研究论文

千岛湖地区常见木本植物性状和相对多度对幼苗植食作用的影响

展开
  • 1浙江大学生命科学学院, 杭州 310058
    2淳安县新安江开发总公司, 浙江淳安 311700

网络出版日期: 2017-12-24

基金资助

国家自然科学基金(31210103908、31361123001和31500382)

Effects of plant traits and the relative abundance of common woody species on seedling herbivory in the Thousand Island Lake region

Expand
  • 1College of Life Sciences, Zhejiang University, Hangzhou 310058, China

    2Xin’an River Development Corporation, Chun’an, Zhejiang 311700, China;

Online published: 2017-12-24

摘要

植食性动物取食植物(植食作用)一直是生物多样性和生态系统功能研究的热点问题。植食作用能够显著影响植物幼苗的生长, 从而决定种群更新动态。以往的研究较少讨论植物的不同性状对幼苗植食作用差异的重要性, 也较少将之与物种相对多度对植食作用的影响进行比较。该文以千岛湖地区的16种常见木本被子植物幼苗为研究对象, 调查植物的11种功能性状和相对多度, 并运用回归模型和方差分解方法, 研究植物功能性状和物种相对多度对幼苗叶片受昆虫植食损伤(虫食率)的相对重要性, 探讨虫食率对植物功能性状的依赖性以及物种相对多度对虫食率的影响。结果表明叶片功能性状(即叶片碳氮比、叶片厚度)和物种相对多度对虫食率有重要影响, 二者共解释了种间虫食率变异的54%。在这些性状中, 有更高的防御能力、更低的营养成分和更高相对多度的物种虫食率更低。我们建议在未来的植食作用研究中, 应考虑基于个体水平的功能性状和基于群落水平的相对多度。

本文引用格式

骆杨青, 余梅生, 余晶晶, 郑诗璐, 刘佳佳, 于明坚 . 千岛湖地区常见木本植物性状和相对多度对幼苗植食作用的影响[J]. 植物生态学报, 2017 , 41(10) : 1033 -1040 . DOI: 10.17521/cjpe.2017.0073

Abstract

Aims Plant-herbivore interaction is a hot topic in the study of biodiversity and ecosystem functions. Herbivores can negatively affect seedling growth and therefore can alter the dynamics of plant recruitment. However, previous studies do not fully reveal the relative importance of different plant functional traits on herbivory intensity and rarely link herbivory to the relative abundance of plant species.Methods Here, we measured 11 plant functional traits and the relative abundance of seedlings of 16 common woody species in the subtropical forests on 29 islands in Thousand Island Lake, East China. We then used multivariate regression and variance partitioning to test the contribution of functional traits and the relative abundance to interspecific differences of insect herbivory intensity.Important findings Our study found that both plant functional traits (e.g. carbon nitrogen ratio, leaf thickness) and the relative abundance of woody species played important roles in herbivory intensity, and they jointly contributed 54% of the variance of the interspecific differences. Among these factors, species with higher defensive ability, lower nutrient content and higher relative abundance had lower herbivory intensity. We suggest to consider both individual level traits (functional traits) and community level attributes (the relative abundance) in future herbivory studies.

参考文献

[1] Awmack CS, Leather SR (2002). Host plant quality and fecundity in herbivorous insects.Annual Review of Entomology, 47, 817-844.
[2] Bagchi R, Gallery RE, Gripenberg S, Gurr SJ, Narayan L, Addis CE, Freckleton RP, Lewis OT (2014). Pathogens and insect herbivores drive rainforest plant diversity and composition.Nature, 506(7486), 85-88.
[3] Burnham KP, Anderson DR (2003). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer-Verlag, New York.
[4] Carmona D, Lajeunesse MJ, Johnson MT (2011). Plant traits that predict resistance to herbivores.Functional Ecology, 25, 358-367.
[5] Chabot BF, Hicks DJ (1982). The ecology of leaf life spans.Annual Review of Ecology and Systematics, 13, 229-259.
[6] Cingolani AM, Posse G, Collantes MB (2005). Plant functional traits, herbivore selectivity and response to sheep grazing in Patagonian steppe grasslands.Journal of Applied Ecology, 42, 50-59.
[7] Coley PD (1980). Effects of leaf age and plant life history patterns on herbivory.Nature, 284, 545-546.
[8] Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP (2010). Asymmetric density dependence shapes species abundances in a tropical tree community.Science, 329, 330-332.
[9] Elger A, Willby NJ (2003). Leaf dry matter content as an integrative expression of plant palatability: The case of freshwater macrophytes.Functional Ecology, 17, 58-65.
[10] Farji-Brener AG (2001). Why are leaf-cutting ants more common in early secondary forests than in old-growth tropical forests? An evaluation of the palatable forage hypothesis.Oikos, 92, 169-177.
[11] Gelman A (2008). Scaling regression inputs by dividing by two standard deviations.Statistics in Medicine, 27, 2865-2873.
[12] Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM (2007). Plant structural traits and their role in anti-herbivore defence.Perspectives in Plant Ecology, Evolution and Systematics, 8(4), 157-178.
[13] Haukioja E, Koricheva J (2000). Tolerance to herbivory in woody vs. herbaceous plants.Evolutionary Ecology, 14, 551-562.
[14] Hu G, Feeley KJ, Yu M (2016). Habitat fragmentation drives plant community assembly processes across life stages.PLOS ONE, 11, e0159572. doi: 10.1371/journal.pone.0159572.
[15] Joern A, Provin T, Behmer ST (2012). Not just the usual suspects: Insect herbivore populations and communities are associated with multiple plant nutrients.Ecology, 93, 1002-1015.
[16] Johnson DJ, Beaulieu WT, Bever JD, Clay K (2012). Conspecific negative density dependence and forest diversity.Science, 336, 904-907.
[17] Kitajima K, Cordero RA, Wright SJ (2013). Leaf life span spectrum of tropical woody seedlings: Effects of light and ontogeny and consequences for survival.Annals of Botany, 112, 685-699.
[18] Kitajima K, Poorter L (2010). Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species.New Phytologist, 186, 708-721.
[19] Loranger J, Meyer ST, Shipley B, Kattge J, Loranger H, Roscher C, Weisser WW (2012). Predicting invertebrate herbivory from plant traits: Evidence from 51 grassland species in experimental monocultures.Ecology, 93, 2674-2682.
[20] Mithofer A, Boland W (2012). Plant defense against herbivores: Chemical aspects. Annual Review of Plant Biology, 63, 431-450.
[21] Moles AT, Westoby M (2000). Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage?Oikos, 90, 517-524.
[22] Poorter H, Niinemets ü, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis.New Phytologist, 182, 565-588.
[23] Poorter L, van de Plassche M, Willems S, Boot RG (2004). Leaf traits and herbivory rates of tropical tree species differing in successional status.Plant Biology (Stuttg), 6, 746-754.
[24] R Core Team (2016). R: A language and environment for statistical computing.
[25] Salgado-Luarte C, Gianoli E (2010). Herbivory on temperate rainforest seedlings in sun and shade: Resistance, tolerance and habitat distribution.PLOS ONE, 5, e11460. doi: 10.1371/journal.pone.0011460.
[26] Schuldt A, Baruffol M, B?hnke M, Bruelheide H, H?rdtle W, Lang AC, Nadrowski K, von Oheimb G, Voigt W, Zhou H (2010). Tree diversity promotes insect herbivory in subtropical forests of south-east China.Journal of Ecology, 98, 917-926.
[27] Schuldt A, Bruelheide H, Durka W, Eichenberg D, Fischer M, Krober W, Hardtle W, Ma K, Michalski SG, Palm WU, Schmid B, Welk E, Zhou H, Assmann T (2012). Plant traits affecting herbivory on tree recruits in highly diverse subtropical forests.Ecology Letter, 15, 732-739.
[28] Shipley B, de Bello F, Cornelissen JH, Laliberte E, Laughlin DC, Reich PB (2016). Reinforcing loose foundation stones in trait-based plant ecology.Oecologia, 180, 923-931.
[29] Silva JO, Espírito-Santo MM, Morais HC (2015). Leaf traits and herbivory on deciduous and evergreen trees in a tropical dry forest.Basic and Applied Ecology, 16, 210-219.
[30] Tilman D, Reich PB, Isbell F (2012). Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory.Proceedings of the National Academy of Sciences of the United States of America, 109, 10394-10397.
[31] Wang XF, Gao WQ, Liu JF, Ni YY, Jiang ZP (2015). Plant defensive strategies and environment-driven mechanisms.Chinese Journal of Ecology, 34, 3542-3552. (in Chinese with English abstract.王小菲, 高文强, 刘建锋, 倪妍妍, 江泽平 (2015). 植物防御策略及其环境驱动机制. 生态学杂志, 34, 3542-3552.]
[32] Warton DI, Hui FK (2011). The arcsine is asinine: The analysis of proportions in ecology.Ecology, 92, 3-10.
[33] Wetzel WC, Kharouba HM, Robinson M, Holyoak M, Karban R (2016). Variability in plant nutrients reduces insect herbivore performance.Nature, 539, 425-427.
[34] Xie H, Wang Y, Liu YQ, Chen LP (2012). The influence of plant constitutive defense system on phytophagous insects.Plant Protection, 38(1), 1-5. (in Chinese with English abstract)[谢辉, 王燕, 刘银泉, 陈利萍 (2012). 植物组成型防御对植食性昆虫的影响. 植物保护, 38(1), 1-5.]
[35] Yu HX, Ye WF, Sun MQ, Xu N, Lou SZ, Ran JX, Lou YG (2015). Three levels of defense and anti-defense responses between host plants and herbivorous insects.Chinses Journal of Ecology, 34, 256-262. (in Chinese with English abstract)[禹海鑫, 叶文丰, 孙民琴, 徐宁, 娄少之, 冉俊祥, 娄永根 (2015). 植物与植食性昆虫防御与反防御的三个层次. 生态学杂志, 34, 256-262.]
[36] Yu JJ, Jin Y, Zheng SL, Hu G, Liu JL, Yuan JF, Liu JJ, Yu MJ (2017). Differentiation in leaf and branch traits of angiosperms and their relationships with species abundance in the Thousand Island Lake region. Journal of Zhejiang University (Science Edition), 44, 437-445. (in Chinese with English abstract)[余晶晶, 金毅, 郑诗璐, 胡广, 刘金亮, 袁金凤, 刘佳佳, 于明坚 (2017). 千岛湖被子植物枝叶性状分化及其与种多度关系. 浙江大学学报(理学版), 44, 437-445.]
[37] Zeng FY, Sun ZQ (2014). Mechanism, hypothesis and evidence of herbivorous insect-host interactions in forest ecosystem.Acta Ecologica Sinica, 34, 1061-1071. (in Chinese with English abstract)[曾凡勇, 孙志强 (2014). 森林生态系统中植食性昆虫与寄主的互作机制、假说与证据. 生态学报, 34, 1061-1071.]
[38] Zhang S, Zhang Y, Ma K (2017). The association of leaf lifespan and background insect herbivory at the interspecific level.Ecology, 98, 425-432.
文章导航

/