低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响
收稿日期: 2022-06-06
录用日期: 2022-10-10
网络出版日期: 2022-10-10
基金资助
青海省自然科学基金(2019-ZJ-7016);青海省创新平台建设专项(2017-ZJ-Y20);青海省创新平台建设专项(2021-ZJ-Y05)
Effects of low temperature on photochemical and non-photochemical energy dissipation of Kobresia pygmaea leaves
Received date: 2022-06-06
Accepted date: 2022-10-10
Online published: 2022-10-10
Supported by
Natural Science Foundation of Qinghai Province(2019-ZJ-7016);Construction Project for Innovation Platform of Qinghai Province(2017-ZJ-Y20);Construction Project for Innovation Platform of Qinghai Province(2021-ZJ-Y05)
低温是青藏高原地区植物生长季内频繁发生的非生物胁迫, 然而其对典型高山植物叶片光能利用和分配的影响如何, 尚缺乏研究。该研究以高寒草甸优势种高山嵩草(Kobresia pygmaea)为材料, 采用叶绿素荧光成像分析技术, 研究了低温对光系统II (PSII)光化学及非光化学猝灭中光诱导和非光诱导的量子产量相对份额的影响。结果表明: PSII最大光化学量子效率(Fv/Fm和1/Fo - 1/Fm)的最适温度在10 ℃左右, 且变异系数(CV)较小; PSII相对电子传递速率(rETR)的光响应曲线随温度降低而整体下移, 其初始斜率(α)也相应降低。低温逆境可引起PSII实际光化学量子效率(ΦPSII)和非光化学猝灭中非调节性能量耗散量子产量(ΦNO)的降低, 及调节性能量耗散量子产量(ΦNPQ)的增大, 并导致均值CV的增高。1 000 µmol·m−2·s−1稳态光强下, ΦPSII、ΦNPQ和ΦNO三组分的相对比率在20、10、5、0和-5 ℃分别为: 23:57:20、18:63:19、15:68:17、11:75:14和8:80:12。PSII反应中心光化学效率的相对限制(LPPFD)随温度降低而逐渐增大, 且光强越大其限制增强。一般线性模型的双因素方差分析表明, PSII光化学和非光化学能量耗散过程没有交互效应产生。尽管光化学能量转换和保护性的调节机制可有效分配激发能, 能避免ΦNO的增加, 但高山嵩草叶片的光合机构在维持运行的同时依然承受着来自低温的胁迫, 是影响植物光合生理过程及限制生长发育的重要因素。
关键词: 低温逆境; 光系统II非光化学猝灭; 高山嵩草; 青藏高原; 叶绿素荧光
师生波, 师瑞, 周党卫, 张雯 . 低温对高山嵩草叶片光化学和非光化学能量耗散特征的影响[J]. 植物生态学报, 2023 , 47(10) : 1441 -1452 . DOI: 10.17521/cjpe.2022.0227
Aims Kobresia pygmaea is a typical low temperature-tolerant arid mesophyte, and mainly distributes at low slope and high mountains ranging from 3 000 to 5 960 m on the Qingzang Plateau. Low temperature is a frequently occurring abiotic stress factor during the plants growing season on the Qingzang Plateau. The objectives of this study were to analyze the photochemical and non-photochemical energy distribution characteristics of the photosystem II (PSII) reaction center of K. pygmaea leaves, and explore their quenching protection mechanism in response to low temperature stress.
Methods Turf blocks (30 cm × 30 cm) of K. pygmaea meadow were collected from the Alpine Grassland Ecosystem Research Station of the Resource of Three Rivers, moved and kept in a culture room with air temperature of 24 °C/18 °C (day/night) at a diurnal photoperiod of 12 h and relative humidity of 45%; being irradiated with artificial LED light source of 500 µmol·m−2·s−1 light intensity. When the turf black had been kept in culture room for one day, the measurements of chlorophyll fluorescence were performed immediately using chlorophyll fluorescence imager with built-in protocol. The trial of light response curves at different leaf temperatures, temperature response at a steady-state light intensity and light-temperature interaction effects were performed at controlled temperature using thermostatic control instruments. Based on the “Lake Model”, the relative variation of the PSII actual photochemical efficiency (ΦPSII), the quantum yield of regulated energy dissipation (ΦNPQ) and non-regulated energy dissipation (ΦNO) were investigated. Furthermore, the interaction effects of low temperature and high light intensity was analyzed by two-way ANOVA of the general linear model (GLM).
Important findings The maximum quantum efficiency of PSII photochemistry (Fv/Fm and 1/Fo - 1/Fm) were higher at 10 °C and their coefficient of variation (CV) was smaller relative to other temperatures. The rapid light-response curves of the PSII relative electron transfer rate (rETR) showed a downward as a whole with the decreasing of temperature, and their initial slope (α) also decreased accordingly. Low temperature caused a decrease in ΦPSII and ΦNO, and an increase in ΦNPQ, accompanied with enhancement of CV values. Under 1 000 µmol·m−2·s−1 steady-state light intensity, the relative ratios of ΦPSII:ΦNPQ:ΦNO at the temperature of 20, 10, 5, 0, and -5 °C were in turn 23:57:20, 18:63:19, 15:68:17, 11:75:14, and 8:80:12, showing remarkable decrease in ΦPSII and increase in ΦNPQ. The relative limitation of PSII photochemical efficiency (LPPFD) increased gradually with the increase of light intensity, and also with the decrease of temperature. The two-way ANOVA of GLM showed that there were no interaction effects of low temperature and high light intensity in both PSII photochemical and non-photochemical energy dissipation processes. Therefore, the excited energy absorbed by PSII antenna pigments can be transferred and dissipated effectively by the photochemical energy conversion of ΦPSII and protective regulatory mechanisms of ΦNPQ avoiding the exacerbation of ΦNO, which exhibited a strong tolerance and adaptation to alpine habitats. However, the increased instability of photosynthetic activities at low temperatures indicated that the photosynthetic apparatus of K. pygmaea still suffer the stress while maintaining normal operation. It can be inferred that the low temperature is an important factor affecting the photosynthetic physiological process and limiting growth and development and its distribution.
[1] | Baker NR (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology, 59, 89-113. |
[2] | Baker NR, Rosenqvist E (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany, 55, 1607-1621. |
[3] | Bilger W, Bj?rkman O (1990). Role of the xanthophyll cycle in photoprotection elucidated by measurements of light- induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research, 25, 173-185. |
[4] | Costa-Broseta á, Perea-Resa C, Castillo MC, Ruíz MF, Salinas J, León J (2019). Nitric oxide deficiency decreases C-repeat binding factor-dependent and -independent induction of cold acclimation. Journal of Experimental Botany, 70, 3283-3296. |
[5] | Genty B, Briantais JM, Baker NR (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta, 990, 87-92. |
[6] | Govindjee (2002). A role for a light-harvesting antenna complex of photosystem II in photoprotection. The Plant Cell, 14, 1663-1668. |
[7] | Guarini JM, Morita C (2009). Modelling the dynamics of the electron transport rate measured by PAM fluorimetry during rapid light curve experiments. Photosynthetica, 47, 206-214. |
[8] | Hendrickson L, Furbank RT, Chow WS (2004). A simple alternative approach to assessing the fate of absorbed light energy using chlorophyll fluorescence. Photosynthesis Research, 82, 73-81. |
[9] | Ke YY, Chen X, Ni QQ, Zhang LL, Liu LZ, Xu H, Wei FZ, Li JC (2021). Research progress of the metabolism of reactive oxygen species and its regulation mechanisms in wheat under low temperature stress. Barley and Cereal Sciences, 38(1), 1-6. |
[9] | [柯媛媛, 陈翔, 倪芊芊, 张乐乐, 刘绿洲, 许辉, 魏凤珍, 李金才 (2021). 低温逆境胁迫下小麦ROS代谢及调控研究进展. 大麦与谷类科学, 38(1), 1-6.] |
[10] | Kramer DM, Johnson G, Kiirats O, Edwards GE (2004). New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research, 79, 209-218. |
[11] | Larcher W (1980). Physiological Plant Ecology. 2nd ed. Spring-Verlag, New York. 5-60. |
[12] | Li XJ, Cui HJ (2018). Research progress on the physiological response of plants to environmental stress. Shandong Forestry Science and Technology, 48(6), 90-94. |
[12] | [李晓靖, 崔海军 (2018). 低温胁迫下植物光合生理研究进展. 山东林业科技, 48(6), 90-94.] |
[13] | Li YK, Lin L, Zhang FW, Liang DY, Wang X, Cao GM (2010). Kobresia pygmaea community—Disclimax of alpine meadow zonal vegetation in the pressure of grazing. Journal of Mountain Science, 28, 257-265. |
[13] | [李以康, 林丽, 张法伟, 梁东营, 王溪, 曹广民 (2010). 小嵩草群落——高寒草甸地带性植被放牧压力下的偏途顶极群落. 山地学报, 28, 257-265.] |
[14] | Lima Neto MC, Lobo AKM, Martins MO, Fontenele AV, Silveira JAG (2014). Dissipation of excess photosynthetic energy contributes to salinity tolerance: a comparative study of salt-tolerant Ricinus communis and salt-sensitive Jatropha curcas. Journal of Plant Physiology, 171, 23-30. |
[15] | Liu B, Wang XY, Cao Y, Arora R, Zhou H, Xia YP (2020). Factors affecting freezing tolerance: a comparative transcriptomics study between field and artificial cold acclimations in overwintering evergreens. The Plant Journal, 103, 2279-2300. |
[16] | Lu CF, Jian LC, Ben GY (2000). Photosynthesis in alpine plant Lagotis brevituba and its response to freezing stress. Chinese Bulletin of Botany, 17, 559-564. |
[16] | [卢存福, 简令成, 贲桂英 (2000). 高山植物短管兔儿草光合作用特性及其对冰冻胁迫的反应. 植物学通报, 17, 559-564.] |
[17] | Maxwell K, Johnson GN (2000). Chlorophyll fluorescence—A practical guide. Journal of Experimental Botany, 51, 659-668. |
[18] | Miehe G, Miehe S, Kaiser K, Liu JQ, Zhao XQ (2008). Status and dynamics of the Kobresia pygmaea ecosystem on the Tibetan Plateau. Ambio, 37, 258-265. |
[19] | Miehe G, Schleuss PM, Seeber E, Babel W, Biermann T, Braendle M, Chen FH, Coners H, Foken T, Gerken T, Graf HF, Guggenberger G, Hafner S, Holzapfel M, Ingrisch J, et al. (2019). The Kobresia pygmaea ecosystem of the Tibetan highlands—Origin, functioning and degradation of the world’s largest pastoral alpine ecosystem Kobresia pastures of Tibet. Science of the Total Environment, 648, 754-771. |
[20] | Murchie EH, Niyogi KK (2011). Manipulation of photoprotection to improve plant photosynthesis. Plant Physiology, 155, 86-92. |
[21] | Niyogi KK, Truong TB (2013). Evolution of flexible non- photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Current Opinion in Plant Biology, 16, 307-314. |
[22] | Oxborough K, Baker NR (1997). Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components— Calculation of qP and Fv′/Fm′ without measuring Fo′. Photosynthesis Research, 54, 135-142. |
[23] | Peng SM, Du QY, Lin AW, Hu B, Xiao K, Xi YL (2015). Observation and estimation of photosynthetically active radiation in Lhasa (Tibetan Plateau). Advances in Space Research, 55, 1604-1612. |
[24] | Sáez PL, Bravo LA, Latsague MI, Toneatti MJ, Sánchez-Olate M, Ríos DG (2013). Light energy management in micropropagated plants of Castanea sativa, effects of photoinhibition. Plant Science, 201- 202, 12-24. |
[25] | Schreiber U, Bilger W, Neubauer C (1995). Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis//Schulze ED, Caldwell MM. Ecophysiology of Photosynthesis. Springer-Verlag, Berlin, Heideberg. 49-70. |
[26] | Shi SB, Li TC, Li M, Liu SZ, Li AD, Ma JP (2015). Interaction effect analysis of soil drought and strong light on PSII non-photochemical quenching in Kobresia pygmaea leaves. Plant Physiology Journal, 51, 1678-1689. |
[26] | [师生波, 李天才, 李妙, 刘世增, 李爱德, 马剑平 (2015). 土壤干旱和强光对高山嵩草叶片PSII反应中心非光化学猝灭的交互影响分析. 植物生理学报, 51, 1678-1689.] |
[27] | Shi SB, Zhou DW, Li TC, De KJ, Gao XZ, Ma JL, Sun T, Wang FL (2023). Responses of photosynthetic function of Kobresia pygmaea to overnight low temperature on the Qingzang Plateau. Chinese Journal of Plant Ecology, 47, 361-373. |
[27] | [师生波, 周党卫, 李天才, 德科加, 杲秀珍, 马家麟, 孙涛, 王方琳 (2023). 青藏高原高山嵩草光合功能对模拟夜间低温的响应. 植物生态学报, 47, 361-373.] |
[28] | Sun BG, Long RJ, Wang CT (2007). A study on the plant population phenology in Qinghai-Tibet Plateau Kobrecia pygmaea meadow. Pratacultural Science, 24, 16-20. |
[28] | [孙步功, 龙瑞军, 王长庭 (2007). 青藏高原冷龙岭南麓高寒小嵩草草甸植物种群物候学研究. 草业科学, 24, 16-20.] |
[29] | Tikkanen M, Mekala NR, Aro EM (2014). Photosystem II photoinhibition-repair cycle protects photosystem I from irreversible damage. Biochimica et Biophysica Acta, 1837, 210-215. |
[30] | Valizadeh-Kamran R, Toorchi M, Mogadam M, Mohammadi H, Pessarakli M (2018). Effects of freeze and cold stress on certain physiological and biochemical traits in sensitive and tolerant barley (Hordeum vulgare) genotypes. Journal of Plant Nutrition, 41, 102-111. |
[31] | Wang CT, Long RJ, Ding LM (2004). Study of alpine meadow of basic characteristic in Qinghai Tibet Plateau. Pratacultural Science, 21, 16-19. |
[31] | [王长庭, 龙瑞军, 丁路明 (2004). 青藏高原高寒嵩草草甸基本特征的研究. 草业科学, 21, 16-19.] |
[32] | Wang WY, Wang QJ, Deng ZF (1998). Communities structural characteristic and plant distribution pattern in alpine Kobresia pygmaea meadow, Haibei region of Qinghai Province. Acta Phytoecologica Sinica, 22, 336-343. |
[32] | [王文颖, 王启基, 邓自发 (1998). 青海海北地区高山嵩草草甸植物群落的结构特征及其分布格局. 植物生态学报, 22, 336-343.] |
[33] | Wang YJ, Wei XH, Yang P (2005). Effects of over-grazing on vegetation degradation of Kobresia pygmaea meadow in Nagqu, Tibet. Journal of Lanzhou University (Natural Sciences), 41, 32-38. |
[33] | [王亚军, 魏兴琥, 杨萍 (2005). 超载放牧对那曲地区高山嵩草草甸植被退化的影响. 兰州大学学报(自然科学版), 41, 32-38.] |
[34] | Wu FZ, Wang HX, Xu GH, Zhang ZC (2015). Research progress on the physiological and molecular mechanisms of woody plants under low temperature stress. Scientia Silvae Sinicae, 51(7), 116-128. |
[34] | [乌凤章, 王贺新, 徐国辉, 张自川 (2015). 木本植物低温胁迫生理及分子机制研究进展. 林业科学, 51(7), 116-128.] |
[35] | Xiang HT, Zheng DF, He N, Li W, Wang ML, Wang SY (2021). Research progress on the physiological response of plants to low temperature and the amelioration effectiveness of exogenous ABA. Acta Prataculturae Sinica, 30, 208-219. |
[35] | [项洪涛, 郑殿峰, 何宁, 李琬, 王曼力, 王诗雅 (2021). 植物对低温胁迫的生理响应及外源脱落酸缓解胁迫效应的研究进展. 草业学报, 30, 208-219.] |
[36] | Xu DQ (2002). Photosynthetic Efficiency. Shanghai Scientific and Technical Press, Shanghai. |
[36] | [许大全 (2002). 光合作用效率. 上海科学技术出版社, 上海.] |
[37] | Yamori W, Hikosaka K, Way DA (2014). Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynthesis Research, 119, 101-117. |
[38] | Yu BH, Lu CH (2011). Assessment of ecological vulnerability on the Tibetan Plateau. Geographical Research, 30, 2289-2295. |
[38] | [于伯华, 吕昌河 (2011). 青藏高原高寒区生态脆弱性评价. 地理研究, 30, 2289-2295.] |
[39] | Zhang XS (1978). The plateau zonality of vegetation in Xizang. Acta Botanica Sinica, 20, 140-149. |
[39] | [张新时 (1978). 西藏高原植被的高原地带性. 植物学报, 20, 140-149.] |
[40] | Zhou J, Zeng XY, He W, Li JY, Zhang W, Li XQ (2016). Mechanism of chilling injury in Jacaranda acutifolia Humb. et Bonpl. under chilling stress. Southwest China Journal of Agricultural Sciences, 29, 74-80. |
[40] | [周静, 曾学英, 贺维, 李佳泳, 张炜, 李晓清 (2016). 低温胁迫下蓝花楹的耐寒生理机制分析. 西南农业学报, 29, 74-80.] |
[41] | Zhou XM (2001). Chinese Kobresia Meadow. Science Press, Beijing. |
[41] | [周兴民 (2001). 中国嵩草草甸. 科学出版社, 北京.] |
/
〈 |
|
〉 |