研究论文

新疆野杏天然更新幼株的个体特征及空间分布格局

展开
  • 1.新疆农业大学园艺学院, 乌鲁木齐 830052
    2.伊犁哈萨克自治州林业科学研究院, 新疆伊宁 839300

收稿日期: 2022-03-08

  录用日期: 2022-09-24

  网络出版日期: 2022-10-21

基金资助

第三次新疆综合科学考察课题(2021xjkk0501);国家自然科学基金(31460190);农业农村部服务项目(125A0605)

Characteristics and spatial distribution pattern of natural regeneration young plants of Prunus armeniaca in Xinjiang, China

Expand
  • 1. College of Horticulture, Xinjiang Agricultural University, Ürümqi 830052, China
    2. Forestry Science Research Academy of Ili Kazak Autonomous Prefecture, Yining, Xinjiang 839300, China

Received date: 2022-03-08

  Accepted date: 2022-09-24

  Online published: 2022-10-21

Supported by

Third Comprehensive Scientific Investigation Project in Xinjiang(2021xjkk0501);National Natural Science Foundation of China(31460190);Ministry of Agriculture and Rural Affairs Service Project(125A0605)

摘要

为探究新疆野杏(Prunus armeniaca)种群天然更新幼株个体的生长现状与空间分布格局, 该研究选择野杏集中分布的霍城县大西沟、新源县杏花沟和巩留县小莫乎儿沟为研究地, 分别在3处研究地设置林下、林窗以及空地样地, 观测幼株的分布密度、基径、高度以及冠幅,并采用5 m × 5 m相邻格子样方法(7个聚集度指数)判定分布类型, 点分布格局法计算聚集强度。新疆野杏天然更新幼株特征如下: (1)分布密度由大到小依次为杏花沟、大西沟、小莫乎儿沟, 林窗显著大于空地和林下, 种群天然更新强度为325株·hm-2。(2)基径为小莫乎儿沟、大西沟显著大于杏花沟, 空地显著大于林下和林窗, 种群天然更新基径约1.7 cm。(3)高度为大西沟、小莫乎儿沟显著高于杏花沟, 空地显著高于林下和林窗, 种群自然更新高度为77.0 cm。(4)冠幅为大西沟显著大于小莫乎儿沟和杏花沟, 空地显著大于林窗和林下, 种群天然更新冠幅为38.7 cm。(5)有幼株的样地共22块, 在5 m × 5 m样方中, 呈聚集、均匀与随机分布样地的比例分别为63.6%、27.3%和9.1%。(6)点分布格局中更新幼株在林下、空地多呈聚集分布, 尺度为5-8 m时聚集强度最大; 在林窗主要呈随机分布, 尺度为1 m时聚集强度最大; 其在不同生境的空间格局均为聚集分布到随机分布。研究结果表明, 分布区域与生境类型均会显著影响野杏更新幼株的个体特征, 表现为大西沟、小莫乎儿沟混交的林分类型更有利于幼株生长。林下严重抑制了更新幼株的分布数量, 林窗利于种子的萌发定植, 但幼株生长受阻, 空地窗口条件利于更新幼株的生长发育。整体上种群更新障碍显著, 现有更新幼株的空间分布格局是其对生境变化、生存胁迫以及放牧干扰等因素作出的自然选择, 是种群寻找可以延续发展的策略。在此背景下, 应加强保护干预, 以促进新疆野杏种群更新。

本文引用格式

石荡, 郭传超, 蒋南林, 唐莹莹, 郑凤, 王瑾, 廖康, 刘立强 . 新疆野杏天然更新幼株的个体特征及空间分布格局[J]. 植物生态学报, 2023 , 47(4) : 515 -529 . DOI: 10.17521/cjpe.2022.0089

Abstract

Aims Exploring the growth status and spatial distribution pattern of regenerated naturally young plants of Xinjiang wild apricot (Prunus armeniaca) population, which would provide a basis for protecting and artificially promoting the natural regeneration to this species.

Methods In this study, Daxigou (DXG) in Huocheng County, Xinghuagou (XHG) in Xinyuan County and Xiaomohu’ergou (XMHE) in Gongliu County were selected as the study sites. In order to fully understand the regeneration status of Prunus armeniaca population in the patchy, sparse and scattered habitats, forest understory, forest gap and forest glade were set sample plots in three study sites respectively. The distribution density, basal diameter, height and crown width of young plants were measured. The distribution type was determined by the method with 5 m × 5 m contiguous grid quadrats (7 aggregation indices). The aggregation intensity was calculated by point distribution pattern method.

Important findings The characteristics of natural regeneration young plants of Prunus armeniaca in Xinjiang were as follows: (1) The distribution density of XHG, DXG to XMHE was from high to low; the density in the forest gap is significantly higher than that in forest glade and forest understory. The average natural regeneration intensity of the population was 325 plants·hm-2. (2) The basal diameter class of XMHE and DXG was significantly higher than that of XHG; and the one in the forest glade was significantly higher than that of forest understory and forest gap. The average basal diameter of natural regeneration of the population was about 1.7 cm. (3) The height of DXG and XMHE was significantly higher than that of XHG, and the one from the forest glade was significantly higher than that from forest understory and forest gap. The average height of natural regeneration of the population was 77.0 cm. (4) The crown breadth of DXG was significantly higher than that of XMHE and XHG, and the one in the forest glade was significantly higher than that of forest gap and understory. The average crown breadth of natural regeneration of the population was 38.7 cm. (5) There were 22 sample plots with young plants among all plots. In 5 m × 5 m quadrats, the proportions of aggregated, uniform and random distribution plots were 63.6%, 27.3% and 9.1% respectively. (6) In the point distribution pattern, the regeneration young plants were mostly aggregated in forest understory and forest glade. The aggregation intensity was the highest when the scale was 5-8 m, and it was mainly randomly distributed in the forest gap. When the scale was 1 m, the aggregation intensity was the highest, and its spatial pattern in different habitats was aggregated to random distribution. The results showed that both distribution area and habitat type could significantly affect the individual characteristics of young plants of wild apricot regeneration, and mixed forests types of DXG and XMHE were more conducive to the growth of young plants. The distribution number of regenerated young plants was seriously inhibited in forest understory. The forest gap was conducive to seed germination and planting, but the growth of young plants was hindered. The forest glade with condition was conducive to the growth and development of regenerated young plants. On the whole, the regeneration barriers of P. armeniacapopulation was obvious. The spatial distribution pattern of the existing regenerated young plants reflects the habitat change, survival stress, and grazing disturbance. In this context, more protective intervention should be enhanced to promote natural regeneration of P. armeniacapopulation.

参考文献

[1] Arsalan, Siddiqui MF, Ahmed M, Shaukat SS, Hussain A (2020). Population structure, age and growth rates of conifer species and their relation to environmental variables at Malam Jabba, Swat District, Pakistan. Journal of Forestry Research, 31, 429-441.
[2] Cai F (2000). A study on the structure and dynamics of Cyclobalanopsis glauca population at hills around lake in Hangzhou. Scientia Silvae Sinicae, 36(3), 67-72.
[2] [蔡飞 (2000). 杭州西湖山区青冈种群结构和动态的研究. 林业科学, 36(3), 67-72.]
[3] Calvi?o-Cancela M (2007). Seed and microsite limitations of recruitment and the impacts of post-dispersal seed predation at the within population level. Plant Ecology, 192, 35-44.
[4] Cao Q, Liao K, Sun Q, Liu J, Yang XF, Si HZ (2016). Morphological diversity of branches and leaves in Armeniaca vulgaris at Daxigou of Huocheng. Nonwood Forest Research, 34(3), 193-198.
[4] [曹倩, 廖康, 孙琪, 刘娟, 杨新峰, 司洪章 (2016). 霍城县大西沟野杏枝叶形态多样性. 经济林研究, 34(3), 193-198.]
[5] Chang W, Dang KL, Wu PH, Li MY (2016). Spatial pattern of secondary Quercus aliena var. acuteserrata forests in the Qinling Mountains. Acta Ecologica Sinica, 36, 1021-1029.
[5] [常伟, 党坤良, 武朋辉, 李明雨 (2016). 秦岭林区锐齿栎次生林种群空间分布格局. 生态学报, 36, 1021-1029.]
[6] Dey DC, Knapp BO, Battaglia MA, Deal RL, Hart JL, O’Hara KL, Schweitzer CJ, Schuler TM (2019). Barriers to natural regeneration in temperate forests across the USA. New Forests, 50, 11-40.
[7] Fan DX, Yu XX (2016). Spatial point pattern analysis of Quercus variabilis and Pinus tabulaeformis populations in a mountainous area of Beijing. Acta Ecologica Sinica, 36, 318-325.
[7] [樊登星, 余新晓 (2016). 北京山区栓皮栎林优势种群点格局分析. 生态学报, 36, 318-325.]
[8] Fang ZY, Li LY, Ai Kebai Er ML, Zhou L, Lu B (2019). Effects of human disturbance on plant diversity of wild fruit forests in western Tianshan Mountain. Bulletin of Soil and Water Conservation, 39(2), 267-274.
[8] [方紫妍, 李林瑜, 艾克拜尔·毛拉, 周龙, 陆彪 (2019). 人为干扰对西天山野果林群落结构和物种多样性的影响. 水土保持通报, 39(2), 267-274.]
[9] Gagnon JL, Jokela EJ, Moser WK, Huber DA (2003). Dynamics of artificial regeneration in gaps within a longleaf pine flatwoods ecosystem. Forest Ecology and Management, 172, 133-144.
[10] Gómez-Aparicio L (2009). The role of plant interactions in the restoration of degraded ecosystems: a meta-analysis across life-forms and eco-systems. Journal of Ecology, 97, 1202-1214.
[11] Gong WY, Chen LH, Yu XX, Zheng XL, Zhang YQ (2018). Spatial structure of natural mixed coniferous-broadleaf secondary forest in Dahuofang Reservoir area, eastern Liaoning. Chinese Journal of Ecology, 37, 3255-3261.
[11] [弓文艳, 陈丽华, 余新晓, 郑学良, 张雪琪 (2018). 辽东大伙房水库库区天然针阔次生林林分空间结构. 生态学杂志, 37, 3255-3261.]
[12] Guignabert A, Augusto L, Gonzalez M, Chipeaux C, Delerue F (2020). Complex biotic interactions mediated by shrubs, revisiting the stress-gradient hypothesis and consequences for tree seedling survival. Journal of Applied Ecology, 57, 1341-1350.
[13] Han WJ, Yuan XQ, Zhang WH (2012). Effects of gap size on seedling natural regeneration in artificial Pinus tabulaeformis plantation. Chinese Journal of Applied Ecology, 23, 2940-2948.
[13] [韩文娟, 袁晓青, 张文辉 (2012). 油松人工林林窗对幼苗天然更新的影响. 应用生态学报, 23, 2940-2948.]
[14] He DN, Yang H, Wen J, Xie R (2020). Density and spatial distribution of seedlings and saplings in different gap sizes of a spruce-fir mixed stand in Changbai Mountains, China. Chinese Journal of Applied Ecology, 31, 1916-1922.
[14] [贺丹妮, 杨华, 温静, 谢榕 (2020). 长白山云冷杉针阔混交林不同林隙下幼苗幼树密度及空间分布. 应用生态学报, 31, 1916-1922.]
[15] He ZS, Liu JF, Zheng SQ, Su SJ, Hong W, Wu ZY, Xu DW, Wu CZ (2012). Studies on the seeds dispersal and seedlings regeneration in gaps and understory of Castanopsis kawakamii natural forest. Journal of Tropical and Subtropical Botany, 20, 506-512.
[15] [何中声, 刘金福, 郑世群, 苏松锦, 洪伟, 吴则焰, 徐道炜, 吴承祯 (2012). 格氏栲天然林林窗和林下种子散布及幼苗更新研究. 热带亚热带植物学报, 20, 506-512.]
[16] Hu XF, Zhang HR, Duan GS, Lu J (2021). Establishment and evaluation of tree competition index based on intersection and crowding. Scientia Silvae Sinicae, 57(4), 182-190.
[16] [胡雪凡, 张会儒, 段光爽, 卢军 (2021). 基于交角和密集度的竞争指数构建及评价. 林业科学, 57(4), 182-190.]
[17] Huang L, Zhu GY, Kang L, Hu S, Liu Z, Lu K (2019). Regeneration characteristics and related factors affecting saplings in Quercus spp. natural secondary forests in Hunan Province, China. Acta Ecologica Sinica, 39, 4900-4909.
[17] [黄朗, 朱光玉, 康立, 胡松, 刘卓, 卢侃 (2019). 湖南栎类天然次生林幼树更新特征及影响因子. 生态学报, 39, 4900-4909.]
[18] Jia WW, Xie XT, Jiang SW, Li FR (2017). Spatial distribution pattern of seedlings and saplings of three forest types by natural regeneration in Daxing’an Mountains Xinlin Forestry Bureau, China. Chinese Journal of Applied Ecology, 28, 2813-2822.
[18] [贾炜玮, 解希涛, 姜生伟, 李凤日 (2017). 大兴安岭新林林业局3种林分类型天然更新幼苗幼树的空间分布格局. 应用生态学报, 28, 2813-2822.]
[19] Jiang B, Zhou XR, Shang J, Wang JH, Song H, Qin MY, Liu XN, Wang Q (2018). Population structure and dynamics of Torreya fargesii Franch., a plant endemic to China. Acta Ecologica Sinica, 38, 1016-1027.
[19] [江波, 周先容, 尚进, 汪建华, 宋航, 秦明一, 刘雪凝, 王庆 (2018). 中国特有植物巴山榧树的种群结构与动态, 生态学报, 38, 1016-1027.]
[20] Kang HJ, Liu P, Chen ZL, Liao CC, Li CH, Chen WX, Lei ZP (2007). Size-class structure and distribution pattern of Emmenopterys henryi in different habitats. Scientia Silvae Sinicae, 43(12), 22-27.
[20] [康华靖, 刘鹏, 陈子林, 廖承川, 李成惠, 陈卫新, 雷祖培 (2007). 不同生境香果树种群的径级结构与分布格局. 林业科学, 43(12), 22-27.]
[21] Lan GY, Lei RD (2003). Brief introduction of spatial methods to distribution patterns of population. Journal of Northwest Forestry University, 18(2), 17-21.
[21] [兰国玉, 雷瑞德 (2003). 植物种群空间分布格局研究方法概述. 西北林学院学报, 18(2), 17-21.]
[22] Li J, Zhao C, Zhu H, Li Y, Wang F (2007). Effect of plant species on shrub fertile island at an oasis-desert ecotone in the South Junggar Basin, China. Journal of Arid Environments, 71, 350-361.
[23] Li N, Bai B, Lu CH (2011). Recruitment limitation of plant population, from seed production to sapling establishment. Acta Ecologica Sinica, 31, 6624-6632.
[23] [李宁, 白冰, 鲁长虎 (2011). 植物种群更新限制——从种子生产到幼树建成. 生态学报, 31, 6624-6632.]
[24] Li WW, Liu LQ, Wang YN, Fan GQ, Zhang SK, Wang YT, Liao K (2020a). Determination of genome size and chromosome ploidy of selected taxa from Prunus armeniaca by flow cytometry. Scientia Horticulturae, 261, 108987. DOI: 10.1016/j.scienta.2019.108987.
[25] Li WW, Liu LQ, Wang YN, Zhang QP, Fan GQ, Zhang SK, Wang YT, Liao K (2020b). Genetic diversity, population structure, and relationships of apricot (Prunus) based on restriction site-associated DNA sequencing. Horticulture Research, 7, 69. DOI: 10.1038/s41438-020-0284-6.
[26] Liu SC, Duan WB, Zhong CY, Chen LX, Wang LX (2012). Dynamic changes in soil temperature water content nutrition and microorganisms of different size gaps in the mixed broadleaved Korean pine forest. Journal of Soil and Water Conservation, 33(17), 78-83.
[26] [刘少冲, 段文标, 钟春艳, 陈立新, 王丽霞 (2012). 阔叶红松林不同大小林隙土壤温度、水分、养分及微生物动态变化. 水土保持学报, 33(17), 78-83.]
[27] Liu Y, Wei CX, Zhou SX, Tang JS, Han CX, Shao H (2019). Identification of pathogenic fungi causing leaf spot of Malus sieversii and Impatiens brachycentra growing in the wild fruit forest of Tianshan Mountain. Journal of Plant Protection, 46, 345-351.
[27] [刘瑜, 魏彩霞, 周世兴, 汤界世, 韩彩霞, 邵华 (2019). 天山野果林塞威士苹果和短距凤仙花叶斑病病原真菌的鉴定. 植物保护学报, 46, 345-351.]
[28] Liu Z, Li HL, Dong Z, Li GT, Wan LL, Yue YJ (2012). The spatial point pattern of Ulmus pumila population in two habitats in the Otindag sandy land. Scientia Silvae Sinicae, 48(1), 29-34.
[28] [刘振, 李红丽, 董智, 李钢铁, 万玲玲, 岳永杰 (2012). 浑善达克沙地2种生境下榆树种群空间点格局. 林业科学, 48(1), 29-34.]
[29] Lu NN, Wang XJ, Zhang P, Gao ZX, Guo Q, Chen Y, Li HP (2015). Path analysis between diameter at breast height, height and crown width of Cunninghamia lanceolata in different age. Journal of Northeast Forestry University, 43(4), 12-16.
[29] [卢妮妮, 王新杰, 张鹏, 高志雄, 郭琦, 陈阳, 李海萍 (2015). 不同林龄杉木胸径树高与冠幅的通径分析. 东北林业大学学报, 43(4), 12-16.]
[30] Lü YJ, Yang H, Zhang Q, Wang QJ, Sun Q (2017). Effects of spatial structure on DBH increment of natural spruce-fir forest. Journal of Beijing Forestry University, 39(9), 41-47.
[30] [吕延杰, 杨华, 张青, 王全军, 孙权 (2017). 云冷杉天然林林分空间结构对胸径生长量的影响. 北京林业大学学报, 39(9), 41-47.]
[31] Ma C, Yang ML, Zhang YX, Yan GR, Xu Z (2018). Age composition and dynamic characteristics of the main populations of endangered Malus sieversii. Arid Zone Research, 35, 156-164.
[31] [马闯, 杨美玲, 张云秀, 阎国荣, 许正 (2018). 新疆野苹果(Malus sieversii)种群年龄结构及其动态特征. 干旱区研究, 35, 156-164.]
[32] Ma LW, Zhang WH, Xue YQ, Ma C, Zhou JY (2010). Growth characteristics and influencing factors of Quercus variabilis seedlings on the north slope of Qinling Mountains. Acta Ecologica Sinica, 30, 6512-6520.
[32] [马莉薇, 张文辉, 薛瑶芹, 马闯, 周建云 (2010). 秦岭北坡不同生境栓皮栎实生苗生长及其影响因素. 生态学报, 30, 6512-6520.]
[33] Pardos M, del Castillo JR, Ca?ellas I, Montero G (2005). Ecophysiology of natural regeneration of forest stands in Spain. Investigación Agraria: Sistemas y Recursos Forestales, 14, 434. DOI: 10.5424/srf/2005143-00939.
[34] Peláez M, Dirzo R, Fernandes GW, Perea R (2019). Nurse plant size and biotic stress determine quantity and quality of plant facilitation in Oak savannas. Forest Ecology and Management, 437, 435-442.
[35] Shen ZQ, Lu J, Hua M, Fang JP (2016). Spatial pattern analysis and associations of different growth stages of populations of Abies georgei var. smithii in Southeast Tibet, China. Journal of Mountain Science, 13, 2170-2181.
[36] Song P, Hong W, Wu CZ, Feng L, Fan HL, Zhu H, Lin YM, Zhang Q (2005). Population structure and its dynamics of rare and endangered plant Alsophila spinulosa. Chinese Journal of Applied Ecology, 16, 413-418.
[36] [宋萍, 洪伟, 吴承祯, 封磊, 范海兰, 朱慧, 林勇明, 张琼 (2005). 珍稀濒危植物桫椤种群结构与动态研究. 应用生态学报, 16, 413-418.]
[37] Wang F, Lu Q (2019). A spatial-explicit seedling recruitment model for scattered individual trees of Pinus sylvestris var. mongolica. Scientia Silvae Sinicae, 55(8), 1-8.
[37] [王锋, 卢琦 (2019). 沙地樟子松散生单木的天然更新幼苗空间分布模型. 林业科学, 55(8), 1-8.]
[38] Wu JSGL, Wang JF, Zheng XX, Wang YJ, Liu XL (2009). Spatial structure pattern of regeneration seedlings from over- logged forest in Jingouling forest farm. Journal of Central South University of Forestry & Technology, 29(4), 21-25.
[38] [乌吉斯古楞, 王俊峰, 郑小贤, 王艳洁, 刘小丽 (2009). 金沟岭林场过伐林更新幼苗空间结构分析. 中南林业科技大学学报, 29(4), 21-25.]
[39] Wu LB, Zheng SJ, Zhang S, Deng BW, Zheng DX (2019). Basic characteristics and distribution type of regeneration saplings and seedling under Machilus versicolora stand. Forestry Prospect and Design, 39(1), 11-15.
[39] [吴联杯, 郑淑娟, 张硕, 邓博文, 郑德祥 (2019). 黄枝润楠林下更新幼树幼苗基本特征及分布类型. 林业勘察设计, 39(1), 11-15.]
[40] Xie CQ, Tian MX, Zhao ZR, Zheng WL, Wang GY (2015). Spatial point pattern analysis of Abies georgei var. smithii in forest of Sygera Mountains in southeast Tibet, China. Chinese Journal of Applied Ecology, 26, 1617-1624.
[40] [解传奇, 田民霞, 赵忠瑞, 郑维列, 王国严 (2015). 西藏色季拉山急尖长苞冷杉种群点格局分析. 应用生态学报, 26, 1617-1624.]
[41] Yang QX, Liu LQ, Qin W, Diao YQ, Zhao ZJ, Wu R, Zhang B (2022). Population structure characteristics and health evaluation of Armeniaca vulgaris Lam. Chinese Journal of Ecology, 41, 9-17.
[41] [杨其享, 刘立强, 秦伟, 刁永强, 赵忠晶, 乌仁其米格, 张博 (2022). 新疆野杏种群结构特征与健康评价. 生态学杂志, 41, 9-17.]
[42] Yang YC, Huang L, Qian SH, Fukuda K (2015). Completing the life history of Castanopsis fargesii: changes in the seed dispersal, seedling and sapling recruitment patterns. European Journal of Forest Research, 134, 1143-1154.
[43] You LY, Cheng G, Liu LQ, Xie GG, Liao K (2019). Dynamics and correlation analysis of growth and development of root system and above-ground part of Armeniaca vulgaris Lam. in Xinyuan wild fruit forest. Journal of Xinjiang Agricultural University, 42, 9-14.
[43] [尤璐瑶, 程功, 刘立强, 颉刚刚, 廖康 (2019). 新源野果林野杏根系与地上部生长发育动态及相关性分析. 新疆农业大学学报, 42, 9-14.]
[44] Zhai ZY, Qiu J, Si HZ, Yang XF, Liu LQ (2019). Effects of microtopography on germination layer soil factors in Armeniaca vulgaris Lam. in Daxigou. Acta Ecologica Sinica, 39, 2168-2179.
[44] [翟朝阳, 邱娟, 司洪章, 杨新峰, 刘立强 (2019). 微地形对大西沟新疆野杏萌发层土壤因子的影响. 生态学报, 39, 2168-2179.]
[45] Zhang W, Li HY, Lai XH, Yang YF (2016). Distribution patterns of Juglans cathayensis populations at different slope aspects in Tianshan valley in Xinjiang, China. Chinese Journal of Applied Ecology, 27, 3105-3113.
[45] [张维, 李海燕, 赖晓辉, 杨允菲 (2016). 新疆天山峡谷不同坡向野核桃种群分布格局. 应用生态学报, 27, 3105-3113.]
[46] Zhang Y, Li J (2018). Spatial patterns of soil seed bank and seedlings in the Gurbantunggut desert, the nurse effect of shrubberies. Arid Zone Research, 35, 1138-1145.
[46] [张盈, 李君 (2018). 古尔班通古特沙漠土壤种子库和幼苗的空间格局——灌丛的“保护效应”. 干旱区研究, 35, 1138-1145.]
[47] Zhang Y, Liu LQ, Zhai ZY (2016). Study on seed storage and germination characteristics of Armeniaca vulgaris Lam. Journal of Xinjiang Agricultural University, 39, 366-372.
[47] [张渊, 刘立强, 翟朝阳 (2016). 新疆野杏种子贮藏方式和萌发特性的研究. 新疆农业大学学报, 39, 366-372.]
[48] Zhang ZH, Guo JB, Wang YH, Wang X (2021). Population structure and spatial distribution pattern of Quercus wutaishanica in Liupan Mountains. Journal of Zhejiang A&F University, 38, 1091-1099.
[48] [张中惠, 郭建斌, 王彦辉, 王晓 (2021). 六盘山辽东栎林种群结构和空间分布格局. 浙江农林大学学报, 38, 1091-1099.]
[49] Zhu JJ, Zhang GQ, Wang GG, Yan QL, Lu DL, Li XF, Zheng X (2015). On the size of forest gaps: can their lower and upper limits be objectively defined? Agricultural and Forest Meteorology, 213, 64-76.
[50] Zhu KY, Wang QC, Wu WJ (2017). Effect of gap size on growth and morphology of transplanted saplings of Quercus mongolica and Fraxinus mandshurica. Scientia Silvae Sinicae, 53(4), 150-157.
[50] [朱凯月, 王庆成, 吴文娟 (2017). 林隙大小对蒙古栎和水曲柳人工更新幼树生长和形态的影响. 林业科学, 53(4), 150-157.]
文章导航

/