草甸草原温室气体排放对氮添加量的非线性响应
收稿日期: 2023-01-12
录用日期: 2023-05-12
网络出版日期: 2023-05-15
基金资助
国家自然科学基金(32071562)
Nonlinear response of greenhouse gases emission to nitrogen addition in a meadow steppe
Received date: 2023-01-12
Accepted date: 2023-05-12
Online published: 2023-05-15
Supported by
National Natural Science Foundation of China(32071562)
为了研究氮沉降对内蒙古额尔古纳草甸草原主要温室气体(CO2、CH4和N2O)排放通量的影响, 该研究通过添加NH4NO3模拟氮沉降, 并设置6个氮添加水平(0、2、5、10、20、50 g·m-2·a-1), 同时考虑到草地利用方式的影响, 设置刈割和不刈割2个处理水平。分别于2020年和2021年的生长季(5-9月), 采用静态箱-气相色谱法测定了3种温室气体的排放通量。主要结果有: 1)生长季内3种温室气体的排放通量对氮添加的响应呈明显的非线性, 但响应格局在3种温室气体之间存在明显的差异。2)当氮添加量达到5-10 g·m-2·a-1时, CO2的通量达到峰值, 表现出显著的饱和性特征; CH4的吸收在低氮添加(0-5 g·m-2·a-1)时受到促进, 且这种促进作用随着氮添加量的增加而增强, 但氮添加量达到5-10 g·m-2·a-1时, 对CH4吸收的促进作用逐渐减弱, 且高氮添加(50 g·m-2·a-1)显著抑制CH4的吸收; N2O的排放通量对氮添加的响应总体也随氮添加量的增加而显著增加, 但响应模式与幅度存在年际差异。3)刈割仅在2021年对CH4的吸收具有显著的促进作用。4)综合两年的结果, CO2排放通量与降水量和硝态氮含量显著正相关, 与pH显著负相关。CH4吸收通量与降水量和铵态氮含量显著正相关, 与pH显著负相关。N2O排放通量与土壤温度和铵态氮含量显著正相关, 与硝态氮含量显著负相关。上述研究结果表明, 大气氮沉降增加对温室气体排放的影响具有普遍的非线性特征, 但不同温室气体的通量格局存在一定的差异。该研究结果对控制氮肥用量、选择合适的草地利用方式、评估草地生态系统变暖潜势具有重要意义。
葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉 . 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023 , 47(11) : 1483 -1492 . DOI: 10.17521/cjpe.2023.0011
Aims How nitrogen (N) addition impacts the emission of greenhouse gases (GHGs) is now becoming a hot issue in the study of global change. We aim to delineate the effects of N addition on the emission of major greenhouse gases (CO2, CH4and N2O).
Methods In order to achieve this goal, the flux of the three major GHGs was measured using static chamber gas chromatography during the growing seasons (May through September) of 2020 and 2021 in a meadow steppe of Hulun Buir in Nei Mongol. The experiment was conducted by applying NH4NO3 to simulate the atmospheric N deposition, which involved six N addition levels (i.e., 0, 2, 5, 10, 20, 50 g·m-2·a-1) and two grassland utilization levels (i.e., mown and unmown).
Important findings The results showed that the response of the three GHGs to N addition showed clear nonlinear patterns, but there was a remarkable difference in the patterns among the three GHGs. The emission of CO2 was increased with increasing N addition but saturated at around 10 g·m-2·a-1. The uptake of CH4 was promoted with increasing N addition when N addition was low (0-5 g·m-2·a-1), but this promotion effect was diminished with further increase in N addition (5-10 g·m-2·a-1), and the uptake of CH4 was inhibited when N addition reached 50 g·m-2·a-1. The emission of N2O increased significantly with the increase of N addition rates, but the response patterns and amplitude showed remarkable difference between the two years. With the data in the two years pooled, the CO2 flux had a significant positive correlation with precipitation and nitrate nitrogen (NO- 3-N) content, and a significant negative correlation with pH; CH4 absorption flux was significantly positively correlated with precipitation and ammonium nitrogen (NH+ 4-N) content, while negatively correlated with pH; N2O flux was significantly positively correlated with soil temperature and NH+ 4-N content, while significantly negatively correlated with NO- 3-N content. Our findings demonstrated that the response of the three GHGs to increasing atmospheric N deposition was largely nonlinear, and the response patterns were remarkably different among the three GHGs. These findings may be of great importance for controlling N fertilizer use, selecting appropriate grassland use, and evaluating grassland ecosystem warming potential under increasing atmospheric N deposition.
[1] | Bahn M, Knapp M, Garajova Z, Pfahringer N, Cernusca A (2006). Root respiration in temperate mountain grasslands differing in land use. Global Change Biology, 12, 995-1006. |
[2] | Chen DM, Li JJ, Lan ZC, Hu SJ, Bai YF (2016). Soil acidification exerts a greater control on soil respiration than soil nitrogen availability in grasslands subjected to long-term nitrogen enrichment. Functional Ecology, 30, 658-669. |
[3] | Chen H, Gurmesa GA, Zhang W, Zhu XM, Zheng MH, Mao QG, Zhang T, Mo JM (2016). Nitrogen saturation in humid tropical forests after 6 years of nitrogen and phosphorus addition: hypothesis testing. Functional Ecology, 30, 305-313. |
[4] | Chen S, Hao TX, Goulding K, Misselbrook T, Liu XJ (2019). Impact of 13-years of nitrogen addition on nitrous oxide and methane fluxes and ecosystem respiration in a temperate grassland. Environmental Pollution, 252, 675-681. |
[5] | Collins SL, Knapp AK, Briggs JM, Blair JM, Steinauer EM (1998). Modulation of diversity by grazing and mowing in native tallgrass prairie. Science, 280, 745-747. |
[6] | Fang HJ, Cheng SL, Yu GR, Wang YS, Xu MJ, Dang XS, Li LS, Wang L (2014). Microbial mechanisms responsible for the effects of atmospheric nitrogen deposition on methane uptake and nitrous oxide emission in forest soils: a review. Acta Ecologica Sinica, 34, 4799-4806. |
[6] | [方华军, 程淑兰, 于贵瑞, 王永生, 徐敏杰, 党旭升, 李林森, 王磊 (2014). 大气氮沉降对森林土壤甲烷吸收和氧化亚氮排放的影响及其微生物学机制. 生态学报, 34, 4799-4806.] |
[7] | Gu X, Wang L, Laanbroek H, Xu X, Song B, Huo Y, Chen S, Li L, Zhang L (2019). Saturated N2O emission rates occur above the nitrogen deposition level predicted for the semi-arid grasslands of Inner Mongolia, China. Geoderma, 341, 18-25. |
[8] | IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK. |
[9] | Janssens IA, Dieleman W, Luyssaert S, Subke JA, Reichstein M, Ceulemans R, Ciais P, Dolman AJ, Grace J, Matteucci G, Papale D, Piao SL, Schulze ED, Tang J, Law BE (2010). Reduction of forest soil respiration in response to nitrogen deposition. Nature Geoscience, 3, 315-322. |
[10] | Jiang CM, Yu GR, Fang HJ, Cao GM, Li YN (2010). Short- term effect of increasing nitrogen deposition on CO2, CH4 and N2O fluxes in an alpine meadow on the Qinghai- Tibetan Plateau, China. Atmospheric Environment, 44, 2920-2926. |
[11] | Lal R (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123, 1-22. |
[12] | Li Y, Chapman SJ, Nicol GW, Yao H (2018). Nitrification and nitrifiers in acidic soils. Soil Biology & Biochemistry, 116, 290-301. |
[13] | Liu L, Greaver TL (2009). A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission. Ecology Letters, 12, 1103-1117. |
[14] | Liu XY, Li ZP, Pan GX, Li LQ (2011). Greenhouse gas emission and C intensity for a long-term fertilization rice paddy in Tai Lake region, China. Journal of Agro- Environment Science, 30, 1783-1790. |
[14] | [刘晓雨, 李志鹏, 潘根兴, 李恋卿 (2011). 长期不同施肥下太湖地区稻田净温室效应和温室气体排放强度的变化. 农业环境科学学报, 30, 1783-1790.] |
[15] | Niu S, Classen AT, Dukes JS, Kardol P, Liu L, Luo Y, Rustad L, Sun J, Tang J, Templer PH, Thomas RQ, Tian D, Vicca S, Wang YP, Xia J, Zaehle S (2016). Global patterns and substrate-based mechanisms of the terrestrial nitrogen cycle. Ecology Letters, 19, 697-709. |
[16] | Peng Y, Wang G, Li F, Yang G, Fang K, Liu L, Qin S, Zhang D, Zhou G, Fang H, Liu X, Liu C, Yang Y (2019). Unimodal response of soil methane consumption to increasing nitrogen additions. Environmental Science & Technology, 53, 4150-4160. |
[17] | Scurlock JMO, Johnson K, Olson RJ (2002). Estimating net primary productivity from grassland biomass dynamics measurements. Global Change Biology, 8, 736-753. |
[18] | Tang SM, Wang K, Xiang YZ, Tian DS, Wang JS, Liu YS, Cao B, Guo D, Niu SL (2019). Heavy grazing reduces grassland soil greenhouse gas fluxes: a global meta-analysis. Science of the Total Environment, 654, 1218-1224. |
[19] | Wang JJ, Wang CK, Han Y (2018). Factors affecting soil respiration in stands of different ages in the Maoershan region, Northeast China. Acta Ecologica Sinica, 38, 1194-1202. |
[19] | [王家骏, 王传宽, 韩轶 (2018). 帽儿山不同年龄森林土壤呼吸速率的影响因子. 生态学报, 38, 1194-1202.] |
[20] | Wang X, Du YG, Guo XW (2021). Effect of nitrogen deposition on grasslands nitrous oxide emission rates by meta-analysis method. Mountain Research, 39, 338-345. |
[20] | [王霞, 杜岩功, 郭小伟 (2021). Meta分析模拟氮沉降对我国北方草地氧化亚氮排放速率的影响. 山地学报, 39, 338-345.] |
[21] | Wang XY, Li YL, Zhao XY, Mao W, Cui D, Qu H, Lian J, Luo YQ (2012). Responses of soil respiration to different environment factors in semi-arid and arid areas. Acta Ecologica Sinica, 32, 4890-4901. |
[21] | [王新源, 李玉霖, 赵学勇, 毛伟, 崔夺, 曲浩, 连杰, 罗永清 (2012). 干旱半干旱区不同环境因素对土壤呼吸影响研究进展. 生态学报, 32, 4890-4901.] |
[22] | Wang YL, Niu GX, Wang RZ, Rousk K, Li A, Hasi M, Wang CH, Xue JG, Yang GJ, Lü XT, Jiang Y, Han XG, Huang JH (2023). Enhanced foliar 15N enrichment with increasing nitrogen addition rates: role of plant species and nitrogen compounds. Global Change Biology, 29, 1591-1605. |
[23] | Wickland KP, Striegl RG, Alisa Mast M, Clow DW (2001). Carbon gas exchange at a southern Rocky Mountain wetland, 1996-1998. Global Biogeochemical Cycles, 15, 321-335. |
[24] | Yang GJ, Lü XT, Stevens CJ, Zhang GM, Wang HY, Wang ZW, Zhang ZJ, Liu ZY, Han XG (2019). Mowing mitigates the negative impacts of N addition on plant species diversity. Oecologia, 189, 769-779. |
[25] | Yang HY, Zhang T, Huang YM, Duan L (2016). Effect of stimulated N deposition on N2O emission from a Stipa krylovii steppe in Inner Mongolia, China. Environmental Science, 37, 1900-1907. |
[25] | [杨涵越, 张婷, 黄永梅, 段雷(2016). 模拟氮沉降对内蒙古克氏针茅草原N2O排放的影响. 环境科学, 37, 1900-1907.] |
[26] | Yang Y, Xiao YM, Li CB, Gao YH, Li CL, Zhou GY (2022). Effects of long-term nitrogen addition and precipitation changes on CH4 flux in an alpine steppe. Chinese Journal of Applied and Environmental Biology, 28, 1542-1548. |
[26] | [杨阳, 肖元明, 李长斌, 高永恒, 李春丽, 周国英 (2022). 长期氮添加和降水格局改变对高寒草原CH4通量的影响. 应用与环境生物学报, 28, 1542-1548.] |
[27] | Yang Y, Xiao YM, Li CB, Wang B, Gao YH, Zhou GY (2021). Nitrogen addition, rather than altered precipitation, stimulates nitrous oxide emissions in an alpine steppe. Ecology and Evolution, 11, 15153-15163. |
[28] | Yang YH, Zhang DY, Wei B, Liu Y, Feng XH, Mao C, Xu WJ, He M, Wang L, Zheng ZH, Wang YY, Chen LY, Peng YF (2023). Nonlinear responses of community diversity, carbon and nitrogen cycles of grassland ecosystems to external nitrogen input. Chinese Journal of Plant Ecology, 47, 1-24. |
[28] | [杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰(2023). 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制. 植物生态学报, 47, 1-24.] |
[29] | Ying J, Li XX, Wang NN, Lan ZC, He JZ, Bai YF (2017). Contrasting effects of nitrogen forms and soil pH on ammonia oxidizing microorganisms and their responses to long-term nitrogen fertilization in a typical steppe ecosystem. Soil Biology & Biochemistry, 107, 10-18. |
[30] | Zhang JL, Li J, Zhao JN, Liu HM, Wang Y, Yang DL (2017). Effects of nitrogen addition on greenhouse gas flux in a Stipa baicalensis grassland in Inner Mongolia. Journal of Agro-Environment Science, 36, 1640-1648. |
[30] | [张金玲, 李洁, 赵建宁, 刘红梅, 王宇, 杨殿林 (2017). 氮素添加对贝加尔针茅草原温室气体通量的影响. 农业环境科学学报, 36, 1640-1648.] |
[31] | Zhang LH, Hou LY, Gou DF, Li LH, Xu XF (2017). Interactive impacts of nitrogen input and water amendment on growing season fluxes of CO2, CH4, and N2O in a semiarid grassland, Northern China. Science of the Total Environment, 578, 523-534. |
[32] | Zhang PL, Fang HJ, Cheng SL, Xu MJ, Li LS, Dang XS (2013). The early effects of nitrogen addition on CH4 uptake in an alpine meadow soil on the Eastern Qinghai-Tibetan Plateau. Acta Ecologica Sinica, 33, 4101-4110. |
[32] | [张裴雷, 方华军, 程淑兰, 徐敏杰, 李林森, 党旭升 (2013). 增氮对青藏高原东缘高寒草甸土壤甲烷吸收的早期影响. 生态学报, 33, 4101-4110.] |
[33] | Zhang XL, Tan YL, Li A, Ren TT, Chen SP, Wang LX, Huang JH (2015). Water and nitrogen availability co-control ecosystem CO2 exchange in a semiarid temperate steppe. Scientific Reports, 5, 15549. DOI: 10.1038/srep15549. |
[34] | Zhou LY, Zhou XH, Zhang BC, Lu M, Luo YQ, Liu LL, Li B (2014). Different responses of soil respiration and its components to nitrogen addition among biomes: a meta- analysis. Global Change Biology, 20, 2332-2343. |
[35] | Zhou XH, Wan SQ, Luo YQ (2007). Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Global Change Biology, 13, 761-775. |
/
〈 |
|
〉 |