研究论文

太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素

展开
  • 1陕西省地表系统与环境承载力重点实验室, 西北大学城市与环境学院, 西安 710127
    2西北大学陕西省碳中和技术重点实验室, 西安 710127
    3西北大学生命科学学院, 西安 710127
    4西北农林科技大学农学院, 陕西杨凌 712100

收稿日期: 2022-03-09

  录用日期: 2022-07-06

  网络出版日期: 2022-10-11

基金资助

青海省2021年度第一批中央引导地方科技发展专项(2021ZY002);教育部“春晖计划”合作科研项目

Differences and influencing factors of microbial carbon use efficiency in forest rhizosphere soils at different altitudes in Taibai Mountain, China

Expand
  • 1Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environment Science, Northwest University, Xi’an 710127, China
    2Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi’an 710127, China
    3The College of Life Sciences, Northwest University, Xi’an 710127, China
    4College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China

Received date: 2022-03-09

  Accepted date: 2022-07-06

  Online published: 2022-10-11

Supported by

2021 First Funds for Central Government to Guide Local Science and Technology Development in Qinghai Province(2021ZY002);Ministry of Education “Chunhui Plan” Cooperative Scientific Research Project

摘要

探索森林根际土壤微生物碳利用效率(CUE)是权衡森林生态系统微生物合成代谢和分解代谢强弱的关键过程。然而不同海拔森林根际土壤微生物CUE的变化规律与影响因子尚不清楚。该研究选取秦岭太白山6个不同海拔的森林根际土壤为研究对象, 测定其理化性质、胞外酶活性、微生物群落与植被特征等指标, 利用酶化学计量比计算微生物CUE, 分析根际土壤微生物CUE沿海拔梯度的变化规律, 定量研究其影响因子。结果表明: 根际土壤微生物CUE随海拔升高总体呈上升趋势。CUE从最低海拔的0.505至最高海拔的0.527升高了4.36%, 但在海拔1 603和2 405 m处出现了下降。海拔梯度内根际土壤微生物CUE变化受多种环境因子综合影响, 土壤基质的影响(如可溶性有机碳和铵态氮含量)占主导地位, 植被因子次之, 二者分别解释了CUE变化的17.0%和5.7%, 且二者相互作用解释了CUE变化的31.9%。研究结果可为秦岭森林土壤微生物碳同化能力和固碳潜力, 以及全球变化背景下森林土壤碳循环提供科学依据。

本文引用格式

张尧, 陈岚, 王洁莹, 李益, 王俊, 郭垚鑫, 任成杰, 白红英, 孙昊田, 赵发珠 . 太白山不同海拔森林根际土壤微生物碳利用效率差异性及其影响因素[J]. 植物生态学报, 2023 , 47(2) : 275 -288 . DOI: 10.17521/cjpe.2022.0090

Abstract

Aims Under the background of changing carbon cycle process in forest ecosystems caused by global environmental change, the microbial carbon use efficiency (CUE) in forest rhizosphere soil is critical to determine the strength of microbial anabolism and catabolism in forest ecosystems. However, the variation and influencing factors of microbial CUE in rhizosphere soils at different altitudes remain undetermined.

Methods Rhizosphere soil at six different altitudes spanning four forest belts in Taibai Mountain was sampled to determine the physical and chemical properties, extracellular enzyme activity, and characteristics of microbial community and vegetation. Based on the stoichiometric ratio, the soil microbial CUE was estimated. Furthermore, the variation in microbial CUE of rhizosphere soil along the altitude gradient was analyzed to quantify the influencing factors of microbial CUE.

Important findings The results showed that the microbial CUE of rhizosphere soil exhibited an overall upward trend with the increase in altitude. The microbial CUE increased by 4.36% from 0.505 at the lowest altitude to 0.527 at the highest altitude, but decreased at 1 603 and 2 405 m. Based on the Mantel analysis, we identified four categories of factors (i.e., altitude, soil matrix, vegetation and microbe) that related to microbial CUE in rhizosphere soil. The variations of microbial CUE in rhizosphere soil are affected by multiple environmental factors, with the dominant factor being soil matrix (such as dissolved organic carbon (DOC) content, ammonium nitrogen (NH+4-N) content), followed by vegetation. Furthermore, the altitude factor and the microbial factor explained 2.6% and 3.1% of the CUE change, respectively. Although the microbial factors exerted no significant impact on microbial CUE, soil matrix, vegetation and microbe jointly explained 47.0% of the microbial CUE change. The variance partitioning analysis (VPA) quantitatively revealed the contribution of environmental factors to the change of microbial CUE, where soil matrix and vegetation explained 17.0% and 5.7% of the variation, respectively. While the interaction between soil matrix and vegetation accounted for 31.9% of the changes in microbial CUE. The above results indicated that the high-altitude rhizosphere soil in Taibai Mountain has a high carbon sequestration potential, and the carbon sequestration of forest rhizosphere soil may decrease with the intensification of global warming. The vertical temperature difference and the vertical differentiation of the vegetation belt induced by altitude gradient will alter the growth and metabolism environment of microorganisms in the rhizosphere soil. The comprehensive effect of multiple environmental factors dominated by soil matrix impacts the CUE of soil microorganisms, and ultimately changes the assimilation and catabolism processes of soil carbon. The results of this study can provide a scientific basis for the carbon assimilation capacity and carbon sequestration potential of forest soil microorganisms in Qinling Mountains, as well as the forest soil carbon cycle under the background of global change.

参考文献

[1] Allison SD, Wallenstein MD, Bradford MA (2010). Soil-carbon response to warming dependent on microbial physiology. Nature Geoscience, 3, 336-340.
[2] Bao SD (2000). Soil and Agricultural Chemistry Analysis. 3rd ed. China Agriculture Press, Beijing.
[2] [鲍士旦 (2000). 土壤农化分析. 3版. 中国农业出版社, 北京.]
[3] Bever JD (2003). Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist, 157, 465-473.
[4] Biddle JF, Fitz-Gibbon S, Schuster SC, Brenchley JE, House CH (2008). Metagenomic signatures of the Peru Margin subseafloor biosphere show a genetically distinct environment. Proceedings of the National Academy of Sciences of the United States of America, 105, 10583-10588.
[5] Cao CY, Shao JF, Jiang DM, Cui ZB (2011). Effects of fence enclosure on soil nutrients and biological activities in highly degraded grasslands. Journal of Northeastern University (Natural Science), 32, 427-430.
[5] [曹成有, 邵建飞, 蒋德明, 崔振波 (2011). 围栏封育对重度退化草地土壤养分和生物活性的影响. 东北大学学报(自然科学版), 32, 427-430.]
[6] Cao R, Wu FZ, Yang WQ, Xu ZF, Tan B, Wang B, Li J, Chang CH (2016). Effects of altitudes on soil microbial biomass and enzyme activity in alpine-gorge regions. Chinese Journal of Applied Ecology, 27, 1257-1264.
[6] [曹瑞, 吴福忠, 杨万勤, 徐振锋, 谭波, 王滨, 李俊, 常晨晖 (2016). 海拔对高山峡谷区土壤微生物生物量和酶活性的影响. 应用生态学报, 27, 1257-1264.]
[7] Chen Z, Yu GR (2020). Advances in the soil microbial carbon use efficiency. Acta Ecologica Sinica, 40, 756-767.
[7] [陈智, 于贵瑞 (2020). 土壤微生物碳素利用效率研究进展. 生态学报, 40, 756-767.]
[8] Chu HY, Wang YF, Shi Y, Lyu XT, Zhu YG, Han XG (2017). Current status and development trend of soil microbial biogeography. Bulletin of Chinese Academy of Sciences, 32, 585-592.
[8] [褚海燕, 王艳芬, 时玉, 吕晓涛, 朱永官, 韩兴国 (2017). 土壤微生物生物地理学研究现状与发展态势. 中国科学院院刊, 32, 585-592.]
[9] Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013). The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Global Change Biology, 19, 988-995.
[10] Cui YX, Wang X, Zhang XC, Ju WL, Duan CJ, Guo XB, Wang YQ, Fang LC (2020). Soil moisture mediates microbial carbon and phosphorus metabolism during vegetation succession in a semiarid region. Soil Biology & Biochemistry, 147, 107814. DOI: 10.1016/j.soilbio.2020.107814.
[11] Curl EA, Truelove B (1986). The Rhizosphere. Springer, Berlin.
[12] del Giorgio PA, Cole JJ (1998). Bacterial growth efficiency in natural aquatic systems. Annual Review of Ecology and Systematics, 29, 503-541.
[13] Dijkstra P, Thomas SC, Heinrich PL, Heinrich PL, Koch GW, Schwartz E, Hungate BA (2011). Effect of temperature on metabolic activity of intact microbial communities: evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency. Soil Biology & Biochemistry, 43, 2023-2031.
[14] Fang JY, Shen ZH, Tang ZY, Wang ZH (2004). The protocol for the survey plan for plant species diversity of China’s Mountains. Chinese Biodiversity, 12, 5-9.
[14] [方精云, 沈泽昊, 唐志尧, 王志恒 (2004). “中国山地植物物种多样性调查计划”及若干技术规范. 生物多样性, 12, 5-9.]
[15] Guo ZM, Zhang XY, Li DD, Dong WT, Li ML (2017). Characteristics of soil organic carbon and related exo-enzyme activities at different altitudes in temperate forests. Chinese Journal of Applied Ecology, 28, 2888-2896.
[15] [郭志明, 张心昱, 李丹丹, 董文亭, 李美玲 (2017). 温带森林不同海拔土壤有机碳及相关胞外酶活性特征. 应用生态学报, 28, 2888-2896.]
[16] Hagerty SB, van Groenigen KJ, Allison SD, Hungate BA, Schwartz E, Koch GW, Kolka RK, Dijkstra P (2014). Accelerated microbial turnover but constant growth efficiency with warming in soil. Nature Climate Change, 4, 903-906.
[17] Han XM, Huang ZY, Cheng F, Yang M (2020). Physiochemical properties and microbial community characteristics of rhizosphere soil in Parashorea chinensis plantation. Chinese Journal of Applied Ecology, 31, 3365-3375.
[17] [韩小美, 黄则月, 程飞, 杨梅 (2020). 望天树人工林根际土壤理化性质及微生物群落特征. 应用生态学报, 31, 3365-3375.]
[18] He H (2014). Study on Response of Taibai Mountain High Altitude Timberline to Temperature Change Based on RS and DEM. Master degree dissertation, Northwest University, Xi’an.
[18] [何红 (2014). 基于RS和DEM的太白山高山林线对气温变化响应的研究. 硕士学位论文, 西北大学, 西安.]
[19] Herron PM, Stark JM, Holt C, Hooker T, Cardon ZG (2009). Microbial growth efficiencies across a soil moisture gradient assessed using 13C-acetic acid vapor and 15N-ammonia gas. Soil Biology & Biochemistry, 41, 1262-1269.
[20] Hu ZY, Wang GX, Sun XY, Wang J, Chen XP, Song CL, Song XY, Lin S (2019). Variations in belowground carbon use strategies under different climatic conditions. Agricultural and Forest Meteorology, 268, 32-39.
[21] Jones DL, Hill PW, Smith AR, Farrell M, Ge T, Banning NC, Murphy DV (2018). Role of substrate supply on microbial carbon use efficiency and its role in interpreting soil microbial community-level physiological profiles (CLPP). Soil Biology & Biochemistry, 123, 1-6.
[22] Keiblinger KM, Hall EK, Wanek W, Szukics U, H?mmerle I, Ellersdorfer G, B?ck S, Strauss J, Sterflinger K, Richter A, Zechmeister-Boltenstern S (2010). The effect of resource quantity and resource stoichiometry on microbial carbon-use-efficiency. FEMS Microbiology Ecology, 73, 430-440.
[23] Lee ZM, Schmidt TM (2014). Bacterial growth efficiency varies in soils under different land management practices. Soil Biology & Biochemistry, 69, 282-290.
[24] Li DW (2016). Spatial Variation Pattern of Soil Microorganism and Soil Enzyme Activity in Different Altitude at Taibai Mountain. Master degree dissertation, Northwest A&F University, Yangling, Shaanxi.
[24] [李丹维 (2016). 太白山不同海拔土壤微生物及酶活性的空间变异特征. 硕士学位论文, 西北农林科技大学, 陕西杨凌.]
[25] Liang C, Zhu XF (2021). The soil microbial carbon pump as a new concept for terrestrial carbon sequestration. Scientia Sinica (Terrae), 51, 680-695.
[25] [梁超, 朱雪峰 (2021). 土壤微生物碳泵储碳机制概论. 中国科学: 地球科学, 51, 680-695.]
[26] Liu YJ, Fan DD, Li XZ, Zhao WQ, Kou YP (2021). Diversity and network features of fungal community in the soils of planted and natural Picea asperata forests. Chinese Journal of Applied Ecology, 32, 1441-1451.
[26] [刘艳娇, 樊丹丹, 李香真, 赵文强, 寇涌苹 (2021). 人工与天然云杉林土壤真菌群落多样性及菌群网络关系特征. 应用生态学报, 32, 1441-1451.]
[27] Liu ZX, Zhu TH, Zhang J (2005). Research advances in root exudates and rhizosphere microorganisms of forest trees. World Forestry Research, 18, 25-31.
[27] [刘子雄, 朱天辉, 张建 (2005). 林木根系分泌物与根际微生物研究进展. 世界林业研究, 18, 25-31.]
[28] Lü K, Wang JJ, Wu GP, Lin SN, Su YG, Huang G (2022). Elevational pattern and control factors of soil microbial carbon use efficiency in the Daiyun Mountain. Environmental Science, 43, 4364-4371.
[28] [吕坤, 王晶晶, 吴国朋, 林思诺, 苏延桂, 黄刚 (2022). 戴云山土壤微生物碳源利用效率的海拔变异规律及影响因素. 环境科学, 43, 4364-4371.]
[29] Lu YH, Zhang FS (2006). The advances in rhizosphere microbiology. Soils, 38, 113-121.
[29] [陆雅海, 张福锁 (2006). 根际微生物研究进展. 土壤, 38, 113-121.]
[30] Luo Z, Feng W, Luo Y, Baldock J, Wang E (2017). Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions. Global Change Biology, 23, 4430-4439.
[31] Ma ZL, Zhao WQ, Liu M (2019). Responses of polyphenoloxidase and catalase activities of rhizosphere and bulk soils to warming during the growing season in an alpine scrub ecosystem. Chinese Journal of Applied Ecology, 30, 3681-3688.
[31] [马志良, 赵文强, 刘美 (2019). 高寒灌丛生长季根际和非根际土壤多酚氧化酶和过氧化氢酶活性对增温的响应. 应用生态学报, 30, 3681-3688.]
[32] Manzoni S, Taylor P, Richter A, Porporato A, ?gren GI (2012). Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytologist, 196, 79-91.
[33] Mukherjee PK, Chandra J, Retuerto M, Sikaroodi M, Brown RE, Jurevic R, Salata RA, Lederman MM, Gillevet PM, Ghannoum MA (2014). Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLoS Pathogens, 10, e1003996. DOI: 10.1371/journal.ppat.1003996.
[34] Qiao Y, Wang J, Liang GP, Du ZG, Zhou J, Zhu C, Huang K, Zhou XH, Luo YQ, Yan LM, Xia JY (2019). Global variation of soil microbial carbon-use efficiency in relation to growth temperature and substrate supply. Scientific Reports, 9, 5621. DOI: 10.1038/S41598-019-42145-6.
[35] Ren CJ (2018). Effects of Plant-Soil Collaborative Recovery and Microbial Responses in the Loess Plateau. PhD dissertation, Northwest A&F University, Yangling, Shaanxi.
[35] [任成杰 (2018). 黄土高原植被-土壤协同恢复效应及微生物响应机理. 博士学位论文, 西北农林科技大学, 陕西杨凌.]
[36] Saiya-Cork KR, Sinsabaugh RL, Zak DR (2002). The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biology & Biochemistry, 34, 1309-1315.
[37] Shao YH, Zhang WX, Liu SJ, Wang XL, Fu SL (2015). Diversity and function of soil fauna. Acta Ecologica Sinica, 35, 6614-6625.
[37] [邵元虎, 张卫信, 刘胜杰, 王晓丽, 傅声雷 (2015). 土壤动物多样性及其生态功能. 生态学报, 35, 6614-6625.]
[38] Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A (2013). Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecology Letters, 16, 930-939.
[39] Sinsabaugh RL, Turner BL, Talbot JM, Waring BG, Powers JS, Kuske CR, Moorhead DL, Follstad Shah JJ(2016). Stoichiometry of microbial carbon use efficiency in soils. Ecological Monographs, 86, 172-189.
[40] Soares M, Rousk J (2019). Microbial growth and carbon use efficiency in soil: links to fungal-bacterial dominance, SOC-quality and stoichiometry. Soil Biology & Biochemistry, 131, 195-205.
[41] Su SF, Lin ZP, Wang XY, Chen ZL, Xue Y (2020). Vegetation survey and species diversity analysis of waste titanium mining area in Wenchang. Chinese Journal of Tropical Agriculture, 40(1), 59-66.
[41] [宿少锋, 林之盼, 王小燕, 陈珠琳, 薛杨 (2020). 海南文昌废弃钛矿区植被调查与物种多样性分析. 热带农业科学, 40(1), 59-66.]
[42] Takriti M, Wild B, Schnecker J, Mooshammer M, Knoltsch A, Lashchinskiy N, Eloy Alves RJ, Gentsch N, Gittel A, Mikutta R, Wanek W, Richter A (2018). Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect. Soil Biology & Biochemistry, 121, 212-220.
[43] Tiemann LK, Billings SA (2011). Changes in variability of soil moisture alter microbial community C and N resource use. Soil Biology & Biochemistry, 43, 1837-1847.
[44] Tucker CL, Jennifer B, Elise P, Kiona O (2013). Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Global Change Biology, 19, 252-263.
[45] Wang C, Qu L, Yang L, Liu D, Morrissey E, Miao R, Liu Z, Wang Q, Fang Y, Bai E (2021). Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon. Global Change Biology, 27, 2039-2048.
[46] Wang Q, Geng ZC, Xu CY, Guo JY, Li QQ, Liu LL, Zhao HH, Du XG (2020). Effects of biochar application on soil microbial nutrient limitations and carbon use efficiency in Lou soil. Environmental Science, 41, 2425-2433.
[46] [王强, 耿增超, 许晨阳, 郭靖宇, 李倩倩, 刘莉丽, 赵汉红, 杜旭光 (2020). 施用生物炭对塿土土壤微生物代谢养分限制和碳利用效率的影响. 环境科学, 41, 2425-2433.]
[47] Wang Y, Zong N, He NP, Zhang JJ, Tian J, Li LT (2018). Soil microbial functional diversity patterns and drivers along an elevation gradient on Qinghai-Tibet, China. Acta Ecologica Sinica, 38, 5837-5845.
[47] [王颖, 宗宁, 何念鹏, 张晋京, 田静, 李良涛 (2018). 青藏高原高寒草甸不同海拔梯度下土壤微生物群落碳代谢多样性. 生态学报, 38, 5837-5845.]
[48] Widdig M, Schleuss PM, Biederman LA, Borer ET, Crawley MJ, Kirkman KP, Seabloom EW, Wragg PD, Spohn M (2020). Microbial carbon use efficiency in grassland soils subjected to nitrogen and phosphorus additions. Soil Biology & Biochemistry, 146, 107815. DOI: 10.1016/j.soilbio.2020.107815.
[49] Zheng Q, Hu Y, Zhang S, Noll L, B?ckle T, Richter A, Wanek W (2019). Growth explains microbial carbon use efficiency across soils differing in land use and geology. Soil Biology & Biochemistry, 128, 45-55.
[50] Zhou WJ, Lü DG, Qin SJ (2016). Research progress in interaction between plant and rhizosphere microorganism. Journal of Jilin Agricultural University, 38, 253-260.
[50] [周文杰, 吕德国, 秦嗣军 (2016). 植物与根际微生物相互作用关系研究进展. 吉林农业大学学报, 38, 253-260.]
[51] Zhou ZH, Wang CK (2016). Responses and regulation mechanisms of microbial decomposers to substrate carbon, nitrogen, and phosphorus stoichiometry. Chinese Journal of Plant Ecology, 40, 620-630.
[51] [周正虎, 王传宽 (2016). 微生物对分解底物碳氮磷化学计量的响应和调节机制. 植物生态学报, 40, 620-630.]
文章导航

/