植物生态学报 ›› 2017, Vol. 41 ›› Issue (10): 1033-1040.DOI: 10.17521/cjpe.2017.0073
所属专题: 植物功能性状
• 研究论文 • 下一篇
骆杨青1, 余梅生2, 余晶晶1, 郑诗璐1, 刘佳佳1, 于明坚1,*()
出版日期:
2017-10-10
发布日期:
2017-12-24
通讯作者:
于明坚
基金资助:
Yang-Qing LUO1, Mei-Sheng YU2, Jing-Jing YU2, Shi-Lu ZHENG1, Jia-Jia LIU1, Ming-Jian YU1,*()
Online:
2017-10-10
Published:
2017-12-24
Contact:
Ming-Jian YU
摘要:
植食性动物取食植物(植食作用)一直是生物多样性和生态系统功能研究的热点问题。植食作用能够显著影响植物幼苗的生长, 从而决定种群更新动态。以往的研究较少讨论植物的不同性状对幼苗植食作用差异的重要性, 也较少将之与物种相对多度对植食作用的影响进行比较。该文以千岛湖地区的16种常见木本被子植物幼苗为研究对象, 调查植物的11种功能性状和相对多度, 并运用回归模型和方差分解方法, 研究植物功能性状和物种相对多度对幼苗叶片受昆虫植食损伤(虫食率)的相对重要性, 探讨虫食率对植物功能性状的依赖性以及物种相对多度对虫食率的影响。结果表明叶片功能性状(即叶片碳氮比、叶片厚度)和物种相对多度对虫食率有重要影响, 二者共解释了种间虫食率变异的54%。在这些性状中, 有更高的防御能力、更低的营养成分和更高相对多度的物种虫食率更低。我们建议在未来的植食作用研究中, 应考虑基于个体水平的功能性状和基于群落水平的相对多度。
骆杨青, 余梅生, 余晶晶, 郑诗璐, 刘佳佳, 于明坚. 千岛湖地区常见木本植物性状和相对多度对幼苗植食作用的影响. 植物生态学报, 2017, 41(10): 1033-1040. DOI: 10.17521/cjpe.2017.0073
Yang-Qing LUO, Mei-Sheng YU, Jing-Jing YU, Shi-Lu ZHENG, Jia-Jia LIU, Ming-Jian YU. Effects of plant traits and the relative abundance of common woody species on seedling herbivory in the Thousand Island Lake region. Chinese Journal of Plant Ecology, 2017, 41(10): 1033-1040. DOI: 10.17521/cjpe.2017.0073
种名 Species | 叶生活周期 Leaf lifespan | 生长型 Growth form | 光耐受性 Light tolerance | 分布岛屿数 No. of sampling island | 幼苗样本量 No. of seedling samples |
---|---|---|---|---|---|
野柿 Diospyros kaki var. silvestris | 落叶 Deciduous | 乔木 Tree | 耐阴 Tolerance | 8 | 32 |
白花龙 Styrax faberi | 落叶 Deciduous | 灌木 Shrub | 耐阴 Tolerance | 9 | 55 |
白檀 Symplocos paniculata | 落叶 Deciduous | 灌木 Shrub | 不耐阴 Intolerance | 20 | 97 |
苦槠 Castanopsis sclerophylla | 常绿 Evergreen | 乔木 Tree | 耐阴 Tolerance | 9 | 32 |
石栎 Lithocarpus glaber | 常绿 Evergreen | 乔木 Tree | 耐阴 Tolerance | 8 | 45 |
冬青 Ilex chinensis | 常绿 Evergreen | 乔木 Tree | 耐阴 Tolerance | 23 | 164 |
木荷 Schima superba | 常绿 Evergreen | 乔木 Tree | 耐阴 Tolerance | 6 | 37 |
石斑木 Rhaphiolepis indica | 常绿 Evergreen | 灌木 Shrub | 耐阴 Tolerance | 20 | 174 |
白栎 Quercus fabri | 落叶 Deciduous | 乔木 Tree | 不耐阴 Intolerance | 21 | 65 |
乌饭树 Vaccinium bracteatum | 常绿 Evergreen | 灌木 Shrub | 耐阴 Tolerance | 21 | 144 |
短柄枹 Quercus serrata var. brevipetiolata | 落叶 Deciduous | 乔木 Tree | 不耐阴 Intolerance | 20 | 112 |
毛果南烛 Lyonia ovalifolia | 落叶 Deciduous | 灌木 Shrub | 不耐阴 Intolerance | 10 | 44 |
格药柃 Eurya muricata | 常绿 Evergreen | 灌木 Shrub | 耐阴 Tolerance | 21 | 191 |
杜鹃 Rhododendron simsii | 落叶 Deciduous | 灌木 Shrub | 不耐阴 Intolerance | 24 | 183 |
檵木 Loropetalum chinense | 常绿 Evergreen | 灌木 Shrub | 耐阴 Tolerance | 26 | 240 |
短尾越桔 Vaccinium carlesii | 常绿 Evergreen | 灌木 Shrub | 耐阴 Tolerance | 22 | 321 |
表1 选取虫食调查的16种木本植物的相关信息, 包括种名, 叶生活周期(落叶/常绿), 生长型(乔木/灌木), 光耐受性(耐阴/阳性), 分布的岛屿数, 幼苗样本量
Table 1 Information on the 16 woody species for insect herbivory survey, including species, leaf lifespan (deciduous/evergreen), growth form (tree/shrub), light tolerance (shade tolerance/shade intolerance), number of sampling island, and number of seedling sample
种名 Species | 叶生活周期 Leaf lifespan | 生长型 Growth form | 光耐受性 Light tolerance | 分布岛屿数 No. of sampling island | 幼苗样本量 No. of seedling samples |
---|---|---|---|---|---|
野柿 Diospyros kaki var. silvestris | 落叶 Deciduous | 乔木 Tree | 耐阴 Tolerance | 8 | 32 |
白花龙 Styrax faberi | 落叶 Deciduous | 灌木 Shrub | 耐阴 Tolerance | 9 | 55 |
白檀 Symplocos paniculata | 落叶 Deciduous | 灌木 Shrub | 不耐阴 Intolerance | 20 | 97 |
苦槠 Castanopsis sclerophylla | 常绿 Evergreen | 乔木 Tree | 耐阴 Tolerance | 9 | 32 |
石栎 Lithocarpus glaber | 常绿 Evergreen | 乔木 Tree | 耐阴 Tolerance | 8 | 45 |
冬青 Ilex chinensis | 常绿 Evergreen | 乔木 Tree | 耐阴 Tolerance | 23 | 164 |
木荷 Schima superba | 常绿 Evergreen | 乔木 Tree | 耐阴 Tolerance | 6 | 37 |
石斑木 Rhaphiolepis indica | 常绿 Evergreen | 灌木 Shrub | 耐阴 Tolerance | 20 | 174 |
白栎 Quercus fabri | 落叶 Deciduous | 乔木 Tree | 不耐阴 Intolerance | 21 | 65 |
乌饭树 Vaccinium bracteatum | 常绿 Evergreen | 灌木 Shrub | 耐阴 Tolerance | 21 | 144 |
短柄枹 Quercus serrata var. brevipetiolata | 落叶 Deciduous | 乔木 Tree | 不耐阴 Intolerance | 20 | 112 |
毛果南烛 Lyonia ovalifolia | 落叶 Deciduous | 灌木 Shrub | 不耐阴 Intolerance | 10 | 44 |
格药柃 Eurya muricata | 常绿 Evergreen | 灌木 Shrub | 耐阴 Tolerance | 21 | 191 |
杜鹃 Rhododendron simsii | 落叶 Deciduous | 灌木 Shrub | 不耐阴 Intolerance | 24 | 183 |
檵木 Loropetalum chinense | 常绿 Evergreen | 灌木 Shrub | 耐阴 Tolerance | 26 | 240 |
短尾越桔 Vaccinium carlesii | 常绿 Evergreen | 灌木 Shrub | 耐阴 Tolerance | 22 | 321 |
图2 模型平均计算中7个变量的相对重要性对比, 估计为在95%置信集中的赤池重量(ω+)之和。
Fig. 2 The relative importance of seven variables measured as the sum of Akaike weight (ω+) in 95% confidence set with model averaging. C:N, carbon nitrogen ratio; LA, leaf area; LDMC, leaf dry matter content; LT, leaf thickness; MaxH, maximum tree height; RA, relative abundance.
图3 最佳模型中3个变量对于千岛湖16种木本植物幼苗的平均叶片虫食损伤百分比(排除了其他变量影响的偏残差)的独立影响。A, 碳氮比。B, 叶厚度。C, 相对多度。
Fig. 3 Independent effects of three variables in the best model on mean percentage of leaf damage (partial residuals excluding the effects of other variables) on seedlings of 16 woody species in the Thousand Island Lake. A, Carbon nitrogen ratio. B, Leaf thickness. C, Relative abundance.
[1] | Awmack CS, Leather SR (2002). Host plant quality and fecundity in herbivorous insects.Annual Review of Entomology, 47, 817-844. |
[2] |
Bagchi R, Gallery RE, Gripenberg S, Gurr SJ, Narayan L, Addis CE, Freckleton RP, Lewis OT (2014). Pathogens and insect herbivores drive rainforest plant diversity and composition.Nature, 506(7486), 85-88.
DOI URL PMID |
[3] | Burnham KP, Anderson DR (2003). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer-Verlag, New York. |
[4] |
Carmona D, Lajeunesse MJ, Johnson MT (2011). Plant traits that predict resistance to herbivores.Functional Ecology, 25, 358-367.
DOI URL |
[5] |
Chabot BF, Hicks DJ (1982). The ecology of leaf life spans.Annual Review of Ecology and Systematics, 13, 229-259.
DOI URL |
[6] |
Cingolani AM, Posse G, Collantes MB (2005). Plant functional traits, herbivore selectivity and response to sheep grazing in Patagonian steppe grasslands.Journal of Applied Ecology, 42, 50-59.
DOI URL |
[7] | Coley PD (1980). Effects of leaf age and plant life history patterns on herbivory.Nature, 284, 545-546. |
[8] |
Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP (2010). Asymmetric density dependence shapes species abundances in a tropical tree community.Science, 329, 330-332.
DOI URL PMID |
[9] |
Elger A, Willby NJ (2003). Leaf dry matter content as an integrative expression of plant palatability: The case of freshwater macrophytes.Functional Ecology, 17, 58-65.
DOI URL |
[10] |
Farji-Brener AG (2001). Why are leaf-cutting ants more common in early secondary forests than in old-growth tropical forests? An evaluation of the palatable forage hypothesis.Oikos, 92, 169-177.
DOI URL |
[11] |
Gelman A (2008). Scaling regression inputs by dividing by two standard deviations.Statistics in Medicine, 27, 2865-2873.
DOI URL PMID |
[12] |
Hanley ME, Lamont BB, Fairbanks MM, Rafferty CM (2007). Plant structural traits and their role in anti-herbivore defence.Perspectives in Plant Ecology, Evolution and Systematics, 8(4), 157-178.
DOI URL |
[13] |
Haukioja E, Koricheva J (2000). Tolerance to herbivory in woody vs. herbaceous plants.Evolutionary Ecology, 14, 551-562.
DOI URL |
[14] |
Hu G, Feeley KJ, Yu M (2016). Habitat fragmentation drives plant community assembly processes across life stages.PLOS ONE, 11, e0159572. doi: 10.1371/journal.pone.0159572.
DOI URL PMID |
[15] |
Joern A, Provin T, Behmer ST (2012). Not just the usual suspects: Insect herbivore populations and communities are associated with multiple plant nutrients.Ecology, 93, 1002-1015.
DOI URL PMID |
[16] |
Johnson DJ, Beaulieu WT, Bever JD, Clay K (2012). Conspecific negative density dependence and forest diversity.Science, 336, 904-907.
DOI URL PMID |
[17] |
Kitajima K, Cordero RA, Wright SJ (2013). Leaf life span spectrum of tropical woody seedlings: Effects of light and ontogeny and consequences for survival.Annals of Botany, 112, 685-699.
DOI URL PMID |
[18] |
Kitajima K, Poorter L (2010). Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species.New Phytologist, 186, 708-721.
DOI URL PMID |
[19] | Loranger J, Meyer ST, Shipley B, Kattge J, Loranger H, Roscher C, Weisser WW (2012). Predicting invertebrate herbivory from plant traits: Evidence from 51 grassland species in experimental monocultures.Ecology, 93, 2674-2682. |
[20] | Mithofer A, Boland W (2012). Plant defense against herbivores: Chemical aspects. Annual Review of Plant Biology, 63, 431-450. |
[21] |
Moles AT, Westoby M (2000). Do small leaves expand faster than large leaves, and do shorter expansion times reduce herbivore damage?Oikos, 90, 517-524.
DOI URL |
[22] |
Poorter H, Niinemets ü, Poorter L, Wright IJ, Villar R (2009). Causes and consequences of variation in leaf mass per area (LMA): A meta-analysis.New Phytologist, 182, 565-588.
DOI URL PMID |
[23] |
Poorter L, van de Plassche M, Willems S, Boot RG (2004). Leaf traits and herbivory rates of tropical tree species differing in successional status.Plant Biology (Stuttg), 6, 746-754.
DOI URL PMID |
[24] | R Core Team (2016). R: A language and environment for statistical computing. |
[25] |
Salgado-Luarte C, Gianoli E (2010). Herbivory on temperate rainforest seedlings in sun and shade: Resistance, tolerance and habitat distribution.PLOS ONE, 5, e11460. doi: 10.1371/journal.pone.0011460.
DOI URL PMID |
[26] |
Schuldt A, Baruffol M, B?hnke M, Bruelheide H, H?rdtle W, Lang AC, Nadrowski K, von Oheimb G, Voigt W, Zhou H (2010). Tree diversity promotes insect herbivory in subtropical forests of south-east China.Journal of Ecology, 98, 917-926.
DOI URL PMID |
[27] |
Schuldt A, Bruelheide H, Durka W, Eichenberg D, Fischer M, Krober W, Hardtle W, Ma K, Michalski SG, Palm WU, Schmid B, Welk E, Zhou H, Assmann T (2012). Plant traits affecting herbivory on tree recruits in highly diverse subtropical forests.Ecology Letter, 15, 732-739.
DOI URL PMID |
[28] |
Shipley B, de Bello F, Cornelissen JH, Laliberte E, Laughlin DC, Reich PB (2016). Reinforcing loose foundation stones in trait-based plant ecology.Oecologia, 180, 923-931.
DOI URL PMID |
[29] |
Silva JO, Espírito-Santo MM, Morais HC (2015). Leaf traits and herbivory on deciduous and evergreen trees in a tropical dry forest.Basic and Applied Ecology, 16, 210-219.
DOI URL |
[30] |
Tilman D, Reich PB, Isbell F (2012). Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory.Proceedings of the National Academy of Sciences of the United States of America, 109, 10394-10397.
DOI URL PMID |
[31] | Wang XF, Gao WQ, Liu JF, Ni YY, Jiang ZP (2015). Plant defensive strategies and environment-driven mechanisms.Chinese Journal of Ecology, 34, 3542-3552. (in Chinese with English abstract.王小菲, 高文强, 刘建锋, 倪妍妍, 江泽平 (2015). 植物防御策略及其环境驱动机制. 生态学杂志, 34, 3542-3552.] |
[32] | Warton DI, Hui FK (2011). The arcsine is asinine: The analysis of proportions in ecology.Ecology, 92, 3-10. |
[33] |
Wetzel WC, Kharouba HM, Robinson M, Holyoak M, Karban R (2016). Variability in plant nutrients reduces insect herbivore performance.Nature, 539, 425-427.
DOI URL PMID |
[34] | Xie H, Wang Y, Liu YQ, Chen LP (2012). The influence of plant constitutive defense system on phytophagous insects.Plant Protection, 38(1), 1-5. (in Chinese with English abstract)[谢辉, 王燕, 刘银泉, 陈利萍 (2012). 植物组成型防御对植食性昆虫的影响. 植物保护, 38(1), 1-5.] |
[35] | Yu HX, Ye WF, Sun MQ, Xu N, Lou SZ, Ran JX, Lou YG (2015). Three levels of defense and anti-defense responses between host plants and herbivorous insects.Chinses Journal of Ecology, 34, 256-262. (in Chinese with English abstract)[禹海鑫, 叶文丰, 孙民琴, 徐宁, 娄少之, 冉俊祥, 娄永根 (2015). 植物与植食性昆虫防御与反防御的三个层次. 生态学杂志, 34, 256-262.] |
[36] | Yu JJ, Jin Y, Zheng SL, Hu G, Liu JL, Yuan JF, Liu JJ, Yu MJ (2017). Differentiation in leaf and branch traits of angiosperms and their relationships with species abundance in the Thousand Island Lake region. Journal of Zhejiang University (Science Edition), 44, 437-445. (in Chinese with English abstract)[余晶晶, 金毅, 郑诗璐, 胡广, 刘金亮, 袁金凤, 刘佳佳, 于明坚 (2017). 千岛湖被子植物枝叶性状分化及其与种多度关系. 浙江大学学报(理学版), 44, 437-445.] |
[37] | Zeng FY, Sun ZQ (2014). Mechanism, hypothesis and evidence of herbivorous insect-host interactions in forest ecosystem.Acta Ecologica Sinica, 34, 1061-1071. (in Chinese with English abstract)[曾凡勇, 孙志强 (2014). 森林生态系统中植食性昆虫与寄主的互作机制、假说与证据. 生态学报, 34, 1061-1071.] |
[38] |
Zhang S, Zhang Y, Ma K (2017). The association of leaf lifespan and background insect herbivory at the interspecific level.Ecology, 98, 425-432.
DOI URL |
[1] | 蔡慧颖 李兰慧 林阳 梁亚涛 杨光 孙龙. 白桦叶片和细根非结构性碳水化合物对火后时间的响应[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 马艳泽, 杨熙来, 徐彦森, 冯兆忠. 四种常见树木叶片光合模型关键参数对臭氧浓度升高的响应[J]. 植物生态学报, 2022, 46(3): 321-329. |
[3] | 熊映杰, 于果, 魏凯璐, 彭娟, 耿鸿儒, 杨冬梅, 彭国全. 天童山阔叶木本植物叶片大小与叶脉密度及单位叶脉长度细胞壁干质量的关系[J]. 植物生态学报, 2022, 46(2): 136-147. |
[4] | 于海英, 杨莉琳, 付素静, 张志敏, 姚琦馥. 暖温带森林木本植物展叶始期对低温和热量累积变化的响应[J]. 植物生态学报, 2022, 46(12): 1573-1584. |
[5] | 李耀琪, 王志恒. 植物叶片形态的生态功能、地理分布与成因[J]. 植物生态学报, 2021, 45(10): 1154-1172. |
[6] | 罗丹丹, 王传宽, 金鹰. 植物水分调节对策: 等水与非等水行为[J]. 植物生态学报, 2017, 41(9): 1020-1032. |
[7] | 李道新, 李果, 沈泽昊, 徐慎东, 韩庆瑜, 王功芳, 田风雷. 植物生长型显著影响三峡大老岭地区木本植物种子质量的海拔格局[J]. 植物生态学报, 2017, 41(5): 539-548. |
[8] | 杨蕾, 孙晗, 樊艳文, 韩威, 曾令兵, 刘超, 王襄平. 长白山木本植物叶片氮磷含量的海拔梯度格局及影响因子[J]. 植物生态学报, 2017, 41(12): 1228-1238. |
[9] | 吕亭亭,王平,燕红,张稳,廖桂项,姜海波,邹畅林,盛连喜. 草甸和沼泽植物群落功能多样性与生产力的关系[J]. 植物生态学报, 2014, 38(5): 405-416. |
[10] | 许玥, 沈泽昊, 吕楠, 唐圆圆, 李道新, 王功芳, 谭家林, 刘益平. 湖北三峡大老岭自然保护区光叶水青冈群落种子雨10年观测: 种子雨密度、物种构成及其与群落的关系[J]. 植物生态学报, 2012, 36(8): 708-716. |
[11] | 李晓刚, 朱志红, 周晓松, 袁芙蓉, 樊瑞俭, 许曼丽. 刈割、施肥和浇水对高寒草甸物种多样性、功能多样性与初级生产力关系的影响[J]. 植物生态学报, 2011, 35(11): 1136-1147. |
[12] | 白洁, 葛全胜, 戴君虎, 王英. 西安木本植物物候与气候要素的关系[J]. 植物生态学报, 2010, 34(11): 1274-1282. |
[13] | 王桔红, 杜国祯, 崔现亮, 郑秀芳, 齐威. 青藏高原东缘61种常见木本植物种子萌发特性及其与生活史的关联[J]. 植物生态学报, 2009, 33(1): 171-179. |
[14] | 张志东, 臧润国. 海南岛霸王岭热带天然林景观中木本植物功能型分布的影响因素[J]. 植物生态学报, 2007, 31(6): 1092-1102. |
[15] | 张志东, 臧润国. 海南岛霸王岭热带天然林景观中主要木本植物关键种的潜在分布[J]. 植物生态学报, 2007, 31(6): 1079-1091. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19