植物生态学报 ›› 2011, Vol. 35 ›› Issue (11): 1136-1147.DOI: 10.3724/SP.J.1258.2011.01136
所属专题: 青藏高原植物生态学:生态系统生态学; 生物多样性
李晓刚, 朱志红*(), 周晓松, 袁芙蓉, 樊瑞俭, 许曼丽
收稿日期:
2011-04-25
接受日期:
2011-08-15
出版日期:
2011-04-25
发布日期:
2011-11-07
通讯作者:
朱志红
作者简介:
*(E-mail:zhuzhihong@snnu.edu.cn)
LI Xiao-Gang, ZHU Zhi-Hong*(), ZHOU Xiao-Song, YUAN Fu-Rong, FAN Rui-Jian, XU Man-Li
Received:
2011-04-25
Accepted:
2011-08-15
Online:
2011-04-25
Published:
2011-11-07
Contact:
ZHU Zhi-Hong
摘要:
通过在高寒矮嵩草(Kobresia humilis)草甸为期4年的刈割(留茬1 cm、3 cm及不刈割)、施肥(尿素7.5 g·m-2·a-1+磷酸二铵1.8 g·m-2·a-1、不施肥)和浇水(20.1 kg·m-2·a-1、不浇水)控制实验, 对该生态系统中功能多样性与物种多样性的变化及其与初级生产力关系进行了研究。结果表明: 刈割和施肥显著影响植物性状和生产力, 而浇水作用微弱。刈割对物种多样性无影响, 但对不同功能多样性指数的影响不同; 施肥降低了物种多样性和以所有性状(除植株高度外)量化的功能多样性; 浇水仅对物种丰富度有微弱影响。各功能多样性的平均值能更好地反映群落物种间的功能差异。功能多样性和物种多样性呈正相关或不相关, 且二者与初级生产力的关系可表现为正相关、负相关和不相关, 说明三者间的关系是性状依赖的, 并受生境资源状况和刈割扰动的影响。植物功能性状对群落初级生产力有更加直接的影响。在考虑生物多样性对生态系统功能的影响时, 应更加注重对植物功能属性变化的研究。
李晓刚, 朱志红, 周晓松, 袁芙蓉, 樊瑞俭, 许曼丽. 刈割、施肥和浇水对高寒草甸物种多样性、功能多样性与初级生产力关系的影响. 植物生态学报, 2011, 35(11): 1136-1147. DOI: 10.3724/SP.J.1258.2011.01136
LI Xiao-Gang, ZHU Zhi-Hong, ZHOU Xiao-Song, YUAN Fu-Rong, FAN Rui-Jian, XU Man-Li. Effects of clipping, fertilizing and watering on the relationship between species diversity, functional diversity and primary productivity in alpine meadow of China. Chinese Journal of Plant Ecology, 2011, 35(11): 1136-1147. DOI: 10.3724/SP.J.1258.2011.01136
图1 副区处理样方设置图。F, 仅施肥; FW, 既施肥, 又浇水; NFNW, 不施肥, 不浇水; W, 仅浇水。
Fig. 1 Quadrat design layout of subplot. F, fertilized only; FW, fertilized and watered; NFNW, unfertilized and unwatered; W, watered only.
变异来源 Source of variance | 自由度 df (m, n) | J | D | R | PP | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F-test | p | F-test | p | F-test | p | F-test | p | ||||||
主区 Whole plot | B C | 2, 4 2, 4 | 3.824 1.040 | 0.118 0.433 | 0.704 0.623 | 0.547 0.581 | 1.998 1.357 | 0.250 0.355 | 0.342 18.100 | 0.729 0.010* | |||
副区 Subplot | F W C × F C × W F × W C × F × W | 1, 18 1, 18 2, 18 2, 18 1, 18 2, 18 | 5.134 1.427 1.900 0.085 2.543 2.075 | 0.036* 0.248 0.178 0.919 0.128 0.155 | 6.354 1.999 1.589 1.446 2.465 1.044 | 0.021* 0.174 0.231 0.262 0.134 0.373 | 22.392 3.910 2.303 1.377 1.742 0.090 | 0.000** 0.064 0.129 0.278 0.203 0.914 | 62.006 0.080 6.765 0.237 1.073 2.041 | 0.000** 0.781 0.006** 0.792 0.314 0.159 | |||
总变异 Total variance 35 |
表1 刈割、施肥和浇水对高寒草甸物种多样性和初级生产力影响的方差分析
Table 1 ANOVA for the effects of clipping, fertilizing and watering on the species diversity and primary productivity in alpine meadow
变异来源 Source of variance | 自由度 df (m, n) | J | D | R | PP | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F-test | p | F-test | p | F-test | p | F-test | p | ||||||
主区 Whole plot | B C | 2, 4 2, 4 | 3.824 1.040 | 0.118 0.433 | 0.704 0.623 | 0.547 0.581 | 1.998 1.357 | 0.250 0.355 | 0.342 18.100 | 0.729 0.010* | |||
副区 Subplot | F W C × F C × W F × W C × F × W | 1, 18 1, 18 2, 18 2, 18 1, 18 2, 18 | 5.134 1.427 1.900 0.085 2.543 2.075 | 0.036* 0.248 0.178 0.919 0.128 0.155 | 6.354 1.999 1.589 1.446 2.465 1.044 | 0.021* 0.174 0.231 0.262 0.134 0.373 | 22.392 3.910 2.303 1.377 1.742 0.090 | 0.000** 0.064 0.129 0.278 0.203 0.914 | 62.006 0.080 6.765 0.237 1.073 2.041 | 0.000** 0.781 0.006** 0.792 0.314 0.159 | |||
总变异 Total variance 35 |
图2 刈割、施肥和浇水对物种多样性、功能多样性和初级生产力的影响(平均值±标准误差, n = 36)。F、H1、H3、NF、NH、NW和W分别表示施肥、重度刈割、中度刈割、不施肥、不刈割、不浇水和浇水处理。标准误差上方相同的大写(或小写)字母表示处理间差异不显著(p > 0.05)。 ns 、、*分别表示交互作用的显著性p > 0.10、0.05 < p < 0.10、p < 0.05。
Fig. 2 Effects of clipping, fertilizing and watering on the species diversity, functional diversity and primary productivity (mean ± SE, n = 36). F, H1, H3, NF, NH, NW and W indicate fertilized, stubbled 1 cm, stubbled 3 cm, unfertilized, unclipped, unwatered and watered treatments, respectively. The same upper case (or lower case) letter above error bars indicates no difference (p > 0.05) among treatments. ns, and * indicate significance of interaction effect p > 0.10, 0.05 < p < 0.10, p < 0.05, respectively.
变异来源 Source of variance | 自由度 df (m, n) | FDAGW | FDH | FDA | FDLDW | FDSLA | FDSLW | FD 6 traits | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F-test | p | F-test | p | F-test | p | F-test | p | F-test | p | F-test | p | F-test | p | |||||||||
主区 Whole plot | B C | 2, 4 2, 4 | 0.658 6.025 | 0.566 0.062 | 1.221 2.214 | 0.386 0.225 | 0.210 1.656 | 0.819 0.299 | 2.887 11.353 | 0.167 0.022* | 0.247 0.074 | 0.792 0.930 | 0.510 0.235 | 0.635 0.801 | 3.379 7.975 | 0.138 0.040* | ||||||
副区 Subplot | F W C × F C × W F × W C × F × W | 1, 18 1, 18 2, 18 2, 18 1, 18 2, 18 | 1.475 0.298 1.089 0.126 3.756 0.140 | 0.240 0.592 0.358 0.883 0.068 0.870 | 0.721 0.196 0.023 0.187 1.243 0.018 | 0.407 0.664 0.978 0.831 0.280 0.982 | 0.488 1.708 0.754 1.102 1.010 1.641 | 0.494 0.208 0.485 0.354 0.328 0.221 | 1.440 0.351 0.620 1.851 0.056 0.898 | 0.246 0.561 0.549 0.186 0.816 0.425 | 8.598 1.543 0.561 0.558 0.016 1.707 | 0.009** 0.230 0.580 0.582 0.902 0.209 | 8.729 0.004 0.609 0.263 0.014 1.763 | 0.008** 0.949 0.555 0.771 0.907 0.200 | 4.335 0.027 0.322 0.126 0.308 0.914 | 0.052 0.871 0.729 0.882 0.586 0.419 | ||||||
总变异 Total variance 35 |
表2 刈割、施肥和浇水对高寒草甸功能多样性影响的方差分析
Table 2 ANOVA for the effects of clipping, fertilizing and watering on the functional diversity in alpine meadow
变异来源 Source of variance | 自由度 df (m, n) | FDAGW | FDH | FDA | FDLDW | FDSLA | FDSLW | FD 6 traits | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F-test | p | F-test | p | F-test | p | F-test | p | F-test | p | F-test | p | F-test | p | |||||||||
主区 Whole plot | B C | 2, 4 2, 4 | 0.658 6.025 | 0.566 0.062 | 1.221 2.214 | 0.386 0.225 | 0.210 1.656 | 0.819 0.299 | 2.887 11.353 | 0.167 0.022* | 0.247 0.074 | 0.792 0.930 | 0.510 0.235 | 0.635 0.801 | 3.379 7.975 | 0.138 0.040* | ||||||
副区 Subplot | F W C × F C × W F × W C × F × W | 1, 18 1, 18 2, 18 2, 18 1, 18 2, 18 | 1.475 0.298 1.089 0.126 3.756 0.140 | 0.240 0.592 0.358 0.883 0.068 0.870 | 0.721 0.196 0.023 0.187 1.243 0.018 | 0.407 0.664 0.978 0.831 0.280 0.982 | 0.488 1.708 0.754 1.102 1.010 1.641 | 0.494 0.208 0.485 0.354 0.328 0.221 | 1.440 0.351 0.620 1.851 0.056 0.898 | 0.246 0.561 0.549 0.186 0.816 0.425 | 8.598 1.543 0.561 0.558 0.016 1.707 | 0.009** 0.230 0.580 0.582 0.902 0.209 | 8.729 0.004 0.609 0.263 0.014 1.763 | 0.008** 0.949 0.555 0.771 0.907 0.200 | 4.335 0.027 0.322 0.126 0.308 0.914 | 0.052 0.871 0.729 0.882 0.586 0.419 | ||||||
总变异 Total variance 35 |
植物性状 Plant trait | FDAGW | FDH | FDA | FDLDW | FDSLA | FDSLW |
---|---|---|---|---|---|---|
FDH FDA FDLDW FDSLA FDSLW FD6 traits | 0.305 0.242 0.470** 0.106 0.169 0.726** | -0.074 0.173 -0.051 0.002 0.416** | 0.644** 0.023 -0.077 0.464** | -0.015 -0.116 0.610** | 0.855** 0.575** | 0.560** |
表3 群落植物功能多样性指数的相关系数
Table 3 Correlation coefficient of plant functional diversity index in community
植物性状 Plant trait | FDAGW | FDH | FDA | FDLDW | FDSLA | FDSLW |
---|---|---|---|---|---|---|
FDH FDA FDLDW FDSLA FDSLW FD6 traits | 0.305 0.242 0.470** 0.106 0.169 0.726** | -0.074 0.173 -0.051 0.002 0.416** | 0.644** 0.023 -0.077 0.464** | -0.015 -0.116 0.610** | 0.855** 0.575** | 0.560** |
变异来源 Source of variance | 自由度 df (m, n) | AGW (g) | H (cm) | A (cm2) | LDW (g) | SLA (m2·kg-1) | SLW (kg·m-2) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F-test | p | F-test | p | F-test | p | F-test | p | F-test | p | F-test | p | ||||||||
主区 Whole plot | B C | 2, 4 2, 4 | 4.167 328.859 | 0.105 0.000** | 0.368 125.486 | 0.713 0.000** | 0.822 70.935 | 0.502 0.001** | 0.021 115.615 | 0.980 0.000** | 2.689 13.014 | 0.182 0.018* | 1.885 4.109 | 0.265 0.107 | |||||
副区 Subplot | F W C × F C × W F × W C × F × W | 1, 18 1, 18 2, 18 2, 18 1, 18 2, 18 | 0.038 0.262 0.489 0.130 0.135 0.128 | 0.849 0.615 0.621 0.879 0.717 0.881 | 28.371 0.029 2.009 0.133 1.497 0.816 | 0.000** 0.868 0.163 0.877 0.237 0.458 | 43.711 0.888 2.037 0.199 0.668 0.358 | 0.000** 0.358 0.159 0.821 0.424 0.704 | 10.968 0.797 2.405 0.894 0.291 0.181 | 0.004** 0.384 0.158 0.427 0.596 0.836 | 10.473 3.719 2.730 0.778 1.409 2.297 | 0.005** 0.070 0.092 0.474 0.251 0.129 | 5.571 2.018 0.606 1.122 0.381 0.575 | 0.030* 0.173 0.556 0.347 0.545 0.573 | |||||
总变异 Total variance 35 |
表4 刈割、施肥和浇水对高寒草甸植物性状值影响的方差分析
Table 4 ANOVA for the effects of clipping, fertilizing and watering on the value of plant traits in alpine meadow
变异来源 Source of variance | 自由度 df (m, n) | AGW (g) | H (cm) | A (cm2) | LDW (g) | SLA (m2·kg-1) | SLW (kg·m-2) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F-test | p | F-test | p | F-test | p | F-test | p | F-test | p | F-test | p | ||||||||
主区 Whole plot | B C | 2, 4 2, 4 | 4.167 328.859 | 0.105 0.000** | 0.368 125.486 | 0.713 0.000** | 0.822 70.935 | 0.502 0.001** | 0.021 115.615 | 0.980 0.000** | 2.689 13.014 | 0.182 0.018* | 1.885 4.109 | 0.265 0.107 | |||||
副区 Subplot | F W C × F C × W F × W C × F × W | 1, 18 1, 18 2, 18 2, 18 1, 18 2, 18 | 0.038 0.262 0.489 0.130 0.135 0.128 | 0.849 0.615 0.621 0.879 0.717 0.881 | 28.371 0.029 2.009 0.133 1.497 0.816 | 0.000** 0.868 0.163 0.877 0.237 0.458 | 43.711 0.888 2.037 0.199 0.668 0.358 | 0.000** 0.358 0.159 0.821 0.424 0.704 | 10.968 0.797 2.405 0.894 0.291 0.181 | 0.004** 0.384 0.158 0.427 0.596 0.836 | 10.473 3.719 2.730 0.778 1.409 2.297 | 0.005** 0.070 0.092 0.474 0.251 0.129 | 5.571 2.018 0.606 1.122 0.381 0.575 | 0.030* 0.173 0.556 0.347 0.545 0.573 | |||||
总变异 Total variance 35 |
图3 刈割和施肥对植物性状值的影响(平均值±标准误差, n = 36)。F、H1、H3、NF、NH分别表示施肥、重度刈割、中度刈割、不施肥、不刈割。标准误差上方相同的大写(或小写)字母表示处理间差异不显著(p > 0.05)。ns和*分别表示交互作用的显著性p > 0.10和p < 0.05。
Fig. 3 Effects of clipping and fertilizing on the value of plant traits (mean ± SE, n = 36). F, H1, H3, NF, NH indicate fertilized, stubbled 1 cm, stubbled 3 cm, unfertilized, unclipped treatments, respectively. The same upper case (or lower case) letter above error bars indicates no difference (p > 0.05) among treatments. ns and * indicate significance of interaction effect p > 0.10 and p < 0.05, respectively.
植物性状 Plant trait | AGW (g) | H (cm) | A (cm2) | LDW (g) | SLA (m2·kg-1) |
---|---|---|---|---|---|
H (cm) A (cm2) LDW (g) SLA (m2·kg-1) SLW (kg·m-2) | 0.931** 0.921** 0.959** 0.234 0.189 | 0.953** 0.968** 0.333* 0.073 | 0.977** 0.405* 0.057 | 0.262 0.192 | -0.485** |
表5 群落植物性状值的相关系数
Table 5 Correlation coefficients of the value of plant traits in community
植物性状 Plant trait | AGW (g) | H (cm) | A (cm2) | LDW (g) | SLA (m2·kg-1) |
---|---|---|---|---|---|
H (cm) A (cm2) LDW (g) SLA (m2·kg-1) SLW (kg·m-2) | 0.931** 0.921** 0.959** 0.234 0.189 | 0.953** 0.968** 0.333* 0.073 | 0.977** 0.405* 0.057 | 0.262 0.192 | -0.485** |
图4 刈割和施肥处理整合梯度中物种多样性、功能多样性和初级生产力(对数尺度)的关系。
Fig. 4 Relationships between species diversity, functional diversity and primary productivity (logarithmic scale) in integral gradients of clipping and fertilizing treatments.
图5 刈割和施肥处理组合梯度中物种多样性、功能多样性和初级生产力(对数尺度)的关系。
Fig. 5 Relationships between species diversity, functional diversity and primary productivity (logarithmic scale) in different gradients of clipping and fertilizing treatments.
[1] | de Bello F, Lepš J, Sebastià MT (2006). Variations in species and functional plant diversity along climatic and grazing gradients. Ecography, 29,801-810. |
[2] | Díaz S, Cabido M (2001). Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution, 16,646-655. |
[3] | Díaz S, Symstad AJ, Chapin FS III, Wardle DA, Huenneke LF (2003). Functional diversity revealed by removal experiments. Trends in Ecology & Evolution, 18,140-146. |
[4] | Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004). Plant functional markers capture ecosystem properties during secondary succession. Ecology, 85,2630-2637. |
[5] | He JS (贺金生), Fang JY (方精云), Ma KP (马克平), Huang JH (黄建辉) (2003). Biodiversity and ecosystem productivity: Why is there a discrepancy in the relationship between experimental and natural ecosystems? Acta Phytoecologica Sinica(植物生态学报), 27,835-843. (in Chinese with English abstract) |
[6] |
Hillebrand H, Matthiessen B (2009). Biodiversity in a complex world: consolidation and progress in functional biodiversity research. Ecology Letters, 12,1405-1419.
DOI URL PMID |
[7] | Hooper DU (1998). The role of complementarity and competition in ecosystem responses to variation in plant diversity. Ecology, 79,704-719. |
[8] | Lawton JH (1994). What do species do in ecosystems? Oikos, 71,367-374. |
[9] | Lawton JH, Brow VK (1993). Redundancy in ecosystems. In: Schulze ED, Money HA eds. Biodiversity and Ecosystem Function. Ecological Studies Analysis and Synthesis. Springer-Verlag, Berlin. 99,255-297. |
[10] | Lepš J, de Bello F, Lavorel S, Berman S (2006). Quantifying and interpreting functional diversity of natural communities: practical considerations matter. Preslia, 78,481-501. |
[11] | Li WQ (李伟绮) (2010). Effects of Available Soil Space on Functional Traits-Productivity Relationship (生境空间对植物功能多样性与生产力关系的影响). Master Degree Dissertation, Lanzhou University, Lanzhou.7-28. (in Chinese with English abstract) |
[12] | Li YN (李英年), Wang QX (王勤学), Gu S (古松), Fu YL (伏玉玲), Du MY (杜明远), Zhao L (赵亮), Zhao XQ (赵新全), Yu GR (于贵瑞) (2004). Integrated monitoring of alpine vegetation types and its primary production. Acta Geographica Sinica (地理学报), 59,40-48. (in Chinese with English abstract) |
[13] | Loreau M (2004). Does functional redundancy exist? Oikos, 104,606-611. |
[14] | Ma KP (马克平), Liu YM (刘玉明) (1994). Measurement of biotic community diversity I: α diversity (Part 2). Chinese Biodiversity(生物多样性), 2,231-239. (in Chinese) |
[15] | Mayfield MM, Boni MF, Daily GC, Ackerly D (2005). Species and functional diversity of native and human- dominated plant communities. Ecology, 86,2365-2372. |
[16] | Naeem S (2002). Disentangling the impacts of diversity on ecosystem functioning in combinatorial experiments. Ecology, 83,2925-2935. |
[17] | Petchey OL, Evans KL, Fishburn IS, Gaston KJ (2007). Low functional diversity and no redundancy in British avian assemblages. Journal of Animal Ecology, 76,977-985. |
[18] | Petchey OL, Gaston KJ (2002). Functional diversity (FD), species richness and community composition. Ecology Letters, 5,402-411. |
[19] |
Petchey OL, Gaston KJ (2006). Functional diversity: back to basics and looking forward. Ecology Letters, 9,741-758.
URL PMID |
[20] | Ren JZ (任继周) (1998). Research Approaches on Grass Science (草业科学研究方法). China Agriculture Press, Beijing.15-16. (in Chinese) |
[21] |
Sasaki T, Okubo S, Okayasu T, Jamsran U, Ohkuro T, Takeuchi K (2009). Two-phase functional redundancy in plant communities along a grazing gradient in Mongolian rangelands. Ecology, 90,2598-2608.
URL PMID |
[22] | Tilman D (1982). Resource Competition and Community Structure. Princeton University Press, Princeton. |
[23] | Weiher E, Clarke GDP, Keddy PA (1998). Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos, 81,309-322. |
[24] | Zang YM (臧岳铭), Zhu ZH (朱志红), Li YN (李英年), Wang WJ (王文娟), Xi B (席博) (2009). Effects of species diversity and functional diversity on primary productivity of alpine meadow. Chinese Journal of Ecology (生态学杂志), 28,999-1005. (in Chinese with English abstract) |
[25] | Zhang QG (张全国), Zhang DY (张大勇) (2003). Biodiversity and ecosystem functioning: recent advances and trends. Biodiversity Science (生物多样性), 11,351-363. (in Chinese with English abstract) |
[26] | Zhao LQ (赵陆强), Wang G (王刚) (2009). Relationship between species diversity and productivity of alpine meadows in Gannan Prefecture. Journal of Lanzhou University (Natural Sciences) (兰州大学学报(自然科学版)), 45,82-86, 93. (in Chinese with English abstract) |
[27] | Zhao XQ (赵新全) (2009). Global Change and Ecological System in Alpine Meadow (高寒草甸生态系统与全球变化). Science Press, Beijing. 78. (in Chinese) |
[28] | Zhou XS (周晓松), Zhu ZH (朱志红), Li YN (李英年), Yuan FR (袁芙蓉), Fan RJ (樊瑞俭) (2011). Research on the community compensatory mechanism under clipping, fertilizing and watering treatment in alpine meadow. Journal of Lanzhou University (Natural Sciences) (兰州大学学报(自然科学版)), 47,50-57. (in Chinese with English abstract) |
[29] | Zhu ZH (朱志红), Wang G (王刚) (1996). An approach to analyzing nature of community structure: with examples of alpine meadow and alpine brushland. Acta Phytoecologica Sinica(植物生态学报), 20,184-192. (in Chinese with English abstract) |
[1] | 蔡慧颖 李兰慧 林阳 梁亚涛 杨光 孙龙. 白桦叶片和细根非结构性碳水化合物对火后时间的响应[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[2] | 江康威 张青青 王亚菲 李宏 丁雨 杨永强 吐尔逊娜依·热依木. 放牧干扰下天山北坡中段植物功能群特征及其与土壤环境因子的关系[J]. 植物生态学报, 2024, 48(预发表): 0-0. |
[3] | 萨其拉, 张霞, 朱琳, 康萨如拉. 长期不同放牧强度下荒漠草原优势种无芒隐子草叶片解剖结构变化[J]. 植物生态学报, 2024, 48(3): 331-340. |
[4] | 黄玲, 王榛, 马泽, 杨发林, 李岚, SEREKPAYEV Nurlan, NOGAYEV Adilbek, 侯扶江. 长期放牧和氮添加对黄土高原典型草原长芒草种群生长的影响[J]. 植物生态学报, 2024, 48(3): 317-330. |
[5] | 茹雅倩, 薛建国, 葛萍, 李钰霖, 李东旭, 韩鹏, 杨天润, 储伟, 陈章, 张晓琳, 李昂, 黄建辉. 高频轮牧对典型草原生产生态效果的影响[J]. 植物生态学报, 2024, 48(2): 171-179. |
[6] | 李娜, 唐士明, 郭建英, 田茹, 王姗, 胡冰, 罗永红, 徐柱文. 放牧对内蒙古草地植物群落特征影响的meta分析[J]. 植物生态学报, 2023, 47(9): 1256-1269. |
[7] | 张中扬, 宋希强, 任明迅, 张哲. 附生维管植物生境营建作用的生态学功能[J]. 植物生态学报, 2023, 47(7): 895-911. |
[8] | 杨佳绒, 戴冬, 陈俊芳, 吴宪, 刘啸林, 刘宇. 丛枝菌根真菌多样性对植物群落构建和稀有种维持的研究进展[J]. 植物生态学报, 2023, 47(6): 745-755. |
[9] | 吕自立, 刘彬, 常凤, 马紫荆, 曹秋梅. 巴音布鲁克高寒草甸植物功能多样性与生态系统多功能性关系沿海拔梯度的变化[J]. 植物生态学报, 2023, 47(6): 822-832. |
[10] | 张琦, 冯可, 常智慧, 何双辉, 徐维启. 灌丛化对林草交错带植物和土壤微生物的影响[J]. 植物生态学报, 2023, 47(6): 770-781. |
[11] | 王晓悦, 许艺馨, 李春环, 余海龙, 黄菊莹. 长期降水量变化下荒漠草原植物生物量、多样性的变化及其影响因素[J]. 植物生态学报, 2023, 47(4): 479-490. |
[12] | 冯可, 刘冬梅, 张琦, 安菁, 何双辉. 旅游干扰对松山油松林土壤微生物多样性及群落结构的影响[J]. 植物生态学报, 2023, 47(4): 584-596. |
[13] | 席念勋, 张原野, 周淑荣. 群落生态学中的植物-土壤反馈研究[J]. 植物生态学报, 2023, 47(2): 170-182. |
[14] | 李耀琪, 王志恒. 植物功能生物地理学的研究进展与展望[J]. 植物生态学报, 2023, 47(2): 145-169. |
[15] | 王德利, 梁存柱. 退化草原的恢复状态: 气候顶极或干扰顶极?[J]. 植物生态学报, 2023, 47(10): 1464-1470. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19