研究论文

不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响

展开
  • 石河子大学农学院, 新疆生产建设兵团绿洲生态农业重点实验室, 新疆石河子 832003

收稿日期: 2021-12-20

  录用日期: 2022-05-19

  网络出版日期: 2022-07-15

基金资助

中央引导地方专项(2060404);新疆生产建设兵团重大计划项目(RCZK201928)

Effects of different clipping degrees on non-structural carbohydrate metabolism and biomass of Cyperus esculentus

Expand
  • Xinjiang Production and Construction Group Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang 832003, China

Received date: 2021-12-20

  Accepted date: 2022-05-19

  Online published: 2022-07-15

Supported by

Local Special Projects Guided by the Central Government(2060404);Major Planned Projects of the Xinjiang Production and Construction Corps(RCZK201928)

摘要

为探讨不同留茬高度对油莎豆(Cyperus esculentus)非结构性碳水化合物代谢的影响, 进一步明确不同留茬高度与油莎豆地上生物量的关系, 并寻求最佳刈割高度, 该研究以油莎豆为研究对象, 测定6个留茬高度(10、20、30、40、50 cm和未刈割)油莎豆叶片生长生理参数、非结构性碳水化合物含量和地上生物量。结果显示: 刈割对于油莎豆光合作用有刺激作用, 刈割后油莎豆在第1-14天达到再生生长高峰期。留茬30 cm油莎豆叶片可溶性糖含量(第7、21和28天)均高于其他处理, 分别为9.22%、10.83%、9.07%, 其淀粉含量(第14和21天)均高于其他处理, 分别为4.88%和4.11%。留茬40 cm (第21、28天)蔗糖含量均高于其他处理, 分别为7.88%和11.38%; 其果糖含量(第14和21天)均高于其他处理, 分别为5.29%和6.40%。刈割促进了留茬30和40 cm油莎豆叶片蔗糖磷酸合成酶和蔗糖合成酶活性的提高。留茬10 cm抑制了油莎豆叶片蔗糖含量增加和相关酶活性。合计刈割时和收获时的饲草质量之和, 留茬30 cm油莎豆干草质量最高, 为10 605.11 kg·hm-2, 较未刈割增加19.93%; 收获时, 留茬40 cm油莎豆干草质量最高, 为8 976.93 kg·hm-2, 较未刈割增加1.52%。另外通过冗余分析可知, 可溶性糖含量、蔗糖合成酶和蔗糖磷酸合成酶活性是影响饲草产量和再生速度的关键因子。留茬30-40 cm在长期(第7-28天)更有利于油莎豆再生生长, 非结构性碳水化合物积累, 相关酶活性和饲草产量提高, 因此留茬30-40 cm为适宜留茬高度范围。

本文引用格式

李变变, 张凤华, 赵亚光, 孙秉楠 . 不同刈割程度对油莎豆非结构性碳水化合物代谢及生物量的影响[J]. 植物生态学报, 2023 , 47(1) : 101 -113 . DOI: 10.17521/cjpe.2021.0484

Abstract

Aims The aims of this study were to investigate the effects of different stubble height on non-structural carbohydrate metabolism of Cyperus esculentus, to further clarify the relationship between stubble height and aboveground biomass of C. esculentus, and to seek the best clipping height.
Methods The growth physiology parameters, non-structural carbohydrates and aboveground biomass of C. esculentus leaves at six stubble heights (10, 20, 30, 40, 50 cm and uncut) were determined.
Important findings The results showed that clipping can stimulate the photosynthesis of C. esculentus. The peak of regeneration and growth was reached from 1 to 14 days after clipping. The contents of soluble sugars in leaves of 30 cm stubbles (7th, 21st and 28th days) were higher than those in leaves of other treatments, which were 9.22%, 10.83% and 9.07%, respectively, and the starch contents (14th and 21st days) were 4.88% and 4.11%, respectively. The sucrose contents in leaves of 40 cm stubbles (21st and 28th days) were higher than those in leaves of other treatments, which were 7.88% and 11.38%, respectively. The fructose contents (14th and 21st days) were also higher than those in leaves of other treatments, which were 5.29% and 6.40%, respectively. The activities of sucrose phosphate synthase and sucrose synthase in 30 cm stubbles and 40 cm stubbles were higher than those in other treatments in different periods after clipping. Stubble 10 cm inhibited the increase of sucrose content and related enzyme activities of C. esculentus. The total amount of forage at clipping and harvest, the hay mass of 30 cm stubbles was up to 10 605.11 kg·hm-2, 19.93% higher than that of uncut. The hay mass of 40 cm stubbles was up to 8 976.93 kg·hm-2, 1.52% higher than that of uncut. In addition, through redundancy analysis, soluble sugar content, the activities of sucrose synthase and sucrose phosphate synthase were important factors affecting the forage yield and regeneration rate. In the long period of cutting (day 7-28), 30-40 cm stubbles were more conducive to regeneration and growth, accumulation and synthesis of non-structural carbohydrate, as well as related enzyme activities and forage yield. Therefore, the suitable stubble height range was 30-40 cm.

参考文献

[1] Aljuhaimi F, Ghafoor K, ?zcan MM, Miseckaite O, Babiker EE, Hussain S (2018). The effect of solvent type and roasting processes on physico-chemical properties of tigernut (Cyperus esculentus L.) tuber oil. Journal of Oleo Science, 67, 823-828.
[2] Bork EW, Broadbent TS, Willms WD (2017). Intermittent growing season defoliation variably impacts accumulated herbage productivity in mixed grass prairie. Rangeland Ecology & Management, 70, 307-315.
[3] Buysse J, Merckx R (1993). An improved colorimetric method to quantify sugar content of plant tissue. Journal of Experimental Botany, 44, 1627-1629.
[4] Carpita N, Sabularse D, Montezinos D, Delmer DP (1979). Determination of the pore size of cell walls of living plant cells. Science, 205, 1144-1147.
[5] Chen L, Huang JG, Dawson A, Zhai L, Stadt KJ, Comeau PG, Whitehouse C (2018). Contributions of insects and droughts to growth decline of trembling aspen mixed boreal forest of western Canada. Global Change Biology, 24, 655-667.
[6] Chen Q, Lu XY, Guo XR, Xu MY, Tang ZH (2021). A source-sink model explains the difference in the metabolic mechanism of mechanical damage to young and senescing leaves in Catharanthus roseus. BMC Plant Biology, 21, 154. DOI: 10.1186/S12870-02/02934-6.
[7] Dombrowski JE, Hind SR, Martin RC, Stratmann JW (2011). Wounding systemically activates a mitogen-activated protein kinase in forage and turf grasses. Plant Science, 180, 686-693.
[8] Donaghy, Fulkerson (1998). Priority for allocation of water-soluble carbohydrate reserves during regrowth of Lolium perenne. Grass and Forage Science, 53, 211-218.
[9] Du Y, Han Y, Wang CK (2014). The influence of drought on non-structural carbohydrates in the needles and twigs of Larix gmelinii. Acta Ecologica Sinica, 34, 6090-6100.
[9] [ 杜尧, 韩轶, 王传宽 (2014). 干旱对兴安落叶松枝叶非结构性碳水化合物的影响. 生态学报, 34, 6090-6100.]
[10] Feng YJ, Jin Q, Wang JW (2010). Systemic induced effects of mechanical wounding on the chemical defense of Bt corn (Zea mays). Chinese Journal of Plant Ecology, 34, 695-703.
[10] [ 冯远娇, 金琼, 王建武 (2010). 机械损伤对Bt玉米化学防御的系统诱导效应. 植物生态学报, 34, 695-703.]
[11] Fulkerson WJ, Slack K (1994). Leaf number as a criterion for determining defoliation time for Lolium perenne, 1. Effect of water-soluble carbohydrates and senescence. Grass and Forage Science, 49, 373-377.
[12] Gao YT, Zhang R, Li HX, Wei PC (2021). Effect of water stress on sugar accumulation and sucrose metabolism enzyme activities of greenhouse grape fruit. Arid Zone Research, 38, 1713-1721.
[12] [ 高彦婷, 张芮, 李红霞, 魏鹏程 (2021). 水分胁迫对葡萄糖分及其蔗糖代谢酶活性的影响. 干旱区研究, 38, 1713-1721.]
[13] Harrison MT, Kelman WM, Moore AD, Evans JR (2010). Grazing winter wheat relieves plant water stress and transiently enhances photosynthesis. Functional Plant Biology, 37, 726-736.
[14] Heck KL Jr, Valentine JF (2006). Plant-herbivore interactions in seagrass meadows. Journal of Experimental Marine Biology and Ecology, 330, 420-436.
[15] Hou FJ (2001). Effect of grazing on photosynthesis and respiration of herbage and on its absorption and transporation of nitrogen and carbon. Chinese Journal of Applied Ecology, 12, 938-942.
[15] [ 侯扶江 (2001). 放牧对牧草光合作用、呼吸作用和氮、碳吸收与转运的影响. 应用生态学报, 12, 938-942.]
[16] Hu RF, Jiang H, Li YY (2012). Research advance on sucrose synthesize enzymes. Northern Horticulture, (1), 167-170.
[16] [ 胡瑞芳, 姜慧, 李玥莹 (2012). 蔗糖代谢相关酶的研究进展. 北方园艺, (1), 167-170.]
[17] Koch KE (1996). Carbohydrate-modulated gene expression in plants. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 509-540.
[18] Koch KE, Ying Z, Wu Y, Avigne WT (2000). Multiple paths of sugar-sensing and a sugar/oxygen overlap for genes of sucrose and ethanol metabolism. Journal of Experimental Botany, 51, 417-427.
[19] Kolb TE, Dodds KA, Clancy KM (1999). Effect of western spruce budworm defoliation on the physiology and growth of potted Douglas-fir seedlings. Forest Science, 45, 280-291.
[20] Latt CR, Nair PKR, Kang B (2000). Interactions among cutting frequency, reserve carbohydrates, and post-cutting biomass production in Gliricidia sepium and Leucaena leucocephala. Agroforestry Systems, 50, 27-46.
[21] Latt CR, Nair PKR, Kang BT (2001). Reserve carbohydrate levels in the boles and structural roots of five multipurpose tree species in a seasonally dry tropical climate. Forest Ecology and Management, 146, 145-158.
[22] Lattanzi FA, Schnyder H, Thornton B (2004). Defoliation effects on carbon and nitrogen substrate import and tissue-bound efflux in leaf growth zones of grasses. Plant, Cell & Environment, 27, 347-356.
[23] Letty BA, Makhubedu T, Scogings PF, Mafongoya P (2021). Effect of cutting height on non-structural carbohydrates, biomass production and mortality rate of pigeon peas. Agroforestry Systems, 95, 659-667.
[24] Lin XZ, Liu L, Dong TT, Fang QB, Guo QX (2021). Effects of non-structural carbohydrate and nitrogen allocation on the ability of Populus deltoides and P. cathayana to resist soil salinity stress. Chinese Journal of Plant Ecology, 45, 961-971.
[24] [ 林夏珍, 刘林, 董婷婷, 方琦博, 郭庆学 (2021). 非结构性碳水化合物与氮分配对美洲黑杨和青杨耐盐能力的影响. 植物生态学报, 45, 961-971.]
[25] Loewe A, Einig W, Shi LB, Dizengremel P, Hampp R (2000). Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytologist, 145, 565-574.
[26] MacNeill GJ, Mehrpouyan S, Minow MAA, Patterson JA, Tetlow IJ, Emes MJ (2017). Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. Journal of Experimental Botany, 68, 4433-4453.
[27] Moyo H, Scholes MC, Twine W (2015). The effects of repeated cutting on coppice response of Terminalia sericea. Trees, 29, 161-169.
[28] Nowak RS, Caldwell MM (1984). A test of compensatory photosynthesis in the field: implications for herbivory tolerance. Oecologia, 61, 311-318.
[29] Nzunda EF, Griffiths ME, Lawes MJ (2008). Sprouting by remobilization of above-ground resources ensures persistence after disturbance of coastal dune forest trees. Functional Ecology, 22, 577-582.
[30] Padhi S, Grimes MM, Muro-Villanueva F, Ortega JL, Sengupta-Gopalan C (2019). Distinct nodule and leaf functions of two different sucrose phosphate synthases in alfalfa. Planta, 250, 1743-1755.
[31] Qu WX, Du B, Yu QL, Han YY, Hao JH, Liu CJ, Fan SX (2021). Effects of selenium on carbon metabolism of lettuce under high temperature stress. Journal of Beijing University of Agriculture, 36(4), 30-34.
[31] [ 屈卫星, 杜柏, 余琦隆, 韩莹琰, 郝敬虹, 刘超杰, 范双喜 (2021). 硒对高温胁迫下生菜碳代谢的影响. 北京农学院学报, 36(4), 30-34.]
[32] Quentin AG, Pinkard EA, Ryan MG, Tissue DT, Baggett LS, Adams HD, Maillard P, Marchand J, Landh?usser SM, Lacointe A, Gibon Y, Anderegg WRL, Asao S, Atkin OK, Bonhomme M, et al. (2015). Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiology, 35, 1146-1165.
[33] Richardson AD, Carbone MS, Keenan TF, Czimczik CI, Hollinger DY, Murakami P, Schaberg PG, Xu XM (2013). Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytologist, 197, 850-861.
[34] Schrader S, Sauter JJ (2002). Seasonal changes of sucrose-phosphate synthase and sucrose synthase activities in poplar wood (Populus × canadensis Moench ‘robusta’) and their possible role in carbohydrate metabolism. Journal of Plant Physiology, 159, 833-843.
[35] Shen QL (2010). A Preliminary Studies on High Yield and Quality Cultivation in Chufa. Master degree dissertation, Yangzhou University, Yangzhou, Jiangsu.
[35] [ 沈庆雷 (2010). 油莎豆高产优质栽培初步研究. 硕士学位论文,扬州大学, 江苏扬州.]
[36] Wang DD, Tian LH, Shen YY, Liu YB (2014). Regrowth responses to cutting of different cultivars of winter wheat. Chinese Journal of Eco-Agriculture, 22, 642-647.
[36] [ 王丹丹, 田莉华, 沈禹颖, 刘渊博 (2014). 不同品种冬小麦再生生长对刈割干扰的响应. 中国生态农业学报, 22, 642-647.]
[37] Wang J, Yang C, Han WQ, Liu ML (2003). Effects on water-soluble carbohydrate of Artemisia frigida under different defoliation intensities. Acta Ecologica Sinica, 23, 908-913.
[37] [ 王静, 杨持, 韩文权, 刘美玲 (2003). 刈割强度对冷蒿可溶性碳水化合物的影响. 生态学报, 23, 908-913.]
[38] Wang LH, Sun JW, Wang W, Zhou Q (2017). Research advances in effects of acid rain on plant photosynthesis. Journal of Safety and Environment, 17, 775-780.
[38] [ 王丽红, 孙静雯, 王雯, 周青 (2017). 酸雨对植物光合作用影响的研究进展. 安全与环境学报, 17, 775-780.]
[39] Wang RY, Wang XS, Xiang H (2019). A multi-purpose novel oil crop—Cyperus beans. China Oils and Fats, 44(1), 1-4.
[39] [ 王瑞元, 王晓松, 相海 (2019). 一种多用途的新兴油料作物——油莎豆. 中国油脂, 44(1), 1-4.]
[40] Wang Y, Li ZY, Ge F (2000). Lag-change of chemical components in needles of injured pine, Pinus massoniana. Acta Entomologica Sinica, 43, 291-296.
[40] [ 王燕, 李镇宇, 戈峰 (2000). 马尾松受害诱导的化学物质滞后变化. 昆虫学报, 43, 291-296.]
[41] Wang Y, Wu JY, Liu JH, Feng XY (2021). Effects of controlled-release nitrogen fertilizer on agronomic characteristics and yield of Panicum miliaceum L. Journal of Northern Agriculture, 49(3), 41-47.
[41] [ 王英, 武俊英, 刘景辉, 冯学颖 (2021). 控释氮肥对糜子农艺性状及产量的影响. 北方农业学报, 49(3), 41-47.]
[42] Wei FT, Tao HB, Wang P (2010). Relationship of non-structure carbohydrate production and yield components of aerobic rice, Handao 297. Acta Agronomica Sinica, 36, 2135-2142.
[42] [ 魏凤桐, 陶洪斌, 王璞 (2010). 旱稻297非结构性碳水化合物的生产与产量构成因子的关系. 作物学报, 36, 2135-2142.]
[43] William RLA, Jeffrey AH, Rosie AF, Craig DA, Juliann ABB, Sharon HJWL, Alison KM, Nate MYP, Kenneth RAS, John DSNL, Stephenson CT, Melanie Z (2015). Tree mortality from drought, insects, and their interactions in a changing climate. New Phytologist, 208, 674-683.
[44] Wu JH, Cui YT, Zhao QZ, Wang L (2013). Effects of drought stress on anatomical structure of leaves and physiological indexes of Potentilla species. Pratacultural Science, 30, 1369-1373.
[44] [ 吴建慧, 崔艳桃, 赵倩竹, 王玲 (2013). 干旱胁迫下委陵菜和翻白委陵菜叶片结构和生理指标的变化. 草业科学, 30, 1369-1373.]
[45] Wu YW, Li Q, Jin R, Chen W, Liu XL, Kong FL, Ke YP, Shi HC, Yuan JC (2019). Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low-nitrogen tolerances. Journal of Integrative Agriculture, 18, 1246-1256.
[46] Yang HM, Wang ZN, Ji CR (2013). Research progress in the dynamics of carbon and nitrogen in forages after cutting and grazing. Chinese Journal of Grassland, 35(4), 102-109.
[46] [ 杨惠敏, 王振南, 吉春荣 (2013). 刈割和放牧后牧草碳氮动态研究进展. 中国草地学报, 35(4), 102-109.]
[47] Zhang YL, Wang XG, Luo XM, Jiang L (2018). Effects of plant growth regulators on growth characteristics and seeds yield of Leymus chinensis. Grassland and Turf, 38(1), 18-24.
[47] [ 张永亮, 王显国, 骆秀梅, 姜澜 (2018). 生长调节剂对羊草生长及种子产量的影响. 草原与草坪, 38(1), 18-24.]
[48] Zhao CZ, Zhong RZ, Zhou DW, Zheng CC (2019). Effects of mowing time and interval on dry matter yield and chemical composition of Leymus chinensis. Soils and Crops, 8, 212-219.
[48] [ 赵成振, 钟荣珍, 周道玮, 郑聪聪 (2019). 不同刈割时间和间隔对羊草产量和品质的影响. 土壤与作物, 8, 212-219.]
[49] Zheng YP, Wang HX, Lou X, Yang QP, Xu M (2014). Changes of non-structural carbohydrates and its impact factors in trees: a review. Chinese Journal of Applied Ecology, 25, 1188-1196.
[49] [ 郑云普, 王贺新, 娄鑫, 杨庆朋, 徐明 (2014). 木本植物非结构性碳水化合物变化及其影响因子研究进展. 应用生态学报, 25, 1188-1196.]
[50] Zhou XH, Wang GX, Yang F, Chen QM, Wang L (2008). Effects of cutting on photosynthesis and purification efficiencies on nitrogen and phosphorus of the Lolium multiflorum. Environmental Science, 29, 3393-3399.
[50] [ 周晓红, 王国祥, 杨飞, 陈秋敏, 汪丽 (2008). 刈割对生态浮床植物黑麦草光合作用及其对氮磷等净化效果的影响. 环境科学, 29, 3393-3399.]
文章导航

/