研究论文

青藏高原那曲高山嵩草草甸植物物候对增温的异步响应

展开
  • 1北京林业大学生态与自然保护学院, 北京 100083
    2中国科学院地理科学与资源研究所生态系统网络观测与模拟重点实验室, 那曲高寒草地生态系统野外科学观测研究站, 北京 100101
    3北京大学深圳研究生院, 广东深圳 518055

收稿日期: 2022-04-21

  录用日期: 2022-10-18

  网络出版日期: 2022-10-21

基金资助

国家自然科学基金(U20A2009);国家自然科学基金(41991234);国家自然科学基金(42077422);国家重点研发计划(2017YFA0604802)

Asynchronous response of plant phenology to warming in a Kobresia pygmaea meadow in Nagqu, Qingzang Plateau

Expand
  • 1School of Ecology and Nature Conservation, Beijing Forestry University, Beijing 100083, China
    2Nagqu Alpine Grassland Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    3Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China

Received date: 2022-04-21

  Accepted date: 2022-10-18

  Online published: 2022-10-21

Supported by

National Natural Science Foundation of China(U20A2009);National Natural Science Foundation of China(41991234);National Natural Science Foundation of China(42077422);National Key R&D Program of China(2017YFA0604802)

摘要

植物物候对气候变暖的响应是全球气候变化研究的重要内容。目前, 高海拔生态系统植物物候对气候变暖响应的研究仍然较少。该研究依托西藏那曲高寒草地生态系统国家野外科学观测研究站布设的梯度增温实验, 分别于2015、2017、2018和2021年对模拟增温下优势物种高山嵩草(Kobresia pygmaea)和钉柱委陵菜(Potentilla saundersiana)返青期、现蕾期和开花期等表征植物物候的指标进行了观测, 以期揭示增温下藏北高寒草甸植物物候变化机制。结果表明: 随着温度升高, 高寒草甸中优势植物物候具有不同的变化趋势。高山嵩草返青、现蕾和开花物候期的推迟幅度与温度升高幅度呈正相关关系; 钉柱委陵菜返青、现蕾和开花时间随着温度上升表现为先提前后推迟; 这表明高寒草甸植物物候对增温产生异步响应。此外, 长期增温下的藏北高寒草甸优势种的物候变化均显示出了延迟效应。结构方程归因分析发现, 空气温度升高促使高山嵩草返青时间推迟; 低水平增温可以促进钉柱委陵菜物候提前, 而随着温度继续升高其物候响应发生逆转, 土壤水分在决定物候对气候变暖响应的幅度和方向上具有关键作用。该研究结果揭示了藏北高寒草甸优势植物物候响应气候变暖的异步性特征, 为预测未来高海拔生态系统对气候变化的响应提供了数据支撑。

本文引用格式

夏璟钰, 张扬建, 郑周涛, 赵广, 赵然, 朱艺旋, 高洁, 沈若楠, 李文宇, 郑家禾, 张雨雪, 朱军涛, 孙建新 . 青藏高原那曲高山嵩草草甸植物物候对增温的异步响应[J]. 植物生态学报, 2023 , 47(2) : 183 -194 . DOI: 10.17521/cjpe.2022.0156

Abstract

Aims The response of plant phenology to climate warming is an important element of global change research. At present, studies on plant phenology response to climate warming are in severe shortage for high-altitude ecosystems, especially regarding responses to multiple-level warming.

Methods We conducted a multiple-level warming experiment in an alpine meadow on Qingzang Plateau, and monitored plant phenology of two dominant species, including the timing of green up, budding and flowering in 2015, 2017, 2018 and 2021.

Important findings The results showed that plant phenology of different species exhibited various trends under warming. For Kobresia pygmaea, delay in phenological development, including green up, budding and flowering, was positively correlated with temperature increases. However, the timing of phenological stages of Potentilla saundersiana showed advancing first, and then delay with increasing temperature. These results suggest that plant phenology of alpine meadow asynchronously responds to increased temperature. In addition, temperature increase exerts delayed effects on plant phenology over long-term. The structural equation modeling showed that temperature increase consistently delayed the green up of K. pygmaea, and low-level warming advanced phenological development of P. saundersiana, but this advancing trend reversed under high-level warming. Importantly, soil moisture plays a key role in determining the magnitude and direction of phenological response to climate warming in our study. Our findings indicate the asynchronous characteristics of plant phenology response to climate warming in alpine meadow ecosystems, and provide basis to predict responses of high-altitude ecosystems to climate change in the future.

参考文献

[1] Bai L, Lv SJ, Qu ZQ, Ren HY, Wu Q, Han GD, Li ZG (2022). Effects of a warming gradient on reproductive phenology of Stipa breviflora in a desert steppe. Ecological Indicators, 136, 108590. DOI: 10.1016/j.ecolind.2022.108590.
[2] Ben GY, Han F, Shi SB (1993). Studies of leaf conductance, transpiration and water potential of plants in alpine Kobresia humilis meadow. Acta Ecologica Sinica, 13, 369-372.
[2] [贲桂英, 韩发, 师生波 (1993). 高寒矮嵩草草甸植物温度叶扩散导度、蒸腾作用与水势. 生态学报, 13, 369-372.]
[3] Chen AP, Huang L, Liu Q, Piao SL (2021). Optimal temperature of vegetation productivity and its linkage with climate and elevation on the Tibetan Plateau. Global Change Biology, 27, 1942-1951.
[4] Ding MJ, Chen Q, Li LH, Zhang YL, Wang ZF, Liu LS, Sun XM (2016). Temperature dependence of variations in the end of the growing season from 1982 to 2012 on the Qinghai-Tibetan Plateau. GIScience & Remote Sensing, 53, 147-163.
[5] Dorji T, Totland O, Moe SR, Hopping KA, Pan J, Klein JA (2013). Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Global Change Biology, 19, 459-472.
[6] Dunne JA, Harte J, Taylor KJ (2003). Subalpine meadow flowering phenology responses to climate change: integrating experimental and gradient methods. Ecological Monographs, 73, 69-86.
[7] Estiarte M, Pe?uelas J (2015). Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Global Change Biology, 21, 1005-1017.
[8] Ganjurjav H, Gornish ES, Hu G, Schwartz MW, Wan Y, Li Y, Gao Q (2020). Warming and precipitation addition interact to affect plant spring phenology in alpine meadows on the central Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 287, 107943. DOI: 10.1016/j.agrformet.2020.107943.
[9] Ganjurjav H, Hu G, Zhang Y, Gornish ES, Yu T, Gao Q (2022). Warming tends to decrease ecosystem carbon and water use efficiency in dissimilar ways in an alpine meadow and a cultivated grassland in the Tibetan Plateau. Agricultural and Forest Meteorology, 323, 109079. DOI: 10.1016/j.agrformet.2022.109079.
[10] Greenup A, Peacock WJ, Dennis ES, Trevaskis B (2009). The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Annals of Botany, 103, 1165-1172.
[11] Gu SL, Hui DF, Bian AH (1998). The contraction-expansion algorithm and its use in fitting nonlinear equations. International Journal of Biomathematics, 13, 426-434.
[12] Guo MZ (2020). Response and Sensitivity Analysis of Phenology of Alpine Grassland to Climate Change in Qinghai-Tibet Plateau. Master degree dissertation, Chengdu University of Technology, Chengdu.
[12] [郭蒙珠 (2020). 青藏高原高寒草地物候对气候变化的响应与敏感性分析. 硕士学位论文, 成都理工大学, 成都.]
[13] Hassan T, Hamid M, Wani SA, Malik AH, Waza SA, Khuroo AA (2021). Substantial shifts in flowering phenology of Sternbergia vernalis in the Himalaya: supplementing decadal field records with historical and experimental evidences. Science of the Total Environment, 795, 148811. DOI: 10.1016/j.scitotenv.2021.148811.
[14] Hoffmann AA, Camac JS, Williams RJ, Papst W, Jarrad FC, Wahren CH (2010). Phenological changes in six Australian subalpine plants in response to experimental warming and year-to-year variation. Journal of Ecology, 98, 927-937.
[15] Hu MX, Zhou GS, Lü XM, Wang SQ, Zhang SY (2021). Interactive effects of different warming and changing photoperiod on spring phenology of Quercus mongolicus seedlings. Acta Ecologica Sinica, 41, 2816-2825.
[15] [胡明新, 周广胜, 吕晓敏, 王思琪, 张世雅 (2021). 温度和光周期协同作用对蒙古栎幼苗春季物候的影响. 生态学报, 41, 2816-2825.]
[16] IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
[17] Jiang LL, Wang SP, Meng FD, Duan JC, Niu HS, Xu GP, Zhu XX, Zhang ZH, Luo CY, Cui SJ, Li YM, Li XE, Wang Q, Zhou Y, Bao XY, et al. (2016). Relatively stable response of fruiting stage to warming and cooling relative to other phenological events. Ecology, 97, 1961-1969.
[18] Li YH, Han GD, Wang Z, Zhao ML, Wang ZW, Zhao HB (2014). Influences of warming and nitrogen addition on plant reproductive phenology in Inner Mongolia desert steppe. Chinese Journal of Ecology, 33, 849-856.
[18] [李元恒, 韩国栋, 王珍, 赵萌莉, 王正文, 赵鸿彬 (2014). 增温和氮素添加对内蒙古荒漠草原植物生殖物候的影响. 生态学杂志, 33, 849-856.]
[19] Lu PL, Yu Q, He QT (2006). Responses of plant phenology to climatic change. Acta Ecologica Sinica, 26, 923-929.
[19] [陆佩玲, 于强, 贺庆棠 (2006). 植物物候对气候变化的响应. 生态学报, 26, 923-929.]
[20] Luo WR, Hu GZ, Ganjurjav H, Gao QZ, Li Y, Ge YQ, Li Y, He SC, Danjiu LB (2021). Effects of simulated drought on plant phenology and productivity in an alpine meadow in Northern Tibet. Acta Prataculturae Sinica, 30(2), 82-92.
[20] [罗文蓉, 胡国铮, 干珠扎布, 高清竹, 李岩, 葛怡情, 李钰, 何世丞, 旦久罗布 (2021). 模拟干旱对藏北高寒草甸植物物候期和生产力的影响. 草业学报, 30(2), 82-92.]
[21] McKeown M, Schubert M, Preston JC, Fjellheim S (2017). Evolution of the miR5200-FLOWERING LOCUS T flowering time regulon in the temperate grass subfamily Pooideae. Molecular Phylogenetics and Evolution, 114, 111-121.
[22] Meng F, Jiang L, Zhang Z, Cui S, Duan J, Wang S, Luo C, Wang Q, Zhou Y, Li X, Zhang L, Li B, Dorji T, Li Y, Du M (2017). Changes in flowering functional group affect responses of community phenological sequences to temperature change. Ecology, 98, 734-740.
[23] Piao S, Liu Q, Chen A, Janssens IA, Fu Y, Dai J, Liu L, Lian L, Shen M, Zhu X (2019). Plant phenology and global climate change: current progresses and challenges. Global Change Biology, 25, 1922-1940.
[24] Prevéy J, Vellend M, Rüger N, Hollister RD, Bjorkman AD, Myers-Smith IH, Elmendorf SC, Clark K, Cooper EJ, Elberling B, Fosaa AM, Henry GHR, H?ye TT, Jónsdóttir IS, Klanderud K, et al. (2017). Greater temperature sensitivity of plant phenology at colder sites: implications for convergence across northern latitudes. Global Change Biology, 23, 2660-2671.
[25] Price MV, Waser NM (1998). Effects of experimental warming on plant reproductive phenology in a subalpine meadow. Ecology, 79, 1261-1271.
[26] Richards FJ (1959). A flexible growth function for empirical use. Journal of Experimental Botany, 10, 290-301.
[27] Samplonius JM, Atkinson A, Hassall C, Keogan K, Thackeray SJ, Assmann J, Burgess MD, Johansson J, Macphie KH, Pearce-Higgins JW, Simmonds EG, Varpe ?, Weir JC, Childs DZ, Cole EF, et al. (2020). Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts. Nature Ecology & Evolution, 5, 155-164.
[28] Shen M, Piao S, Dorji T, Liu Q, Cong N, Chen X, An S, Wang S, Wang T, Zhang G (2015). Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. National Science Review, 2, 454-467.
[29] Shen MG, Tang YH, Chen J, Zhu XL, Zheng YH (2011). Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 151, 1711-1722.
[30] Shen MG, Wang SP, Jiang N, Sun JP, Cao RY, Ling XF, Fang B, Zhang L, Zhang LH, Xu XY, Lv WW, Li BL, Sun QL, Meng FD, Jiang YH, et al. (2022). Plant phenology changes and drivers on the Qinghai-Tibetan Plateau. Nature Reviews Earth & Environment, 3, 633-651.
[31] Sherry RA, Zhou X, Gu S, Arnone III JA, Schimel DS, Verburg PS, Wallace LL, Luo Y (2007). Divergence of reproductive phenology under climate warming. Proceedings of the National Academy of Sciences of the United States of America, 104, 198-202.
[32] Song CQ, You SC, Ke LH, Liu GH, Zhong XK (2011). Spatio-temporal variation of vegetation phenology in the Northern Tibetan Plateau as detected by MODIS remote sensing. Chinese Journal of Plant Ecology, 35, 853-863.
[32] [宋春桥, 游松财, 柯灵红, 刘高焕, 钟新科 (2011). 藏北高原植被物候时空动态变化的遥感监测研究. 植物生态学报, 35, 853-863.]
[33] Sun QL, Li BL, Jiang YH, Chen XZ, Zhou GY (2021). Declined trend in herbaceous plant green-up dates on the Qinghai-Tibetan Plateau caused by spring warming slowdown. Science of the Total Environment, 772, 145039. DOI: 10.1016/j.scitotenv.2021.145039.
[34] Wang L, Zhang Q (2018). Analysis of phytogeographic characteristics of typical alpine grassland steppe in Qinghai-Tibetan Plateau recently 20 years. Plateau Meteorology, 37, 1528-1534.
[34] [王力, 张强 (2018). 近20年青藏高原典型高寒草甸化草原植物物候变化特征. 高原气象, 37, 1528-1534.]
[35] Wolf AA, Zavaleta ES, Selmants PC (2017). Flowering phenology shifts in response to biodiversity loss. Proceedings of the National Academy of Sciences of the United States of America, 114, 3463-3468.
[36] Xia JY, Wan SQ (2013). Independent effects of warming and nitrogen addition on plant phenology in the Inner Mongolian steppe. Annals of Botany, 111, 1207-1217.
[37] Yang L, Rudolf VHW (2010). Phenology, ontogeny and the effects of climate change on the timing of species interactions. Ecology Letters, 13, 1-10.
[38] Yu H, Luedeling E, Xu J (2010). Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 107, 22151-22156.
[39] Zhang W, Yi Y, Kimball JS, Kim Y, Song K (2015). Climatic controls on spring onset of the Tibetan Plateau grasslands from 1982 to 2008. Remote Sensing, 7, 16607-16622.
[40] Zhang XX, Ge QS, Zheng JY (2003). Application of remote sensing technology in plant phenology. Advances in Earth Science, 18(4), 534-544.
[40] [张学霞, 葛全胜, 郑景云 (2003). 遥感技术在植物物候研究中的应用综述. 地球科学进展, 18(4), 534-544.]
[41] Zhao GS, Shi PL, Zong N, He YT, Zhang XZ, He HL, Zhang J (2017). Declining precipitation enhances the effect of warming on phenological variation in a semiarid Tibetan meadow steppe. Journal of Resources and Ecology, 8, 50-56.
[42] Zheng ZT, Zhu WQ, Chen GS, Jiang N, Fan DQ, Zhang DH (2016). Continuous but diverse advancement of spring-summer phenology in response to climate warming across the Qinghai-Tibetan Plateau. Agricultural and Forest Meteorology, 223, 194-202.
[43] Zhou S, Zhang Y, Caylor KK, Luo Y, Xiao X, Ciais P, Huang Y, Wang G (2016). Explaining inter-annual variability of gross primary productivity from plant phenology and physiology. Agricultural Agricult and Forest Meteorology, 226-227, 246-256.
[44] Zhu JT (2016). Effects of experimental warming on plant reproductive phenology in Xizang alpine meadow. Chinese Journal of Plant Ecology, 40, 1028-1036.
[44] [朱军涛 (2016). 实验增温对藏北高寒草甸植物繁殖物候的影响. 植物生态学报, 40, 1028-1036.]
[45] Zhu JT, Zhang YJ, Wang WF (2016). Interactions between warming and soil moisture increase overlap in reproductive phenology among species in an alpine meadow. Biology Letters, 12, 20150749. DOI: 10.1098/rsbl.2015.0749.
文章导航

/