研究论文

上海大金山岛不同植被类型土壤细菌群落的变异

  • 杨安娜 ,
  • 李曾燕 ,
  • 牟凌 ,
  • 杨柏钰 ,
  • 赛碧乐 ,
  • 张立 ,
  • 张增可 ,
  • 王万胜 ,
  • 杜运才 ,
  • 由文辉 ,
  • 阎恩荣
展开
  • 1华东师范大学生态与环境科学学院, 上海 200241
    2上海市金山区海洋海塘管理所, 上海 201508

收稿日期: 2023-06-14

  录用日期: 2023-10-09

  网络出版日期: 2023-10-12

基金资助

国家自然科学基金(32030068)

Variation in soil bacterial community across vegetation types in Dajinshan Island, Shanghai

  • YANG An-Na ,
  • LI Zeng-Yan ,
  • MOU Ling ,
  • YANG Bai-Yu ,
  • SAI Bi-Le ,
  • ZHANG Li ,
  • ZHANG Zeng-Ke ,
  • WANG Wan-Sheng ,
  • DU Yun-Cai ,
  • YOU Wen-Hui ,
  • YAN En-Rong
Expand
  • 1School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
    2Jinshan Ocean and Coast Management Institute, Shanghai 201508, China

Received date: 2023-06-14

  Accepted date: 2023-10-09

  Online published: 2023-10-12

Supported by

National Natural Science Foundation of China(32030068)

摘要

揭示次生演替过程中土壤细菌群落对植被类型变化的响应格局, 有助于深化对生态系统地上地下相互作用机制的理解。该研究以上海大金山岛处于演替前、中和后期的落叶灌丛、落叶阔叶林和常绿阔叶林为对象, 通过测定土壤碳、氮、磷含量以及土壤细菌群落特征, 分析土壤细菌多样性、类群关系网络结构和标志性类群如何随植被演替而更替。结果发现: 土壤养分含量在常绿阔叶林显著高于落叶阔叶林, 但土壤细菌多样性在落叶阔叶林显著高于常绿阔叶林, 土壤养分含量和细菌多样性在落叶灌丛处于中等水平。土壤细菌的相关性网络节点、密度和复杂性在落叶阔叶林最高, 在落叶灌丛中等, 在常绿阔叶林最低。落叶灌丛和落叶阔叶林的优势土壤细菌分别为根瘤菌目(Rhizobiales)和伯克氏菌目(Burkholderiales)等具有潜在固氮功能的类群, 常绿阔叶林的优势土壤细菌为黄单胞菌目(Xanthomonadales)和嗜热芽菌目(Thermogemmatisporales)等具有潜在致病和抗病性功能的类群以及酸杆菌目(Acidobacteriales)等与纤维素降解相关的类群。该结果表明: 海岛植被演替过程中, 植物种类组成和土壤养分供给性的改变会极大地重塑土壤细菌多样性、群落组成、互作网络结构和标志类群。海岛常绿阔叶林显著更低的土壤细菌多样性、趋于松散简化的细菌网络结构以及具有潜在致病和抗病功能的标志类群的出现, 说明了顶极群落地下部分对地上部分退化趋势的响应。

本文引用格式

杨安娜 , 李曾燕 , 牟凌 , 杨柏钰 , 赛碧乐 , 张立 , 张增可 , 王万胜 , 杜运才 , 由文辉 , 阎恩荣 . 上海大金山岛不同植被类型土壤细菌群落的变异[J]. 植物生态学报, 2024 , 48(3) : 377 -389 . DOI: 10.17521/cjpe.2023.0172

Abstract

Aims Revealing the response patterns of soil bacterial community to changes in vegetation type during secondary succession can improve our understanding of the mechanisms that structure the above- and below-ground interactions in ecosystems.

Methods To investigate how soil bacterial diversity, taxa network structure and biomarkers shift with vegetation succession, this study measured soil carbon, nitrogen and phosphorus contents, as well as soil bacterial community properties across shrubland, deciduous broadleaf forest and evergreen broadleaf forests, representing the early-, middle- and late-successional stages, respectively, on Dajinshan Island, Shanghai.

Important findings Soil nutrient contents were significantly higher in evergreen broadleaf forest than in deciduous broadleaf forest. However, soil bacterial diversity was significantly higher in deciduous broadleaf forest than in evergreen broadleaf forest, while soil nutrient content and bacterial diversity were medium in deciduous shrubland. The correlation network nodes, density and complexity of soil bacteria were highest in deciduous broadleaf forest, medium in deciduous shrubland, and lowest in evergreen broadleaf forest. The dominant soil bacteria in deciduous shrubland and broadleaf forest was Rhizobiales and Burkholderiales, respectively, which belong to functional group of nitrogen-fixing. The dominant soil bacterial in evergreen broadleaf forest were characterized by functional groups of pathogenicity and resistance such as Xanthomonadales and Thermogemmatisporales, and functional group associated with cellulose degradation such as Acidobacteriales. These results suggest that changes in plant species composition and soil nutrient availability during island vegetation succession can greatly reshape species diversity, community composition, interactive network structure and biomarkers of soil bacteria. In evergreen broadleaf forest, lowered soil bacterial diversity, simplified bacterial network structure, and emerged biomarkers of functional groups of pathogenicity and resistance suggest a response of belowground to the degraded trend of aboveground in the studied climax forest.

参考文献

[1] Alexander E, Friederike H, Stefan B (2012). Coherent dynamics and association networks among lake bacterioplankton taxa. The ISME Journal, 6, 330-342.
[2] Banning NC, Gleeson DB, Grigg AH, Grant CD, Andersen GL, Brodie EL, Murphy DV (2011). Soil microbial community successional patterns during forest ecosystem restoration. Applied and Environmental Microbiology, 77, 6158-6164.
[3] Cline LC, Zak DR (2015). Soil microbial communities are shaped by plant-driven changes in resource availability during secondary succession. Ecology, 96, 3374-3385.
[4] Enrique GR, Prieto I, Villar R (2018). The leaf economic spectrum drives leaf litter decomposition in Mediterranean forests. Plant and Soil, 435, 353-366.
[5] Ethel BS, Lucas MC, Chuck SF, Cristina EAM (2019). Distribution, function and regulation of type 6 secretion systems of Xanthomonadales. Frontiers in Microbiology, 10, 1635. DOI: 10.3389/fmicb.2019.01635
[6] Fan K, Delgado-Baquerizo M, Guo X, Wang D, Wu Y, Zhu M, Yu W, Yao H, Zhu Y, Chu H (2019). Suppressed N fixation and diazotrophs after four decades of fertilization. Microbiome, 7, 143. DOI: 10.1186/s40168-019-0757-8.
[7] Fierer N, Bradford MA, Jackson RB (2007). Toward an ecological classification of soil bacteria. Ecology, 88, 1354-1364.
[8] Fruchterman TMJ, Reingold EM (1991). Graph drawing by force-directed placement. Software: Practice and Experience, 21, 1129-1164.
[9] Garrido-Oter R, Nakano RT, Dombrowski N, Ma K, The AgBiome Team, Mchardy AC, Schulze-Lefert P (2018). Modular traits of the Rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host & Microbe, 24, 155-167.
[10] Gobat JM, Aragno M, Matthey W (2004). The Living Soil: Fundamentals of Soil Science and Soil Biology. Science Publishers, Enfield, USA.
[11] He GX, Peng TS, Guo Y, Wen SZ, Ji L, Luo Z (2022). Forest succession improves the complexity of soil microbial interaction and ecological stochasticity of community assembly: evidence from Phoebe bournei-dominated forests in subtropical regions. Frontiers in Microbiology, 13, 1021258. DOI: 10.3389/FMICB.2022.1021258.
[12] Hu J, Yang H, Long X, Liu Z, Rengel Z (2016). Pepino (Solanum muricatum) planting increased diversity and abundance of bacterial communities in karst area. Scientific Reports, 6, 21938. DOI: 10.1038/srep21938.
[13] Jia S, Wang X, Yuan Z, Lin F, Ye J, Lin G, Hao Z, Bagchi R (2020). Tree species traits affect which natural enemies drive the Janzen-Connell effect in a temperate forest. Nature Communications, 11, 286. DOI: 10.1038/s41467-019-14140-y.
[14] Jin YL, Li BC, Geng L, Bu Y (2017). Soil fauna community in different natural vegetation types of Dajinshan Island, Shanghai. Biodiversity Science, 25, 304-311.
  [靳亚丽, 李必成, 耿龙, 卜云 (2017). 上海大金山岛不同植被类型下土壤动物群落多样性. 生物多样性, 25, 304-311.]
[15] Li P, Shi RJ, Zhao F, Yu JH, Cui XY, Hu JG, Zhang Y (2019). Soil bacterial community structure and predicted functions in the larch forest during succession at the Greater Khingan Mountains of Northeast China. Chinese Journal of Applied Ecology, 30, 95-107.
  [李萍, 史荣久, 赵峰, 于景华, 崔晓阳, 胡金贵, 张颖 (2019). 大兴安岭落叶松林不同演替阶段土壤细菌群落结构与功能潜势. 应用生态学报, 30, 95-107.]
[16] Lu RK (2000). The Method of Soil Agricultural Chemical Analysis. China Agriculture Science & Technology Press, Beijing.
  [鲁如坤 (2000). 土壤农业化学分析方法. 中国农业科技出版社, 北京.]
[17] Luo DH, Li X, Luo BJ, Xu MS, Tuo B, Yan ER, You WH (2020). Soil meso- and micro-fauna characteristics in evergreen broad-leaved forest and deciduous broad-leaved forest in Dajinshan Island, China. Journal of Ecology and Rural Environment, 36, 349-357.
  [罗鼎晖, 李翔, 骆蓓菁, 许洺山, 妥彬, 阎恩荣, 由文辉 (2020). 大金山岛常绿阔叶林和落叶阔叶林中小型土壤动物群落特征. 生态与农村环境学报, 36, 349-357.]
[18] Marisa RM, King MG (2016). Isolation and characterization of Acidobacterium ailaaui sp. nov., a novel member of Acidobacteria subdivision 1, from a geothermally heated Hawaiian microbial mat. International Journal of Systematic and Evolutionary Microbiology, 66, 5328-5335.
[19] Pankratov TA, Ivanova AO, Dedysh SN, Liesack W (2011). Bacterial populations and environmental factors controlling cellulose degradation in an acidic Sphagnum peat. Environmental Microbiology, 13, 1800-1814.
[20] Poupin MJ, Greve M, Carmona V, Pinedo I (2016). A complex molecular interplay of auxin and ethylene signaling pathways is involved in Arabidopsis growth promotion by Burkholderia phytofirmans PsJN. Frontiers in Plant Science, 7, 492. DOI: 10.3389/fpls.2016.00492.
[21] Prescott C, Grayston SJ (2013). Tree species influence on microbial communities in litter and soil: current knowledge and research needs. Forest Ecology and Management, 309, 19-27.
[22] Qu ZL, Liu B, Ma Y, Xu J, Sun H (2020). The response of the soil bacterial community and function to forest succession caused by forest disease. Functional Ecology, 34, 2548-2559.
[23] Ruben GO, Thomas NR, Nina D, Ma KW, Mchardy AC, Paul SL (2018). Modular traits of the Rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host and Microbe, 24, 155-167.
[24] Scheibe A, Steffens C, Seven J, Jacob A, Hertel D, Leuschner C, Gleixner G (2015). Effects of tree identity dominate over tree diversity on the soil microbial community structure. Soil Biology & Biochemistry, 81, 219-227.
[25] Schmidt SK, Nemergut DR, Darcy JL, Lynch R (2014). Do bacterial and fungal communities assemble differently during primary succession? Molecular Ecology, 23, 254-258.
[26] Schnitzer SA, Klironomos JN, HilleRisLambers J, Kinkel LL, Reich PB, Xiao K, Rillig MC, Sikes BA, Callaway RM, Mangan SA, van Nes EH, Scheffer M (2011). Soil microbes drive the classic plant diversity-productivity pattern. Ecology, 92, 296-303.
[27] Timilsina S, Potnis N, Newberry EA, Liyanapathiranage P, Iruegas-Bocardo F, White FF, Goss EM, Jones JB (2020). Xanthomonas diversity, virulence and plant-pathogen interactions. Nature Reviews Microbiology, 18, 415-427.
[28] Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M, Xie G, Haft DH, Sait M, Badger J, Barabote RD, Bradley B, Brettin TS, Brinkac LM, Bruce D, et al. (2009). Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Applied Environmental Microbiology, 75, 2046-2056.
[29] Weidner S, Koller R, Latz E, Kowalchuk G, Bonkowski M, Scheu S, Jousset A (2015). Bacterial diversity amplifies nutrient-based plant-soil feedbacks. Functional Ecology, 29, 1341-1349.
[30] Xu MS, Zhu XT, Wang WS, Du YC, Wang YY, Liang QM, Zheng LT, Yan ER (2022). Vegetation classification and mapping of Dajinshan Island: a grid inventory-based approach. Guihaia, 42, 1273-1283.
  [许洺山, 朱晓彤, 王万胜, 杜运才, 汪彦颖, 梁启明, 郑丽婷, 阎恩荣 (2022). 上海大金山岛植被分类与制图——基于网格化清查方法. 广西植物, 42, 1273-1283.]
[31] Yan ER, Wang XH, Chen XY (2007). Impacts of evergreen broad-leaved forest, degradation on soil nutrients and carbon pools in Tiantong, Zhejiang Province. Acta Ecologica Sinica, 27, 1646-1655.
  [阎恩荣? 王希华? 陈小勇 (2007). 浙江天童地区常绿阔叶林退化对土壤养分库和碳库的影响. 生态学报? 27, 1646-1655.]
[32] Yan ER, Wang XH, Zhou W (2008a). N:P stoichiometry in secondary succession in evergreen broad-leaved forest, Tiantong, East China. Journal of Plant Ecology (Chinese Version), 32, 13-22.
  [阎恩荣? 王希华? 周武 (2008a). 天童常绿阔叶林演替系列植物群落的N:P化学计量特征. 植物生态学报? 32, 13-22.]
[33] Yan ER, Wang XH, Zhou W (2008b). Characteristics of litterfall in relation to soil nutrients in mature and degraded evergreen broad-leaved forests of Tiantong, East China. Journal of Plant Ecology (Chinese Version), 32, 1-12.
  [阎恩荣, 王希华, 周武 (2008b). 天童常绿阔叶林不同退化群落的凋落物特征及与土壤养分动态的关系. 植物生态学报? 32, 1-12.]
[34] Yan ER? Wang XH? Guo M? Zhong Q? Zhou W, Li YF (2009). Temporal patterns of net soil N mineralization and nitrification through secondary succession in the subtropical forests of eastern China. Plant and Soil, 320, 181-194.
[35] Yan ER? Wang XH? Huang JJ (2006). Shifts in plant nutrient use strategies under secondary forest succession. Plant and Soil? 289, 187-197.
[36] Yang AN, Lu YF, Zhang JH, Wu JS, Xu JL, Tong ZK (2019). Changes in soil nutrients and Acidobacteria community structure in Cunninghamia lanceolata plantations. Scientia Silvae Sinicae, 55(1), 119-127.
  [杨安娜, 陆云峰, 张俊红, 吴家森, 徐金良, 童再康 (2019). 杉木人工林土壤养分及酸杆菌群落结构变化. 林业科学, 55(1), 119-127.]
[37] Yang YC, Da LJ, Qin XK (2002). Study on the flora of Dajinshan Island in Shanghai, China. Journal of Wuhan Botanical Research, 20, 433-437.
  [杨永川, 达良俊, 秦祥堃 (2002). 上海大金山岛种子植物区系的研究. 武汉植物学研究, 20, 433-437.]
[38] Yarwood SA, H?gberg MN (2017). Soil bacteria and archaea change rapidly in the first century of Fennoscandian boreal forest development. Soil Biology & Biochemistry, 114, 160-167.
[39] Yuan M, Guo X, Wu L, Zhang Y, Xiao N, Ning D, Shi Z, Zhou X, Wu L, Yang Y, Tiedje JM, Zhou J (2021). Climate warming enhances microbial network complexity and stability. Nature Climate Change, 11, 343-348.
[40] Zheng Y, Saitou A, Wang C, Toyoda A, Minakuchi Y, Sekiguchi Y, Ueda K, Takano H, Sakai Y, Abe K, Yokota A, Yabe S (2019). Genome features and secondary metabolites biosynthetic potential of the class Ktedonobacteria. Frontiers in Microbiology, 10, 893. DOI: 10.3389/fmicb.2019.00893.
[41] Zhong ZK, Zhang XY, Wang X, Fu SY, Wu SJ, Lu XQ, Ren CJ, Han XH, Yang GH (2020). Soil bacteria and fungi respond differently to plant diversity and plant family composition during the secondary succession of abandoned farmland on the Loess Plateau, China. Plant and Soil, 448, 183-200.
[42] Zhu CL, Han YJ, Xie JZ, Sun HJ, Li ZC (2008). Investigation and analysis on characteristics of forest communities in Dajinshan Island, Shanghai. China Forestry Science and Technology, 22(6), 57-59.
  [朱春玲, 韩玉洁, 谢锦忠, 孙海菁, 李正才 (2008). 上海大金山岛森林群落调查与特征分析. 林业科技开发, 22(6), 57-59.]
文章导航

/

005-264X/bottom_cn.htm"-->