研究论文

昼夜不对称增温对长白山阔叶红松林碳汇能力的影响

展开
  • 1中国气象局沈阳大气环境研究所, 辽宁省农业气象灾害重点实验室, 沈阳 110166
    2草种创新与草地农业生态系统全国重点实验室, 兰州大学农业农村部草牧业创新重点实验室, 兰州大学草地农业教育部工程研究中心, 兰州大学草地农业科技学院, 兰州 730020
    3中国科学院西北生态环境资源研究院沙坡头沙漠研究试验站, 兰州 730000
ORCID:李伟斌: 0000-0001-8970-0318

收稿日期: 2022-11-28

  录用日期: 2023-06-27

  网络出版日期: 2023-06-28

_none mag_rich_split_div">

基金资助

国家自然科学基金(32201329);国家自然科学基金(32201289);中国博士后科学基金(2021M703465)

Influence of diurnal asymmetric warming on carbon sink capacity in a broadleaf Korean pine forest in Changbai Mountains, China

Expand
  • 1Institute of Atmospheric Environment, China Meteorological Administration, Key Laboratory of Agrometeorological Disasters of Liaoning Province, Shenyang 110166, China
    2State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Ministry of Agriculture and Rural Affairs Key Laboratory of Grassland Livestock Industry Innovation;Ministry of Education Engineering Research Center of Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
    3Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China

Received date: 2022-11-28

  Accepted date: 2023-06-27

  Online published: 2023-06-28

Supported by

National Natural Science Foundation of China(32201329);National Natural Science Foundation of China(32201289);China Postdoctoral Science Foundation(2021M703465)

摘要

过去50年的气温数据表明全球陆地表面在夜间比白天变暖更快, 然而以往的研究大多关注全天对等增温的影响, 对昼夜不对称增温效应的认识不足。该研究利用光合增益和水力成本优化模型分析了两种增温情景(昼夜等幅升温和昼夜不等幅升温)对长白山阔叶红松林植被动态的影响。结果表明: 光合增益和水力成本优化模型可以很好地模拟长白山阔叶红树林的碳收支状态(R2 = 0.67, p < 0.001)。增温普遍促进了长白山阔叶红树林的碳汇(11.2%-13.8%), 但未显著改变其水分利用效率; 而不同增温情景对年固碳量的促进作用并无显著差异。与此同时, 增温增加了森林植被的水分压力, 从而增加了植物的导水率损失百分数(水力脆弱性, 1.1%)。由此可见, 相比于当前气候条件, 所有增温情景均会提高森林的碳汇能力, 但同时也会加大森林的死亡风险, 进而降低森林碳汇潜力。

本文引用格式

李伟斌, 张红霞, 张玉书, 陈妮娜 . 昼夜不对称增温对长白山阔叶红松林碳汇能力的影响[J]. 植物生态学报, 2023 , 47(9) : 1225 -1233 . DOI: 10.17521/cjpe.2022.0478

Abstract

Aims Meteorological data show faster warming of the global land surface during the night than during the day in the past 50 years. However, most of the previous studies were focused on the effects of whole-day equivalent warming, and the understanding of effects of diurnal asymmetric warming remains elusive.
Methods This study evaluated the effects of diurnal asymmetric warming on carbon sink capacity using a optimization model considering photosynthetic gain and hydraulic cost in a broadleaf Korean pine (Pinus koraiensis) forest in Changbai Mountains.
Important findings Results show that the model simulations matched well with observations of net primary production based on the data measured from eddy covariance flux towers. Warming promoted carbon sequestration (11.2%-13.8%) in our study area but did not significantly affect the water use efficiency, and the positive effects on annual carbon sequestration had no statistical difference among different warming scenarios. In addition, warming increased the water stress for forest plants, subsequently increasing the loss percentage of conductivity (PLC, hydraulic vulnerability; 1.1%). In conclusion, all warming scenarios significantly enhanced the current carbon sink capacity of forests compared with ambient condition, but warming may increase the risk of forest death through hydraulic failure, which would significantly affect the future forest carbon sink.

[an error occurred while processing this directive]

参考文献

[1] Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landh?usser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD, Anderegg LDL, Barron-Gafford GA, Beerling DJ, Breshears DD, Brodribb TJ, et al. (2017). A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecology and Evolution, 1, 1285-1291.
[2] Anderegg WRL, Ballantyne AP, Smith WK, Majkut J, Rabin S, Beaulieu C, Birdsey R, Dunne JP, Houghton RA, Myneni RB, Pan YD, Sarmiento JL, Serota N, Shevliakova E, Tans P, et al. (2015). Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proceedings of the National Academy of Sciences of the United States of America, 112, 15591-15596.
[3] Anderegg WRL, Kane JM, Anderegg LDL (2013). Consequences of widespread tree mortality triggered by drought and temperature stress. Nature Climate Change, 3, 30-36.
[4] Anderegg WRL, Klein T, Bartlett M, Sack L, Pellegrini AFA, Choat B, Jansen S (2016). Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought- induced tree mortality across the globe. Proceedings of the National Academy of Sciences of the United States of America, 113, 5024-5029.
[5] Bai E, Li SL, Xu W, Li WH, Dai WW, Jiang P (2013). A meta-analysis of experimental warming effects on terrestrial nitrogen pools and dynamics. New Phytologist, 199, 441-451.
[6] Bai WM, Xia JY, Wan SQ, Zhang WH, Li LH (2012). Day and night warming have different effect on root lifespan. Biogeosciences, 9, 375-384.
[7] Cao J, Zhao B, Gao LS, Li J, Li ZS, Zhao XH (2018). Increasing temperature sensitivity caused by climate warming, evidence from Northeastern China. Dendrochronologia, 51, 101-111.
[8] Das S, Bhattacharyya P, Adhya TK (2011). Interaction effects of elevated CO2 and temperature on microbial biomass and enzyme activities in tropical rice soils. Environmental Monitoring and Assessment, 182, 555-569.
[9] Du Y, Lu RL, Xia JY (2020). Impacts of global environmental change drivers on non-structural carbohydrates in terrestrial plants. Functional Ecology, 34, 1525-1536.
[10] Gong XW, Hao GY (2023). The synergistic effect of hydraulic and thermal impairments accounts for the severe crown damage in Fraxinus mandshurica seedlings following the combined drought-heatwave stress. Science of the Total Environment, 856, 159017. DOI: 10.1016/j.scitotenv.2022.159017.
[11] Grossiord C, Buckley TN, Cernusak LA, Novick KA, Poulter B, Siegwolf RTW, Sperry JS, McDowell NG (2020). Plant responses to rising vapor pressure deficit. New Phytologist, 226, 1550-1566.
[12] Hartmann H, Bastos A, Das AJ, Esquivel-Muelbert A, Hammond WM, Martínez-Vilalta J, McDowell NG, Powers JS, Pugh TAM, Ruthrof KX, Allen CD (2022). Climate change risks to global forest health: emergence of unexpected events of elevated tree mortality worldwide. Annual Review of Plant Biology, 73, 673-702.
[13] IPCC (2019). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. [2022-11-10]. https://www.ipcc.ch/srccl/.
[14] Li WB (2017). The Influence of Tree Species on Small Scale Spatial Heterogeneity of Soil Respiration in a Temperate Mixed Forest. PhD dissertation, University of Chinese Academy of Sciences, Beijing.
[14] [李伟斌 (2017). 树种对针阔混交林土壤呼吸空间异质性的影响. 博士学位论文, 中国科学院大学, 北京.]
[15] Li WB, Bai Z, Jin CJ, Zhang XZ, Guan DX, Wang AZ, Yuan FH, Wu JB (2017). The influence of tree species on small scale spatial heterogeneity of soil respiration in a temperate mixed forest. Science of the Total Environment, 590-591, 242-248.
[16] Li WB, Hartmann H, Adams HD, Zhang HX, Jin CJ, Zhao CY, Guan DX, Wang AZ, Yuan FH, Wu JB (2018). The sweet side of global change-dynamic responses of non-structural carbohydrates to drought, elevated CO2 and nitrogen fertilization in tree species. Tree Physiology, 38, 1706-1723.
[17] Li WB, Jin CJ, Jing YL, Wu JB, Yuan FH, Guan DX, Wang AZ (2014). Response of soil respiration to enhanced nitrogen deposition in broadleaved Korean pine forest in Changbai Mountains. Journal of Northeast University, 42(12), 89-93.
[17] [李伟斌, 金昌杰, 井艳丽, 吴家兵, 袁凤辉, 关德新, 王安志 (2014). 长白山阔叶红松林土壤呼吸对氮沉降增加的响应. 东北林业大学学报, 42(12), 89-93.]
[18] Li WB, McDowell NG, Zhang HX, Wang WZ, MacKay DS, Leff R, Zhang PP, Ward ND, Norwood M, Yabusaki S, Myers-Pigg AN, Pennington SC, Pivovaroff AL, Waichler S, Xu CG, et al. (2022). The influence of increasing atmospheric CO2, temperature, and vapor pressure deficit on seawater-induced tree mortality. New Phytologist, 235, 1767-1779.
[19] Li WB, Zhang HX, Huang GZ, Liu RX, Wu HJ, Zhao CY, McDowell NG (2020). Effects of nitrogen enrichment on tree carbon allocation: a global synthesis. Global Ecology and Biogeography, 29, 573-589.
[20] Liang JY, Xia JY, Liu LL, Wan SQ (2013). Global patterns of the responses of leaf-level photosynthesis and respiration in terrestrial plants to experimental warming. Journal of Plant Ecology, 6, 437-447.
[21] Liang XY, Liu SR (2019). In-situ measurement of photosynthetic characteristics of dominant tree species based on canopy crane in a Korean pine broad-leaved forest in Changbai Mountain, northeastern China. Chinese Journal of Applied Ecology, 30, 1494-1502.
[21] [梁星云, 刘世荣 (2019). 基于冠层塔吊原位测定长白山温带阔叶红松原始林群落主要树种的光合特征. 应用生态学报, 30, 1494-1502.]
[22] Liu YL, Parolari AJ, Kumar M, Huang CW, Katul GG, Porporato A (2017). Increasing atmospheric humidity and CO2 concentration alleviate forest mortality risk. Proceedings of the National Academy of Sciences of the United States of America, 114, 9918-9923.
[23] Luo DD, Wang CK, Jin Y (2017). Plant water-regulation strategies: isohydric versus anisohydric behavior. Chinese Journal of Plant Ecology, 41, 1020-1032.
[23] [罗丹丹, 王传宽, 金鹰 (2017). 植物水分调节对策: 等水与非等水行为. 植物生态学报, 41, 1020-1032.]
[24] McDowell NG, Allen CD (2015). Darcy’s law predicts widespread forest mortality under climate warming. Nature Climate Change, 5, 669-672.
[25] McDowell NG, Allen CD, Anderson-Teixeira K, Aukema BH, Bond-Lamberty B, Chini L, Clark JS, Dietze M, Grossiord C, Hanbury-Brown A, Hurtt GC, Jackson RB, Johnson DJ, Kueppers L, Lichstein JW, et al. (2020). Pervasive shifts in forest dynamics in a changing world. Science, 368, eaaz9463. DOI: 10.1126/science.aaz946.
[26] McDowell NG, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008). Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought? New Phytologist, 178, 719-739.
[27] McDowell NG, Sapes G, Pivovaroff A, Adams HD, Allen CD, Anderegg WRL, Arend M, Breshears DD, Brodribb T, Choat B, Cochard H, de Cáceres M, De Kauwe MG, Grossiord C, Hammond WM, et al. (2022). Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit. Nature Reviews Earth & Environment, 3, 294-308.
[28] Peng SS, Piao SL, Ciais P, Myneni RB, Chen AP, Chevallier F, Dolman AJ, Janssens IA, Pe?uelas J, Zhang GX, Vicca S, Wan SQ, Wang SP, Zeng H (2013). Asymmetric effects of daytime and night-time warming on Northern Hemisphere vegetation. Nature, 501, 88-92.
[29] Pivovaroff AL, McDowell NG, Rodrigues TB, Brodribb T, Cernusak LA, Choat B, Grossiord C, Ishida Y, Jardine KJ, Laurance S, Leff R, Li WB, Liddell M, MacKay DS, Pacheco H, et al. (2021). Stability of tropical forest tree carbon-water relations in a rainfall exclusion treatment through shifts in effective water uptake depth. Global Change Biology, 27, 6454-6466.
[30] Prieto I, Querejeta JI (2020). Simulated climate change decreases nutrient resorption from senescing leaves. Global Change Biology, 26, 1795-1807.
[31] Sperry JS, Venturas MD, Anderegg WRL, Mencuccini M, MacKay DS, Wang YJ, Love DM (2017). Predicting stomatal responses to the environment from the optimization of photosynthetic gain and hydraulic cost. Plant, Cell & Environment, 40, 816-830.
[32] Sperry JS, Venturas MD, Todd HN, Trugman AT, Anderegg WRL, Wang YJ, Tai XN (2019). The impact of rising CO2 and acclimation on the response of US forests to global warming. Proceedings of the National Academy of Sciences of the United States of America, 116, 25734-25744.
[33] Tan JG, Piao SL, Chen AP, Zeng ZZ, Ciais P, Janssens IA, Mao JF, Myneni RB, Peng SS, Pe?uelas J, Shi XY, Vicca S (2015). Seasonally different response of photosynthetic activity to daytime and night-time warming in the Northern Hemisphere. Global Change Biology, 21, 377-387.
[34] Vose RS, Easterling DR, Gleason B (2005). Maximum and minimum temperature trends for the globe: an update through 2004. Geophysical Research Letters, 32, L23822. DOI: 10.1029/2005GL024379.
[35] Wan SQ, Xia JY, Liu WX, Niu SL (2009). Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology, 90, 2700-2710.
[36] Wang M, Guan DX, Wang YS, Hao ZQ, Liu YQ (2006). Estimation on ecosystem productivity of the broad leaved-Korean pine forest in Changbai Mountain. Science in China: Earth Science, 36(Suppl. I), 70-82.
[36] [王淼, 关德新, 王跃思, 郝占庆, 刘亚琴 (2006). 长白山红松针阔叶混交林生态系统生产力的估算. 中国科学: 地球科学, 36(增I), 70-82.]
[37] Wu J, Serbin SP, Ely KS, Wolfe BT, Dickman LT, Grossiord C, Michaletz ST, Collins AD, Detto M, McDowell NG, Wright SJ, Rogers A (2020). The response of stomatal conductance to seasonal drought in tropical forests. Global Change Biology, 26, 823-839.
[38] Xia JY, Chen JQ, Piao SL, Ciais P, Luo YQ, Wan SQ (2014). Terrestrial carbon cycle affected by non-uniform climate warming. Nature Geoscience, 7, 173-180.
[39] Xia JY, Lu RL, Zhu C, Cui EQ, Du Y, Huang K, Sun BY (2020). Response and adaptation of terrestrial ecosystem processes to climate warming. Chinese Journal of Plant Ecology, 44, 494-514.
[39] [夏建阳, 鲁芮伶, 朱辰, 崔二乾, 杜莹, 黄昆, 孙宝玉 (2020). 陆地生态系统过程对气候变暖的响应与适应. 植物生态学报, 44, 494-514.]
[40] Zhang HX, McDowell NG, Adams HD, Wang AZ, Wu JB, Jin CJ, Tian JY, Zhu K, Li WB, Zhang YS, Yuan FH, Guan DX (2020a). Divergences in hydraulic conductance and anatomical traits of stems and leaves in three temperate tree species coping with drought, N addition and their interactions. Tree Physiology, 40, 230-244.
[41] Zhang HX, Yuan FH, Wu JB, Jin CJ, Pivovaroff AL, Tian JY, Li WB, Guan DX, Wang AZ, McDowell NG (2020b). Responses of functional traits to seven-year nitrogen addition in two tree species: coordination of hydraulics, gas exchange and carbon reserves. Tree Physiology, 41, 190-205.
[42] Zhang N, Yu GR, Zhao SD, Yu ZL (2003). Carbon budget of ecosystem in Changbai Mountain Natural Reserve. Chinese Journal of Enviromental Science, 24, 24-32.
[42] [张娜, 于贵瑞, 赵士洞, 于振良 (2003). 长白山自然保护区生态系统碳平衡研究. 环境科学, 24, 24-32.]
[43] Zhang XH, Qin HY, Huang YL, Huang YN, Qiao ZH (2022). Intertemporal allocation and cost of forest carbon sequestration in China under the carbon neutrality target. Chinese Journal of Applied Ecology, 33, 2413-2421.
[43] [张祥华, 秦会艳, 黄颖利, 黄亚楠, 乔振华 (2022). 碳中和目标下中国森林固碳量跨期分配及成本. 应用生态学报, 33, 2413-2421.]
[44] Zhang XZ, Shen ZX, Fu G (2015). A meta-analysis of the effects of experimental warming on soil carbon and nitrogen dynamics on the Tibetan Plateau. Applied Soil Ecology, 87, 32-38.
[45] Zhao J, Du ZQ, Wu ZT, Zhang H, Guo N, Ma ZT, Liu XJ (2018). Seasonal variations of day- and nighttime warming and their effects on vegetation dynamics in China’s temperate zone. Acta Geographica Sinica, 73, 395-404.
[45] [赵杰, 杜自强, 武志涛, 张红, 郭娜, 马志婷, 刘雪佳 (2018). 中国温带昼夜增温的季节性变化及其对植被动态的影响. 地理学报, 73, 395-404.]
[46] Zhou YY, Tang SH, Zhu QJ, Li JT, Sun R, Liu SH (2003). Measurement of LAI in Changbai Mountains Nature Reserve and its result. Resources Science, 25(6), 38-42.
[46] [周宇宇, 唐世浩, 朱启疆, 李江涛, 孙睿, 刘素红 (2003). 长白山自然保护区叶面积指数测量及结果. 资源科学, 25(6), 38-42.]
[47] Zhu EX, Cao ZJ, Jia J, Liu CZ, Zhang ZH, Wang H, Dai GH, He JS, Feng XJ (2021). Inactive and inefficient: warming and drought effect on microbial carbon processing in alpine grassland at depth. Global Change Biology, 27, 2241-2253.
[48] Zhu JT, Zheng JH (2022). Effects of diurnal asymmetric warming on terrestrial ecosystems. Chinese Journal of Ecology, 41, 777-783.
[48] [朱军涛, 郑家禾 (2022). 昼夜不对称变暖对陆地生态系统的影响. 生态学杂志, 41, 777-783.]
文章导航

/

[an error occurred while processing this directive]