木质素酚类物质对内蒙古退化草地土壤有机碳的影响
收稿日期: 2024-03-14
录用日期: 2024-08-23
网络出版日期: 2024-08-23
基金资助
中国科学院战略性先导科技专项(A类)(XDA26020102)
Influence of lignin phenols on soil organic carbon in degraded grassland in Nei Mongol, China
Received date: 2024-03-14
Accepted date: 2024-08-23
Online published: 2024-08-23
Supported by
Strategic Priority Research Program of the Chinese Academy of Sciences(XDA26020102)
退化草地土壤有机碳流失与积累的影响因素亟需深入研究。植物残体来源的木质素酚类物质是土壤有机碳的重要组成部分, 苯环开环导致的木质素酚类物质分解是否是退化草地土壤有机碳流失的重要过程, 尚未见研究报道。该研究针对内蒙古锡林郭勒典型草原4个退化阶段草地, 测定了土壤中木质素酚类物质含量、苯环开环关键功能基因(邻苯二酚-1,2-双加氧酶基因, catA)丰度和分解产物(顺,顺-已二烯二酸)丰度, 分析了其沿退化梯度的变化规律及其与土壤有机碳含量的关系。主要结果: 1)与未退化草地相比, 轻、中、重度退化草地土壤木质素酚类物质含量均显著降低, 且随退化程度加剧呈下降趋势, 木质素酚类物质含量与土壤有机碳含量呈显著正相关关系; 2) catA基因丰度在退化草地中显著升高, 顺,顺-已二烯二酸丰度在中、重度退化草地显著高于轻度和未退化草地; 3)相关性分析结果表明, catA基因丰度和顺,顺-已二烯二酸丰度显著正相关, 而木质素酚类物质含量与catA基因丰度显著负相关, catA基因丰度和顺,顺-已二烯二酸丰度均与土壤有机碳含量显著负相关。该研究发现, 在样地尺度上, 苯环开环导致的木质素酚类物质分解可以用于解释内蒙古退化草地土壤有机碳含量的变化, 土壤木质素酚类物质降解是土壤有机碳流失的重要原因。该研究有望为退化草原土壤有机碳流失、积累特征及驱动机制研究提供新的视角, 为退化草原恢复提供一定的理论依据。
杜淑辉 , 褚建民 , 段俊光 , 薛建国 , 徐磊 , 徐晓庆 , 王其兵 , 黄建辉 , 张倩 . 木质素酚类物质对内蒙古退化草地土壤有机碳的影响[J]. 植物生态学报, 2025 , 49(1) : 30 -41 . DOI: 10.17521/cjpe.2024.0072
Aims The influencing factors on the loss and accumulation of soil organic carbon in degraded grasslands need to be clarified. The lignin phenols derived from plant are important composition of soil organic carbon, and the decomposition of lignin phenols caused by benzene ring opening is an important process of soil organic carbon loss in degraded grasslands, however, studies on this point are not fully understood.
Methods Soil samples were collected in four degradation severities of typical grasslands in Xilin Gol, Nei Mongol. The content of lignin phenolic and the abundance of the key functional gene for benzene ring opening, catechol-1,2-dioxygenase gene (catA), and product (cis,cis-muconic acid) were measured. And variations of lignin phenols and the abundance of catA gene along the degradation gradient and their correlation with soil organic carbon content were also analyzed.
Important findings The results showed that 1) compared to the non-degraded grasslands, the content of lignin phenols in the soil of light, medium, and severe degraded grasslands decreased significantly, and showed a decreasing trend with increasing degradation. The content of lignin phenols showed the same pattern with significantly positively correlation with soil organic carbon content. 2) The abundance of catA gene significantly increased in degraded grasslands, and the abundance of its decomposition product cis,cis-muconic acid was significantly higher in moderate and severe degradation compared to that in the light and non-degradation grasslands. 3) The abundance of catA gene was significantly positively correlated with the abundance of cis,cis-muconic acid, while the content of lignin phenols was significantly negatively correlated with the abundance of catA gene. The abundance of catA gene and cis,cis-muconic acid were both significantly negatively correlated with soil organic carbon content. The results showed that, at the sample site scale, the decomposition of lignin phenols caused by benzene ring opening could be a potential mechanism in explaining the changes in soil organic carbon content in degraded typical grasslands in Nei Mongol. Thus, our results are expected to provide a new perspective for the driving mechanism of soil organic carbon loss and accumulation in degraded grasslands, and thereby providing a certain theoretical basis for the restoration of degraded grasslands.
[1] | Abiven S, Heim A, Schmidt MWI (2011). Lignin content and chemical characteristics in maize and wheat vary between plant organs and growth stages: consequences for assessing lignin dynamics in soil. Plant and Soil, 343, 369-378. |
[2] | Akiyama T, Kawamura K (2007). Grassland degradation in China: methods of monitoring, management and restoration. Grassland Science, 53, 1-17. |
[3] | An H, Tang Z, Keesstra S, Shangguan Z (2019). Impact of desertification on soil and plant nutrient stoichiometry in a desert grassland. Scientific Reports, 9, 9422. DOI: 10.1038/s41598-019-45927-0. |
[4] | Aravind MK, Kappen J, Varalakshmi P, John SA, Ashokkumar B (2020). Bioengineered graphene oxide microcomposites containing metabolically versatile Paracoccus sp. MKU1 for enhanced catechol degradation. ACS Omega, 5, 16752-16761. |
[5] | Bai Y, Cotrufo MF (2022). Grassland soil carbon sequestration: current understanding, challenges, and solutions. Science, 377, 603-608. |
[6] | Bai YF, Pan QM, Xing Q (2016). Fundamental theories and technologies for optimizing the production functions and ecological functions in grassland ecosystems. Chinese Science Bulletin, 61, 201-212. |
[白永飞, 潘庆民, 邢旗 (2016). 草地生产与生态功能合理配置的理论基础与关键技术. 科学通报, 61, 201-212.] | |
[7] | Bell C, Stromberger M, Wallenstein M (2014). New insights into enzymes in the environment. Biogeochemistry, 117, 1-4. |
[8] | Benton HP, Wong DM, Trauger SA, Siuzdak G (2008). XCMS2: processing tandem mass spectrometry data for metabolite identification and structural characterization. Analytical Chemistry, 80, 6382-6389. |
[9] | Conti G, Kowaljow E, Baptist F, Rumpel C, Cuchietti A, Pérez Harguindeguy N, Díaz S (2016). Altered soil carbon dynamics under different land-use regimes in subtropical seasonally-dry forests of central Argentina. Plant and Soil, 403, 375-387. |
[10] | de Baets S, van Oost K, Baumann K, Meersmans J, Vanacker V, Rumpel C (2012). Lignin signature as a function of land abandonment and erosion in dry luvisols of SE Spain. Catena, 93, 78-86. |
[11] | Derenne S, Largeau C (2001). A review of some important families of refractory macromolecules: composition, origin, and fate in soils and sediments. Soil Science, 166, 833-847. |
[12] | Dong L, Liang C, Li F, Zhao L, Ma W, Wang L, Wen L, Zheng Y, Li Z, Zhao C, Tuvshintogtokh I (2019). Community phylogenetic structure of grasslands and its relationship with environmental factors on the Mongolian Plateau. Journal of Arid Land, 11, 595-607. |
[13] | Du ZY, Cong N (2024). Responses of vegetation and soil characteristics to degraded grassland under different degrees on the Qinghai-Tibet Plateau. Acta Ecologica Sinica, 44, 2504-2516. |
[杜志勇, 丛楠 (2024). 植被与土壤特征对青藏高原不同程度退化草地的响应. 生态学报, 44, 2504-2516.] | |
[14] | Feng XJ, Wang YY, Liu T, Jia J, Dai GH, Ma T, Liu ZG (2020). Biomarkers and their applications in ecosystem research. Chinese Journal of Plant Ecology, 44, 384-394. |
[冯晓娟, 王依云, 刘婷, 贾娟, 戴国华, 马田, 刘宗广 (2020). 生物标志物及其在生态系统研究中的应用. 植物生态学报, 44, 384-394.] | |
[15] | Han X (2014). Effects of Nitrogen Deposition on the Stoichiometric Characteristics of Dominant Plants in Typical Grassland. PhD dissertation, University of Chinese Academy of Sciences, Beijing. 73-77. |
[韩旭 (2014). 氮沉降对典型草原优势植物化学计量特征的影响. 博士学位论文, 中国科学院大学, 北京. 73-77.] | |
[16] | He W, Wu FZ, Yang WQ, Tan B, Zhao YY, Wu QQ, He M (2016). Lignin degradation in foliar litter of two shrub species from the gap center to the closed canopy in an alpine fir forest. Ecosystems, 19, 115-128. |
[17] | Hedges JI, Mann DC (1979). The characterization of plant tissues by their lignin oxidation products. Geochimica et Cosmochimica Acta, 43, 1803-1807. |
[18] | Jex CN, Pate GH, Blyth AJ, Spencer RGM, Hernes PJ, Khan SJ, Baker A (2014). Lignin biogeochemistry: from modern processes to Quaternary archives. Quaternary Science Reviews, 87, 46-59. |
[19] | Jiang ZY, Hu ZM, Lai DYF, Han DR, Wang M, Liu M, Zhang M, Guo MY (2020). Light grazing facilitates carbon accumulation in subsoil in Chinese grasslands: a meta-analysis. Global Change Biology, 26, 7186-7197. |
[20] | Kamimura N, Sakamoto S, Mitsuda N, Masai E, Kajita S (2019). Advances in microbial lignin degradation and its applications. Current Opinion in Biotechnology, 56, 179-186. |
[21] | Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, Masai EJ (2017). Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade: update on bacterial lignin catabolism. Environmental Microbiology Reports, 9, 679-705. |
[22] | Keller AA, Goldstein RA (1998). Impact of carbon storage through restoration of drylands on the global carbon cycle. Environmental Management, 22, 757-766. |
[23] | Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008). ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics, 24, 2534-2536. |
[24] | Kiem R, K?gel-Knabner I (2003). Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils. Soil Biology & Biochemistry, 35, 101-118. |
[25] | Kirk TK, Farrell RL (1987). Enzymatic “combustion”: the microbial degradation of lignin. Annual Review of Microbiology, 41, 465-505. |
[26] | Klotzbücher T, Kalbitz K, Cerli C, Hernes PJ, Kaiser K (2016). Gone or just out of sight? The apparent disappearance of aromatic litter components in soils. Soil, 2, 325-335. |
[27] | K?gel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P (2008). Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. Journal of Plant Nutrition and Soil Science, 171, 61-82. |
[28] | Kong YH, Yao FJ, Peng S, Liu Y, Dong WX, Bai L (2010). Study on the characteristics of soil carbon accumulation and conversion of carbon sink and source of grassland under different land use types. Pratacultural Science, 27(4), 40-45. |
[孔玉华, 姚风军, 鹏爽, 刘艳, 董文轩, 白龙 (2010). 不同利用方式下草地土壤碳积累及汇/源功能转换特征研究. 草业科学, 27(4), 40-45.] | |
[29] | Kumar A, Kumar S, Kumar S (2005). Biodegradation kinetics of phenol and catechol using Pseudomonas putida MTCC 1194. Biochemical Engineering Journal, 22, 151-159. |
[30] | Langmead B, Salzberg SL (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9, 357-359. |
[31] | Larralde M (2022). Pyrodigal: Python bindings and interface to Prodigal, an efficient method for gene prediction in prokaryotes. Journal of Open Source Software, 72, 4296. DOI: 10.21105/joss.04296. |
[32] | Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015). MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics, 31, 1674-1676. |
[33] | Li H, Wu FZ, Yang WQ, Xu LY, Ni XY, He J, Tan B, Hu Y (2016a). Effects of forest gaps on litter lignin and cellulose dynamics vary seasonally in an alpine forest. Forests, 7, 27. DOI: 10.3390/f7020027. |
[34] | Li MY (2021). Study on Sensitive Indices to Vegetation and Soil and Succession Characteristics in Degradation Grass/White Clover Grasslands. Master degree dissertation, Lanzhou University, Lanzhou. 28-29. |
[李梦瑶 (2021). 退化禾草/白三叶草地敏感草土指标及演变特征研究. 硕士学位论文, 兰州大学, 兰州. 28-29.] | |
[35] | Li Y, Xu XH, Sun W, Shen Y, Ren TT, Huang JH, Wang CH (2019). Effects of different forms and levels of N additions on soil potential net N mineralization rate in meadow steppe, Nei Mongol, China. Chinese Journal of Plant Ecology, 43, 174-184. |
[李阳, 徐小惠, 孙伟, 申颜, 任婷婷, 黄建辉, 王常慧 (2019). 不同形态和水平的氮添加对内蒙古草甸草原土壤净氮矿化潜力的影响. 植物生态学报, 43, 174-184.] | |
[36] | Li YM, Wang SP, Jiang LL, Zhang LR, Cui SJ, Meng FD, Wang Q, Li XE, Zhou Y (2016b). Changes of soil microbial community under different degraded gradients of alpine meadow. Agriculture, Ecosystems & Environment, 222, 213-222. |
[37] | Liu KQ, Zhang YH (2023). Biological degradation and utilization of lignin. Synthetic Biology Journal, 5, 1264-1278. |
[刘宽庆, 张以恒 (2023). 木质素的生物降解和生物利用. 合成生物学, 5, 1264-1278.] | |
[38] | Ma T, Zhu SS, Wang ZH, Chen DM, Dai GH, Feng BW, Su XY, Hu HF, Li KH, Han WX, Liang C, Bai YF, Feng XJ (2018). Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nature Communications, 9, 3480. DOI: 10.1038/s41467-018-05891-1. |
[39] | Milchunas DG, Lauenroth WK (1993). Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs, 63, 327-366. |
[40] | Murakami A (1997). Quantitative analysis of 77K fluorescence emission spectra in Synechocystis sp. PCC 6714 and Chlamydomonas reinhardtii with variable PS I/PS II stoichiometries. Photosynthesis Research, 53, 141-148. |
[41] | Sollins P, Kramer MG, Swanston C, Lajtha K, Filley T, Aufdenkampe AK, Wagai R, Bowden RD (2009). Sequential density fractionation across soils of contrasting mineralogy: evidence for both microbial-and mineral-controlled soil organic matter stabilization. Biogeochemistry, 96, 209-231. |
[42] | Thevenot M, Dignac MF, Rumpel C (2010). Fate of lignins in soils: a review. Soil Biology & Biochemistry, 42, 1200-1211. |
[43] | Wang MM, Liu XP, He YH, Zhang TH, Wei J, Che LMG, Sun SS (2019). How enclosure influences restored plant community changes of different initial types in Horqin Sandy Land. Chinese Journal of Plant Ecology, 43, 672-684. |
[王明明, 刘新平, 何玉惠, 张铜会, 魏静, 车力木格, 孙姗姗 (2019). 科尔沁沙地封育恢复过程中植物群落特征变化及影响因素. 植物生态学报, 43, 672-684.] | |
[44] | Wang XX, Dong SK, Yang B, Li YY, Su XK (2014). The effects of grassland degradation on plant diversity, primary productivity, and soil fertility in the alpine region of Asia’s headwaters. Environmental Monitoring and Assessment, 186, 6903-6917. |
[45] | Xu XQ (2023). Evaluation and Influencing Factors of Vegetation Degradation in Typical Steppe of Xilin Gol. Master degree dissertation, Chinese Academy of Forestry, Beijing. 37. |
[徐晓庆 (2023). 锡林郭勒典型草原植被退化状况及影响因素. 硕士学位论文, 中国林业科学研究院, 北京. 37.] | |
[46] | Yang LM, Han M, Li JD (2001). Plant diversity change in grassland communities along a grazing disturbance gradient in the Northeast China transect. Acta Phytoecologica Sinica, 25, 110-114. |
[杨利民, 韩梅, 李建东 (2001). 中国东北样带草地群落放牧干扰植物多样性的变化. 植物生态学报, 25, 110-114.] | |
[47] | Zeng XH, Du H, Zhao HM, Xiang L, Feng NX, Li H, Li YW, Cai QY, Mo CH, Wong MH, He ZL (2020). Insights into the binding interaction of substrate with catechol 2,3-dioxygenase from biophysics point of view. Journal of Hazardous Materials, 391, 122211. DOI: 10.1016/j.jhazmat.2020.122211. |
[48] | Zhang G, Kang Y, Han G, Mei H, Sakurai K (2011). Grassland degradation reduces the carbon sequestration capacity of the vegetation and enhances the soil carbon and nitrogen loss. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 61, 356-364. |
[49] | Zhang JH (2023). Microbial Regulation Mechanism of Soil Organic Carbon in Grassland of Different Restoration Years on the Loess Plateau. Master degree dissertation, Northwest A&F University, Yangling, Shaanxi. 5-6. |
[张君红 (2023). 黄土高原不同退耕恢复年限草地土壤有机碳的微生物调控机制. 硕士学位论文, 西北农林科技大学, 陕西杨凌. 5-6.] | |
[50] | Zhang Q, Xu X, Duan J, Koide RT, Xu L, Chu J (2023). Variation in microbial CAZyme families across degradation severity in a steppe grassland in northern China. Frontiers in Environmental Science, 11, 1080505. DOI: 10.3389/fenvs.2023.1080505. |
[51] | Zhang YJ, Zhu JT, Shen RN, Wang L (2020). Research progress on the effects of grazing on grassland ecosystem. Chinese Journal of Plant Ecology, 44, 553-564. |
[张扬建, 朱军涛, 沈若楠, 王荔 (2020). 放牧对草地生态系统影响的研究进展. 植物生态学报, 44, 553-564.] | |
[52] | Zhang YL (2022). Effects of Different Mowing Intensities on Soil Srganic Carbon Dynamics of Stipa grandis Steppe. Master degree dissertation, Inner Mongolia University, Hohhot. 35-38. |
[张艳丽 (2022). 不同刈割强度对大针茅草原土壤有机碳动态的影响. 硕士学位论文, 内蒙古大学, 呼和浩特. 35-38.] | |
[53] | Zheng DF, Qiu XQ, Lou HM (2005). The structure of lignin and its chemical modification. Fine Chemicals, 22, 249-252. |
[郑大锋, 邱学青, 楼宏铭 (2005). 木质素的结构及其化学改性进展. 精细化工, 22, 249-252.] | |
[54] | Zhou XH (2023). Characteristics and Influencing Factors of Soil Organic Carbon Turnover and Molecular Composition in Alpine Grassland of Southwest Tibetan Plateau. Master degree dissertation, Lanzhou University, Lanzhou. 11-13. |
[周晓荷 (2023). 藏西南高寒草地土壤有机碳周转和分子组成特征及其影响因素. 硕士学位论文, 兰州大学, 兰州. 11-13.] | |
[55] | Zou LG, Yao YT, Wen FF, Zhang X, Liu BT, Li DW, Yang YF, Yang WD, Balamurugan S, Li HY (2023). Bioremediation of catechol and concurrent accumulation of biocompounds by the microalga Crypthecodinium cohnii. Journal of Agricultural and Food Chemistry, 71, 10065-10074. |
/
〈 |
|
〉 |