研究论文

云南普洱季风常绿阔叶林幼苗的群落构建机制

  • 陈昭铨 ,
  • 王明慧 ,
  • 胡子涵 ,
  • 郎学东 ,
  • 何云琼 ,
  • 刘万德
展开
  • 1中国林业科学研究院高原林业研究所, 昆明 650224
    2南京林业大学风景园林学院, 南京 210037
    3国家林业和草原局云南普洱森林生态系统国家定位观测研究站, 普洱森林生态系统云南省野外科学观测研究站, 云南普洱 665000
    4云南省科研机构联合会, 昆明 650228

收稿日期: 2023-05-04

  录用日期: 2023-11-09

  网络出版日期: 2023-11-09

基金资助

云南省基础研究计划(202001AS070005)

Mechanisms of seedling community assembly in a monsoon evergreen broadleaf forest in Pu’er, Yunnan, China

  • CHEN Zhao-Quan ,
  • WANG Ming-Hui ,
  • HU Zi-Han ,
  • LANG Xue-Dong ,
  • HE Yun-Qiong ,
  • LIU Wan-De
Expand
  • 1Institute of Highland Forest Science, Chinese Academy of Forestry, Kunming 650224, China
    2College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
    3Pu'er Forest Ecosystem Research Station, National Forestry and Grassland Administration of China; Pu’er Forest Ecosystem Observation and Research Station of Yunnan Province, Pu'er, Yunnan 665000, China
    4Yunnan Association of Scientific Research Institutes, Kunming 650228, China

Received date: 2023-05-04

  Accepted date: 2023-11-09

  Online published: 2023-11-09

Supported by

Yunnan Fundamental Research Projects(202001AS070005)

摘要

幼苗是森林生物多样性保育的重点关注对象, 以往研究对云南普洱季风常绿阔叶林幼苗的关注较少。为探究该地幼苗的群落构建机制, 该研究利用30 hm2季风常绿阔叶林动态监测样地野外幼苗调查数据, 分析幼苗的物种组成, 划分不同优势种样方, 根据逐步群落构建模型分析群落构建机制, 进一步分析幼苗的群落功能性状。结果表明: 季风常绿阔叶林幼苗以短刺锥(Castanopsis echidnocarpa)和枹丝锥(C. calathiformis)为优势种, 根据优势种是否出现将样方划分为4种类型: 短刺锥样方、枹丝锥样方、混合优势种样方及非优势种样方。幼苗的群落构建过程均包含随机扩散构建(贡献率43.1%-61.3%)、生境过滤(贡献率27.4%-33.9%)及限制相似性(贡献率5.7%-27.2%)机制。短刺锥样方和枹丝锥样方以确定过程为主, 贡献率分别为56.9%和54.6%, 而混合优势种样方及非优势种样方则以随机过程为主, 贡献率分别为60.4%和61.3%。在非优势种样方中Rao二次熵(Rao’Q)最高, 而在混合优势种样方中最低。短刺锥样方具有最低的比叶面积和较高的叶厚度、比茎长度、根质量分数及潜在株高, 而枹丝锥样方及非优势种样方有更大的比叶面积。不同幼苗样方中, 比茎长度和潜在株高变异系数较大, 而其他功能性状变异水平较低。多元回归分析显示, 不同幼苗样方中, 比叶面积和潜在株高均和Rao’Q显著正相关, 除了非优势种样方外, 其他样方叶厚度和生活型均与Rao’Q显著正相关。因此, 季风常绿阔叶林幼苗的群落构建同时包含随机过程和确定过程, 两种过程的贡献率随群落类型的不同而不同。

本文引用格式

陈昭铨 , 王明慧 , 胡子涵 , 郎学东 , 何云琼 , 刘万德 . 云南普洱季风常绿阔叶林幼苗的群落构建机制[J]. 植物生态学报, 2024 , 48(1) : 68 -79 . DOI: 10.17521/cjpe.2023.0120

Abstract

Aims Seedlings play a crucial role in the conservation of forest biodiversity. Previous studies have paid little attention to seedling communities in monsoon broadleaf evergreen forests in Pu’er, Yunnan. Our aim was to investigate the mechanisms of seedling community assembly there.

Methods We analyzed the species composition of the seedling community based on the seedling survey in a 30 hm2 forest dynamics plot. Seedling plots are divided into different groups according to the dominant species. The stepwise community assembly model (STEPCAM) was used to investigate the mechanisms of community assembly and to further analyze the functional traits of seedling communities.

<strong>Important findings</strong> Castanopsis echidnocarpa and C. calathiformis are the dominant seedling species in the monsoon broadleaf evergreen forest. Four plot types (i.e., C. echidnocarpa plot, C. calathiformis plot, mixed-dominant species plot, non-dominant species plot) were classified according to the presence or absence of dominant species. The seedling community assembly processes included: a) random dispersal assembly (with contribution rate 43.1%-61.3%); b) habitat filtering (with contribution rate 27.4%-33.9%); and c) limiting similarity (with contribution rate 5.7%-27.2%). The C. echidnocarpa and C. calathiformis plots were dominated by deterministic processes, with 56.9% and 54.6% contributions respectively, whereas the mixed-dominant and non-dominant species plots were dominated by stochastic processes, with 60.4% and 61.3% contributions respectively. Rao’s quadratic entropy (Rao’Q) was highest in the non-dominant species plot and lowest in the mixed-dominant species plot. The C. echidnocarpa plot has the lowest specific leaf area (SLA) and higher leaf thickness (LT), specific stem length (SSL), root mass fraction (RMF) and a maximum potential plant height (PPH), while the C. calathiformis plot and non-dominant species plot have a higher SLA. Among different seedling plots, the coefficients of variation for SSL and PPH were higher, while the coefficients of variation for other functional traits were lower. Multiple regression analysis showed that SLA and PPH were significantly and positively correlated with Rao’Q in different seedling plots. LT and life form were significantly and positively correlated with Rao’Q in other three types of plots, except for the non-dominant species plot. Thus, seedling community assembly in the monsoon broadleaf evergreen forest is driven by both stochastic and deterministic processes, and the contribution of the two processes varies with the type of seedling communities.

参考文献

[1] Adler PB, HilleRisLambers J, Levine JM (2007). A niche for neutrality. Ecology Letters, 10, 95-104.
[2] Ahmad M, Rosbakh S, Bucher SF, Sharma P, Rathee S, Uniyal SK, Batish DR, Singh HP (2023). The role of floral traits in community assembly processes at high elevations in the Himalayas. Journal of Ecology, 111, 1107-1119.
[3] Angulo DF, Tun-Garrido J, Arceo-Gómez G, Munguía-Rosas MA, Parra-Tabla V (2018). Patterns of phylogenetic community structure of sand dune plant communities in the Yucatan Peninsula: the role of deterministic and stochastic processes in community assembly. Plant Ecology & Diversity, 11, 515-526.
[4] Augspurger CK (1984). Seedling survival of tropical tree species: interactions of dispersal distance, light-gaps, and pathogens. Ecology, 65, 1705-1712.
[5] Avolio ML, Forrestel EJ, Chang CC, La Pierre KJ, Burghardt KT, Smith MD (2019). Demystifying dominant species. New Phytologist, 223, 1106-1126.
[6] Bin Y, Ye WH, Cao HL, Huang ZL, Lian JY (2011). Seedling distribution in a subtropical evergreen broad-leaved forest plot in the Dinghu Mountain. Biodiversity Science, 19, 127-133.
  [宾粤, 叶万辉, 曹洪麟, 黄忠良, 练琚愉 (2011). 鼎湖山南亚热带常绿阔叶林20公顷样地幼苗的分布. 生物多样性, 19, 127-133.]
[7] Bongers FJ, Schmid B, Bruelheide H, Bongers F, Li S, von Oheimb G, Li Y, Cheng A, Ma K, Liu X (2021). Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nature Ecology & Evolution, 5, 1594-1603.
[8] Botta-Dukát Z, Czúcz B (2016). Testing the ability of functional diversity indices to detect trait convergence and divergence using individual-based simulation. Methods in Ecology and Evolution, 7, 114-126.
[9] Chisholm RA, Pacala SW (2010). Niche and neutral models predict asymptotically equivalent species abundance distributions in high-diversity ecological communities. Proceedings of the National Academy of Sciences of the United States of America, 107, 15821-15825.
[10] Clark DB, Palmer MW, Clark DA (1999). Edaphic factors and the landscape-scale distributions of tropical rain forest trees. Ecology, 80, 2662-2675.
[11] Connor EF, Simberloff D (1979). The assembly of species communities: chance or competition? Ecology, 60, 1132-1140.
[12] Cordero RD, Jackson DA (2019). Species-pair associations, null models, and tests of mechanisms structuring ecological communities. Ecosphere, 10, e02797. DOI: 10.1002/ecs2.2797.
[13] Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003). A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335-380.
[14] Delecti Florae Reipublicae Popularis Sinicae Agendae Academiae Sinicae (1959-2004). Flora Reipublicae Popularis Sinicae. Science Press, Beijing.
  [中国科学院中国植物志编辑委员会 (1959-2004). 中国植物志. 科学出版社, 北京.]
[15] Fukami T (2015). Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annual Review of Ecology, Evolution, and Systematics, 46, 1-23.
[16] Gibert A, Gray EF, Westoby M, Wright IJ, Falster DS (2016). On the link between functional traits and growth rate: meta-analysis shows effects change with plant size, as predicted. Journal of Ecology, 104, 1488-1503.
[17] Gilbert B, Turkington R, Srivastava DS (2009). Dominant species and diversity: linking relative abundance to controls of species establishment. The American Naturalist, 174, 850-862.
[18] Gong X, Jarvie S, Zhang Q, Liu Q, Yan Y, Su N, Han P, Li F (2023). Community assembly of plant, soil bacteria, and fungi vary during the restoration of an ecosystem threatened by desertification. Journal of Soils and Sediments, 23, 459-472.
[19] G?tzenberger L, de Bello F, Br?then KA, Davison J, Dubuis A, Guisan A, Lep? J, Lindborg R, Moora M, P?rtel M, Pellissier L, Pottier J, Vittoz P, Zobel K, Zobel M (2012). Ecological assembly rules in plant communities— Approaches, patterns and prospects. Biological Reviews, 87, 111-127.
[20] He P, Fontana S, Ma C, Liu H, Xu L, Wang R, Jiang Y, Li M (2023). Using leaf traits to explain species co-existence and its consequences for primary productivity across a forest-steppe ecotone. Science of the Total Environment, 859, 160139. DOI: 10.1016/j.scitotenv.2022.160139.
[21] Hu Y, Sha L, Blanchet FG, Zhang J, Tang Y, Lan G, Cao M (2012). Dominant species and dispersal limitation regulate tree species distributions in a 20-ha plot in Xishuangbanna, southwest China. Oikos, 121, 952-960.
[22] Hubbell SP (2005). Neutral theory in community ecology and the hypothesis of functional equivalence. Functional Ecology, 19, 166-172.
[23] Hubbell SP (2006). Neutral theory and the evolution of ecological equivalence. Ecology, 87, 1387-1398.
[24] Iida Y, Swenson NG (2020). Towards linking species traits to demography and assembly in diverse tree communities: revisiting the importance of size and allocation. Ecological Research, 35, 947-966.
[25] Jin Y, Qian H, Yu MJ (2015). Phylogenetic structure of tree species across different life stages from seedlings to canopy trees in a subtropical evergreen broad-leaved forest. PLoS ONE, 10, e0131162. DOI: 10.1371/journal.pone.0131162.
[26] Johnson DJ, Condit R, Hubbell SP, Comita LS (2017). Abiotic niche partitioning and negative density dependence drive tree seedling survival in a tropical forest. Proceedings of the Royal Society B: Biological Sciences, 284, 20172210. DOI: 10.1098/rspb.2017.2210.
[27] Kraft NJB, Cornwell WK, Webb CO, Ackerly DD (2007). Trait evolution, community assembly, and the phylogenetic structure of ecological communities. The American Naturalist, 170, 271-283.
[28] Lebrija-Trejos E, Pérez-García EA, Meave JA, Bongers F, Poorter L (2010). Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology, 91, 386-398.
[29] Li L, Wei SG, Ma JM, Ye WH, Lian JY (2020). Relative effects of habitat heterogeneity and dispersal limitation on species diversity maintenance in south subtropical evergreen broad-leaved forest. Scientia Silvae Sinicae, 56(10), 1-10.
  [李林, 魏识广, 马姜明, 叶万辉, 练琚愉 (2020). 生境异质性和扩散限制对南亚热带常绿阔叶林群落物种多样性的相对作用. 林业科学, 56(10), 1-10.]
[30] Li SF, Lang XD, Huang XB, Wang YH, Liu WD, Xu CH, Su JR (2020). Association classification of a 30 hm2 dynamics plot in the monsoon broad-leaved evergreen forest in Pu’er, Yunnan, China. Chinese Journal of Plant Ecology, 44, 236-247.
  [李帅锋, 郎学东, 黄小波, 王艳红, 刘万德, 徐崇华, 苏建荣 (2020). 云南普洱30 hm2季风常绿阔叶林动态监测样地群丛数量分类. 植物生态学报, 44, 236-247.]
[31] Li XL, Wang H, Zheng Z, Lin LX, Deng XB, Cao M (2009). Composition, spatial distribution and survival during the dry season of tree seedlings in a tropical forest in Xishuangbanna, SW China. Chinese Journal of Plant Ecology, 33, 658-671.
  [李晓亮, 王洪, 郑征, 林露湘, 邓晓保, 曹敏 (2009). 西双版纳热带森林树种幼苗的组成、空间分布和旱季存活. 植物生态学报, 33, 658-671.]
[32] Lin L, Comita LS, Zheng Z, Cao M (2012). Seasonal differentiation in density-dependent seedling survival in a tropical rain forest. Journal of Ecology, 100, 905-914.
[33] Lin YC, Chang LW, Yang KC, Wang HH, Sun IF (2011). Point patterns of tree distribution determined by habitat heterogeneity and dispersal limitation. Oecologia, 165, 175-184.
[34] Liu WD, Su JR, Li SF, Lang XD, Zhang ZJ, Huang XB (2015). Leaf carbon, nitrogen and phosphorus stoichiometry at different growth stages in dominant tree species of a monsoon broad-leaved evergreen forest in Pu’er, Yunnan Province, China. Chinese Journal of Plant Ecology, 39, 52-62.
  [刘万德, 苏建荣, 李帅锋, 郎学东, 张志钧, 黄小波 (2015). 云南普洱季风常绿阔叶林优势物种不同生长阶段叶片碳、氮、磷化学计量特征. 植物生态学报, 39, 52-62.]
[35] MacArthur R, Levins R (1967). The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist, 101, 377-385.
[36] McNaughton SJ, Wolf LL (1970). Dominance and the niche in ecological systems. Science, 167, 131-139.
[37] Myers JA, Chase JM, Jiménez I, J?rgensen PM, Araujo- Murakami A, Paniagua-Zambrana N, Seidel R (2013). Beta-diversity in temperate and tropical forests reflects dissimilar mechanisms of community assembly. Ecology Letters, 16, 151-157.
[38] Onoda Y, Westoby M, Adler PB, Choong AMF, Clissold FJ, Cornelissen JHC, Díaz S, Dominy NJ, Elgart A, Enrico L, Fine PVA, Howard JJ, Jalili A, Kitajima K, Kurokawa H, et al. (2011). Global patterns of leaf mechanical properties. Ecology Letters, 14, 301-312.
[39] Poorter H, Niklas KJ, Reich PB, Oleksyn J, Poot P, Mommer L (2012). Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control. New Phytologist, 193, 30-50.
[40] Poorter L, Bongers F (2006). Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology, 87, 1733-1743.
[41] Rosindell J, Hubbell SP, Etienne RS (2011). The unified neutral theory of biodiversity and biogeography at age ten. Trends in Ecology Evolution, 26, 340-348.
[42] Sevillano I, Short I, Grant J, O’Reilly C (2016). Effects of light availability on morphology, growth and biomass allocation of Fagus sylvatica and Quercus robur seedlings. Forest Ecology and Management, 374, 11-19.
[43] Shang H, Wang YQ, Han BC, Mi XC, Chen L, Liang Y, Ma KP (2023). Effects of functional phylogeny of light- response-related orthologous genes on seedling survival in a subtropical forest. Forest Ecosystems, 10, 100087. DOI: 10.1016/j.fecs.2023.100087.
[44] Song X, Cao M, Kitching RL, Tang Y, Sun Z, Nakamura A, Laidlaw MJ, Yang J (2019). Environmental and spatial contributions to seedling and adult tree assembly across tropical, subtropical and subalpine elevational gradients. Journal of Plant Ecology, 12, 103-112.
[45] Song XY, Li JQ, Zhang WF, Tang Y, Sun ZH, Cao M (2016). Variant responses of tree seedling to seasonal drought stress along an elevational transect in tropical montane forests. Scientific Reports, 6, 36438. DOI: 10.1038/srep36438.
[46] Song X, Yang J, Cao M, Lin L, Sun Z, Wen H, Swenson NG (2021). Traits mediate a trade-off in seedling growth response to light and conspecific density in a diverse subtropical forest. Journal of Ecology, 109, 703-713.
[47] van der Plas F, Janzen T, Ordonez A, Fokkema W, Reinders J, Etienne RS, Olff H (2015). A new modeling approach estimates the relative importance of different community assembly processes. Ecology, 96, 1502-1515.
[48] Vanderlei RS, Barros MF, Leal IR, Tabarelli M (2022). Impoverished woody seedling assemblages and the regeneration of Caatinga dry forest in a human-modified landscape. Biotropica, 54, 670-681.
[49] Volkov I, Banavar JR, Hubbell SP, Maritan A (2003). Neutral theory and relative species abundance in ecology. Nature, 424, 1035-1037.
[50] Wang YH, Li SF, Lang XD, Huang XB, Liu WD, Xu CH, Su JR (2020). Effects of topographic heterogeneity on species diversity in a monsoon evergreen broad-leaved forest in Pu?er, Yunnan, China. Chinese Journal of Plant Ecology, 44, 1015-1027.
  [王艳红, 李帅锋, 郎学东, 黄小波, 刘万德, 徐崇华, 苏建荣 (2020). 地形异质性对云南普洱季风常绿阔叶林物种多样性的影响. 植物生态学报, 44, 1015-1027.]
[51] Webb CO, Gilbert GS, Donoghue MJ (2006). Phylodiversity- dependent seedling mortality, size structure, and disease in a Bornean rain forest. Ecology, 87, 123-131.
[52] Wills J, Herbohn J, Wells J, Maranguit Moreno MO, Ferraren A, Firn J (2021). Seedling diversity in actively and passively restored tropical forest understories. Ecological Applications, 31, e02286. DOI: 10.1002/eap.2286.
[53] Worthy SJ, Laughlin DC, Zambrano J, Uma?a MN, Zhang C, Lin L, Cao M, Swenson NG (2020). Alternative designs and tropical tree seedling growth performance landscapes. Ecology, 101, e03007. DOI: 10.1002/ecy.3007.
[54] Xu YZ, Wan D, Xiao ZQ, Wu H, Jiang MX (2019). Spatio-temporal dynamics of seedling communities are determined by seed input and habitat filtering in a subtropical montane forest. Forest Ecology and Management, 449, 117475. DOI: 10.1016/j.foreco.2019.117475.
[55] Yang QS, Shen GC, Liu HM, Wang ZH, Ma ZP, Fang XF, Zhang J, Wang XH (2016). Detangling the effects of environmental filtering and dispersal limitation on aggregated distributions of tree and shrub species: life stage matters. PLoS ONE, 11, e0156326. DOI: 10.1371/journal.pone.0156326.
[56] Yu M, Sun OJ (2013). Effects of forest patch type and site on herb-layer vegetation in a temperate forest ecosystem. Forest Ecology and Management, 300, 14-20.
[57] Zhao LJ, Xiang WH, Li JX, Liu WQ, Hu YT, Wu HL, Zhang YL, Cheng X, Wang WJ, Wang WT, Ouyang S (2022). “Realistic strategies” and neutral processes drive the community assembly based on leaf functional traits in a subtropical evergreen broad-leaved forest. Ecology and Evolution, 12, e9323. DOI: 10.1002/ece3.9323.
文章导航

/

005-264X/bottom_cn.htm"-->