不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势
收稿日期: 2022-07-12
录用日期: 2022-10-10
网络出版日期: 2022-10-10
基金资助
国家自然科学基金(32171504);国家自然科学基金(31870386);云南省万人计划(YNWR-QNBJ-2019-191)
Variation of leaf thermal traits and plant adaptation strategies of canopy dominant tree species along temperature and precipitation gradients
Received date: 2022-07-12
Accepted date: 2022-10-10
Online published: 2022-10-10
Supported by
National Natural Science Foundation of China(32171504);National Natural Science Foundation of China(31870386);Ten Thousand Talents Plan of Yunnan(YNWR-QNBJ-2019-191)
叶片温度是植物能量交换和生理过程发生的重要微环境参数。叶片热力性状能够在一定程度上调控叶片温度, 避免极端温度对叶片的伤害。但目前针对叶片热力性状的研究还很少。该研究选择云南省从热带到温带具有明显水热梯度的4种典型植被类型: 干热河谷植被、热带雨林、亚热带常绿阔叶林、温带针阔混交林, 对其冠层优势树种的叶片热力性状进行了系统地研究。这些性状包括了可能影响叶片温度的形态、光学、材料特性、解剖和生理的23个性状。研究结果表明: 干热河谷植被的植物主要依靠蒸腾降温, 叶片薄, 叶寿命短, 主要为“快速投资-收益”型植物; 热带雨林植物叶片大, 蒸腾速率不高, 不利于降温, 较厚的叶片、较高的含水量能在一定程度上缓解高温, 采取“慢速投资-收益”策略; 亚热带常绿阔叶林很少发生极端温度, 叶片没有明显的热适应性状, 叶片厚, 叶寿命长, 采取“慢速投资-收益”策略; 温带针阔混交林植被的叶片小而厚, 多成簇状生长, 有一定保温作用。温带针阔混交林的冠层常绿植物光合速率较低, 偏“慢速投资-收益”型; 而落叶植物的光合速率较高, 偏“快速投资-收益”型。该研究系统地研究了热力性状与植物适应策略沿水热梯度的变化, 为深入认识植物对环境适应策略提供了理论基础。
周莹莹, 林华 . 不同水热梯度下冠层优势树种叶片热力性状及适应策略的变化趋势[J]. 植物生态学报, 2023 , 47(5) : 733 -744 . DOI: 10.17521/cjpe.2022.0289
Aims Leaf temperature is one of the important microenvironmental parameters for energy exchange and physiological processes of plants. Leaf thermal traits can regulate leaf temperature so as to relieve heat damage to some extent. However, systematic studies on leaf thermal traits are rare.
Methods In the present study, 43 dominant canopy species of four typical vegetation types with varying temperature and precipitation from tropical to temperate zones in Yunnan Province were selected: savanna vegetation, tropical rain forest, subtropical evergreen broadleaf forest, and temperate mixed forest. We selected 23 thermal traits that might have influence on leaf temperature, including leaf morphological, optical, material property, anatomical and physiological traits.
Important findings The results showed that plants in savanna vegetation mainly relied on transpiration for cooling. Savanna species have thin leaves and short life span. They are mainly “quick investment-return” species. Tropical rain forest plants developed large leaves, with low transpiration rates, which have no advantage of leaf cooling. Thick leaves and high water content can alleviate high temperature to some extent. They adopted “slow investment-return” strategy. Subtropical evergreen broadleaf forest was rarely exposed to extreme temperatures. The species had thick leaves, long leaf life span, and adopted “slow investment-return” strategy. They did not show obvious thermal adaptation traits. Temperate mixed forest had small and thick leaves, growing in clusters which provides benefits for thermal insulation. Photosynthetic rate of canopy evergreen plants in this forest was low, adopting “slow investment-return” strategy, while photosynthetic rate of deciduous plants was high, presenting “quick investment-return” characteristics. This study systematically investigated the variation of leaf thermal traits and plant adaptation strategies along temperature and precipitation gradients, providing a theoretical basis for further understanding of plant adaptation to the environment.
[1] | Atkins RF (2005). The LMA is a critical rescue device in airway emergencies. Anesthesia and Analgesia, 101, 1888-1889. |
[2] | Blonder B, Michaletz ST (2018). A model for leaf temperature decoupling from air temperature. Agricultural and Forest Meteorology, 262, 354-360. |
[3] | Blonder B, Violle C, Bentley LP, Enquist BJ (2011). Venation networks and the origin of the leaf economics spectrum: venation networks and leaf economics. Ecology Letters, 14, 91-100. |
[4] | Brodribb TJ, Jordan GJ (2011). Water supply and demand remain balanced during leaf acclimation of Nothofagus cunninghamii trees. New Phytologist, 192, 437-448. |
[5] | Cai YL, Song YC (2001). Adaptive ecology of lianas in Tiantong evergreen broad-leaved forest, Zhejiang, China I. Leaf anatomical characters. Acta Phytoecologica Sinica, 25, 90-98. |
[5] | [蔡永立, 宋永昌 (2001). 浙江天童常绿阔叶林藤本植物的适应生态学I. 叶片解剖特征的比较. 植物生态学报, 25, 90-98.] |
[6] | Campbell GS, Norman JM (2000). An Introduction to Environmental Biophysics. Springer, New York. |
[7] | Cordell S, Goldstein G, Meinzer FC, Vitousek PM (2001). Regulation of leaf life-span and nutrient-use efficiency of Metrosideros polymorpha trees at two extremes of a long chronosequence in Hawaii. Oecologia, 127, 198-206. |
[8] | Crawford AJ, McLachlan DH, Hetherington AM, Franklin KA (2012). High temperature exposure increases plant cooling capacity. Current Biology, 22, 396-397. |
[9] | Drake PL, Froend RH, Franks PJ (2013). Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany, 64, 495-505. |
[10] | Fauset S, Freitas HC, Galbraith DR, Sullivan MJP, Aidar MPM, Joly CA, Phillips OL, Vieira SA, Gloor MU (2018). Differences in leaf thermoregulation and water use strategies between three co-occurring Atlantic forest tree species. Plant, Cell & Environment, 41, 1618-1631. |
[11] | Fetcher N (1981). Leaf size and leaf temperature in tropical vines. The American Naturalist, 117, 1011-1014. |
[12] | Franks PJ, Beerling DJ (2009). Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences of the United States of America, 106, 10343-10347. |
[13] | Geng Y, Wang ZH, Liang CZ, Fang JY, Baumann F, Kühn P, Scholten T, He JS (2012). Effect of geographical range size on plant functional traits and the relationships between plant, soil and climate in Chinese grasslands. Global Ecology and Biogeography, 21, 416-427. |
[14] | Helliker BR, Richter SL (2008). Subtropical to boreal convergence of tree-leaf temperatures. Nature, 454, 511-514. |
[15] | Kenzo T, Ichie T, Yoneda R, Kitahashi Y, Watanabe Y, Ninomiya I, Koike T (2004). Interspecific variation of photosynthesis and leaf characteristics in canopy trees of five species of Dipterocarpaceae in a tropical rain forest. Tree Physiology, 24, 1187-1192. |
[16] | K?rner C, Bannister P, Mark AF (1986). Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. Oecologia, 69, 577-588. |
[17] | Lan GY, Hu YH, Cao M, Zhu H, Wang H, Zhou SS, Deng XB, Cui JY, Huang JG, Liu LY, Xu HL, Song JP, He YC (2008). Establishment of Xishuangbanna tropical forest dynamics plot: species compositions and spatial distribution patterns. Journal of Plant Ecology (Chinese Version), 32, 287-298. |
[17] | [兰国玉, 胡跃华, 曹敏, 朱华, 王洪, 周仕顺, 邓晓保, 崔景云, 黄建国, 刘林云, 许海龙, 宋军平, 何有才 (2008). 西双版纳热带森林动态监测样地——树种组成与空间分布格局. 植物生态学报, 32, 287-298.] |
[18] | Lavorel S (2013). Plant functional effects on ecosystem services. Journal of Ecology, 101, 4-8. |
[19] | Leigh A, Sevanto S, Ball MC, Close JD, Ellsworth DS, Knight CA, Nicotra AB, Vogel S (2012). Do thick leaves avoid thermal damage in critically low wind speeds? New Phytologist, 194, 477-487. |
[20] | Li JQ, Song XY, Cao M (2016). Response of tree seedlings to altitudinal gradient and its seasonal variation in Ailao Mountain and Yulong Mountain, Yunnan Province, China. Chinese Journal of Applied Ecology, 27, 3403-3412. |
[20] | [李洁琼, 宋晓阳, 曹敏 (2016). 云南哀牢山和玉龙雪山森林树种幼苗对海拔梯度的响应及其季节性差异. 应用生态学报, 27, 3403-3412.] |
[21] | Li L, Zeng H, Guo DL (2013). Leaf venation functional traits and their ecological significance. Chinese Journal of Plant Ecology, 37, 691-698. |
[21] | [李乐, 曾辉, 郭大立 (2013). 叶脉网络功能性状及其生态学意义. 植物生态学报, 37, 691-698.] |
[22] | Li LH, Zhang YP, You GY, Yao YG, Tan ZH, Song QH, Luo YY (2011). Spatiotemporal distribution pattern of photosynthetically active radiation in subtropical evergreen broadleaved forest in Ailaoshan Mountains of Southwest China. Chinese Journal of Ecology, 30, 2394-2399. |
[22] | [李麟辉, 张一平, 游广永, 姚玉刚, 谭正洪, 宋清海, 罗有勇 (2011). 哀牢山亚热带常绿阔叶林光合有效辐射的时空分布. 生态学杂志, 30, 2394-2399.] |
[23] | Lin H, Chen YJ, Zhang HL, Fu PL, Fan ZX (2017). Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. Functional Ecology, 31, 2202-2211. |
[24] | Liu CC, Liu YG, Guo K (2011). Ecophysiological adaptations to drought stress of seedlings of four plant species with different growth forms in karst habitats. Chinese Journal of Plant Ecology, 35, 1070-1082. |
[24] | [刘长成, 刘玉国, 郭柯 (2011). 四种不同生活型植物幼苗对喀斯特生境干旱的生理生态适应性. 植物生态学报, 35, 1070-1082.] |
[25] | McDonald PG, Fonseca CR, Overton JM, Westoby M (2003). Leaf-size divergence along rainfall and soil-nutrient gradients: Is the method of size reduction common among clades? Functional Ecology, 17, 50-57. |
[26] | Meng Y, Jiang P, Fang Y (2020). Contrasting impacts of vapor pressure deficit on gross primary productivity in two typical grassland ecosystems in China. Chinese Journal of Ecology, 39, 3633-3642. |
[26] | [孟莹, 姜鹏, 方缘 (2020). 大气水分亏缺对中国两种典型草地生态系统总初级生产力的影响. 生态学杂志, 39, 3633-3642.] |
[27] | Michaletz ST, Weiser MD, Zhou JZ, Kaspari M, Helliker BR, Enquist BJ (2015). Plant thermoregulation: energetics, trait- environment interactions, and carbon economics. Trends in Ecology & Evolution, 30, 714-724. |
[28] | Milla R, Reich PB (2007). The scaling of leaf area and mass: the cost of light interception increases with leaf size. Proceedings of the Royal Society B, Biological Sciences, 274, 2109-2114. |
[29] | Niinemets ü (2001). Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology, 82, 453-469. |
[30] | Osnas JL, Lichstein JW, Reich PB, Pacala SW (2013). Global leaf trait relationships: mass, area, and the leaf economics spectrum. Science, 340, 741-744. |
[31] | Peppe DJ, Royer DL, Cariglino B, Oliver SY, Newman S, Leight E, Enikolopov G, Fernandez-Burgos M, Herrera F, Adams JM, Correa E, Currano ED, Erickson JM, Hinojosa LF, Hoganson JW, et al. (2011). Sensitivity of leaf size and shape to climate: global patterns and paleoclimatic applications. New Phytologist, 190, 724-739. |
[32] | Pierce S, Brusa G, Sartori M, Cerabolini BEL (2012). Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Annals of Botany, 109, 1047-1053. |
[33] | Poorter H, Niinemets ü, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist, 182, 565-588. |
[34] | Sack L, Cowan PD, Jaikumar N, Holbrook NM (2003). The “hydrology” of leaves: co-ordination of structure and function in temperate woody species. Plant, Cell & Environment, 26, 1343-1356. |
[35] | Sack L, Scoffoni C (2013). Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future. New Phytologist, 198, 983-1000. |
[36] | Schymanski SJ, Or D, Zwieniecki M (2013). Stomatal control and leaf thermal and hydraulic capacitances under rapid environmental fluctuations. PLoS ONE, 8, e54231. DOI: 10.1371/journal.pone.0054231. |
[37] | Shen R, Zhang JL, He B, Li F, Zhang ZM, Zhou R, Ou XK (2010). The structural characteristic and analysis on similarity of grassland community in dry-hot valley of Yuanjiang River. Ecology and Environmental Sciences, 19, 2821-2825. |
[37] | [沈蕊, 张建利, 何彪, 李峰, 张志明, 周睿, 欧晓昆 (2010). 元江流域干热河谷草地植物群落结构特征与相似性分析. 生态环境学报, 19, 2821-2825.] |
[38] | Shipley B, Lechowicz MJ, Wright I, Reich PB (2006). Fundamental trade-offs generating the worldwide leaf economics spectrum. Ecology, 87, 535-541. |
[39] | Tanaka Y, Shiraiwa T (2009). Stem growth habit affects leaf morphology and gas exchange traits in soybean. Annals of Botany, 104, 1293-1299. |
[40] | Terashima I, Hanba YT, Tholen D, Niinemets ü (2011). Leaf functional anatomy in relation to photosynthesis. Plant Physiology, 155, 108-116. |
[41] | Tian M, Yu GR, He NP, Hou JH (2016). Leaf morphological and anatomical traits from tropical to temperate coniferous forests: mechanisms and influencing factors. Scientific Reports, 6, 19703. DOI: 10.1038/srep19703. |
[42] | Westoby M, Wright IJ (2006). Land-plant ecology on the basis of functional traits. Trends in Ecology & Evolution, 21, 261-268. |
[43] | Woodward FI (1987). Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels. Nature, 327, 617-618. |
[44] | Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA, Leishman MR, Niinemets ü, Reich PB, Sack L, Villar R, et al. (2017). Global climatic drivers of leaf size. Science, 357, 917-921. |
[45] | Wright IJ, Reich PB, Cornelissen JH, Falster DS, Garnier E, Hikosaka K, Lamont BB, Lee W, Oleksyn J, Osada N, Poorter H, Villar R, Warton DI, Westoby M (2005). Assessing the generality of global leaf trait relationships. New Phytologist, 166, 485-496. |
[46] | Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, et al. (2004). The worldwide leaf economics spectrum. Nature, 428, 821-827. |
[47] | Yang KY, Gong HD, Li J, Liu YT, Sha LQ, Song QH, Jin YQ, Yang DX, Li PG, Wen GJ, Chen AG, Pang ZQ, Zhang YP (2020). Dynamic characteristics of soil respiration of savanna ecosystem in dry hot valley of Yuanjiang. Journal of Zhejiang A&F University, 37, 849-859. |
[47] | [杨开业, 巩合德, 李敬, 刘运通, 沙丽清, 宋清海, 金艳强, 杨大新, 李培广, 闻国静, 陈爱国, 庞志强, 张一平 (2020). 元江干热河谷稀树灌草丛生态系统土壤呼吸动态特征. 浙江农林大学学报, 37, 849-859.] |
[48] | Zhang SB, Guan ZJ, Sun M, Zhang JJ, Cao KF, Hu H (2012). Evolutionary association of stomatal traits with leaf vein density in Paphiopedilum, Orchidaceae. PLoS ONE, 7, e40080. DOI: 10.1371/journal.pone.0040080. |
[49] | Zhang WG, Xiao DR, Tian K, Chen GL, He RH, Zhang Y (2017). Response of radial growth of three conifer species to climate at their respective upper distributional limits on Yulong snow Mountain. Acta Ecologica Sinica, 37, 3796-3804. |
[49] | [张卫国, 肖德荣, 田昆, 陈广磊, 和荣华, 张贇 (2017). 玉龙雪山3个针叶树种在海拔上限的径向生长及气候响应. 生态学报, 37, 3796-3804.] |
[50] | Zhang Y, Yang SJ, Sun M, Cao KF (2014). Stomatal traits are evolutionarily associated with vein density in basal angiosperms. Plant Science Journal, 32, 320-328. |
[50] | [张亚, 杨石建, 孙梅, 曹坤芳 (2014). 基部被子植物气孔性状与叶脉密度的关联进化. 植物科学学报, 32, 320-328.] |
/
〈 |
|
〉 |