松人工林不同年龄针叶生理生态性状. 植物生态学报, 35, 1271-1280.]
[65] Wei YF, Fang J, Zhao XY, Yi M, Zhang RJ, Li SG (2012). Isotopic model estimate of relative contribution of potential water pools to water uptake of Pinus sylvestris var. mongolica in Horqin Sandy Land. Journal of Resources and Ecology, 3, 308-315.
[66] Wu XY, Jiang FQ, Li XD, Xue Y, Qiu SF (2004). Decline regularity and causes of Pinus sylvestris var. mongolica plantation on sandy land. Chinese Journal of Applied Ecology, 15, 2225-2228.
[66] [吴祥云, 姜凤岐, 李晓丹, 薛杨, 邱素芬 (2004). 樟子松人工固沙林衰退的规律和原因. 应用生态学报, 15, 2225-2228.]
[67] Xing ZK, Liu YP (1990). Aerodynamic effects of the Mongolian Scotch pine sand-holding forest. Chinese Journal of Ecology, 9, 31-35.
[67] [邢兆凯, 刘亚平 (1990). 樟子松固沙林动力效应的研究. 生态学杂志, 9, 31-35.]
[68] Xu HC (1998). Forestry in the Da Hinggan Ling Regions in China. Science Press, Beijing.
[68] [徐化成 (1998). 中国大兴安岭森林. 科学出版社, 北京.]
[69] Yang LW, Zhou HY, Fan HW, Jia XH, Liu LC, Li AX (2009). Advances of soil restoration research on artificial sand- binding vegetation ecosystem in Shapotou desert region. Journal of Desert Research, 29, 1116-1123.
[69] [杨丽雯, 周海燕, 樊恒文, 贾晓红, 刘立超, 李爱霞 (2009). 沙坡头人工固沙植被生态系统土壤恢复研究进展. 中国沙漠, 29, 1116-1123.]
[70] Yi XY, Zhao HL, Cui JY, Li YQ, Zuo XA, Zhuo H (2006). Growth of small area Pinus sylvestris var. mongolica artificial forest under different densities in Horqin Sandy Land, North of China. Acta Ecologica Sinica, 26, 1200-1206.
[70] [移小勇, 赵哈林, 崔建垣, 李玉强, 左小安, 卓鸿(2006). 科尔沁沙地不同密度(小面积)樟子松人工林生长状况. 生态学报, 26, 1200-1206.]
[71] Zani D, Crowther TW, Mo LD, Renner SS, Zohner CM (2020). Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees. Science, 370, 1066-1071.
[72] Zhang JC, Wang J, Li AD, E YH (2000). Research on root distribution and growth adaptability of Pinus sylvestris var. mongolica. Protection Forest Science and Technology, (3), 46-49.
[72] [张锦春, 汪杰, 李爱德, 俄有浩 (2000). 樟子松根系分布特征及其生长适应性研究. 防护林科技, (3), 46-49.]
[73] Zhang LH, Liu W, Zhang WX, Zhang KP, Zhou JS, Liu MJ (2013). Analysis on the reasons of Pinus sylvestris var. mongolica yellowed and withered in Jilin Province. Journal of Jilin Forestry Science and Technology, 42(6), 30-32.
[73] [张联合, 刘薇, 张文学, 张凯鹏, 周江山, 刘明江(2013). 吉林省樟子松枯黄与枯死的原因分析. 吉林林业科技, 42(6), 30-32.]
[74] Zhao HL, Zhou RL, Su YZ, Zhang H, Zhao LY, Drake S (2007). Shrub facilitation of desert land restoration in the Horqin Sand Land of Inner Mongolia. Ecological Engineering, 31, 1-8.
[75] Zhao XL, Li WY (1963). Pinus sylvestris var. mongolica. Chinese Agricultural Press, Beijing.
[75] [赵兴梁, 李万英(1963). 樟子松. 中国农业出版社, 北京.]
[76] Zhao YS, Jiao ZJ, Wang WZ (1991). Transpiration intensity of Mongolian scots pine plantation. Journal of Northeast Forestry University, 19(5), 113-118.
[76] [赵雨森, 焦振家, 王文章 (1991). 樟子松蒸腾强度的研究. 东北林业大学学报, 19(5), 113-118.]
[77] Zhu JJ, Fan ZP, Zeng DH, Jiang FQ, Takeshi M (2003). Comparison of stand structure and growth between artificial and natural forests of Pinus sylvestiris var. mongolica on sandy land. Journal of Forestry Research, 14, 103-111.
[78] Zhu JJ, Kang HZ, Tan H, Xu ML, Wang J (2005). Natural regeneration characteristics of Pinus sylvestris var. mongolica forests on sandy land in Honghuaerji, China. Journal of Forestry Research, 16, 253-259.
[79] Zhu JJ, Zeng DH, Kang HZ, Wu XY, Fan ZP (2005). Decline of Pinus sylvestris var. mongolica Plantations in Sandy Land. China Forestry Publishing House, Beijing. 264.
[79] [朱教君, 曾德慧, 康宏樟, 吴祥云, 范志平 (2005). 沙地樟子松人工林衰退机制. 中国林业出版社, 北京. 264.]
[80] Zhu JJ, Zheng X (2019). Thoughts and prospects on the construction of the Three-North Afforestation Program (TNAP): on the basis of the general assessment results of the TNAP constructed for 40 years. Chinese Journal of Ecology, 38, 1600-1610.
[80] [朱教君, 郑晓 (2019). 关于三北防护林体系建设的思考与展望——基于40年建设综合评估结果. 生态学杂志, 38, 1600-1610.]
[81] Zhu ZD, Liu S, Di XM (1989). Desertification in China and Its Control. Science Press, Beijing.
[81] [朱震达, 刘恕, 邸醒民(1989). 中国的沙漠化及其治理. 科学出版社, 北京.]
文章导航

/