Chin J Plant Ecol ›› 2025, Vol. 49 ›› Issue (3): 475-487.DOI: 10.17521/cjpe.2024.0014 cstr: 32100.14.cjpe.2024.0014
• Research Articles • Previous Articles Next Articles
LU Zhen1,2, XIE Guang-Jie2, Qaisar KHAN2, QIN Ying2, HUANG Yu-Yan2, GUO Dao-Jun2, YANG Ting-Ting2, YANG Li-Tao2, XING Yong-Xiu2,*(), LI Yang-Rui3,*(
), WANG Zhen4
Received:
2024-01-19
Accepted:
2024-09-28
Online:
2025-03-20
Published:
2025-01-20
Contact:
XING Yong-Xiu, LI Yang-Rui
Supported by:
LU Zhen, XIE Guang-Jie, Qaisar KHAN, QIN Ying, HUANG Yu-Yan, GUO Dao-Jun, YANG Ting-Ting, YANG Li-Tao, XING Yong-Xiu, LI Yang-Rui, WANG Zhen. Burkholderia strains enhance the tolerance of sugarcane to aluminum stress by improving the physiological adaptability and regulating the expression of aluminum responsive genes[J]. Chin J Plant Ecol, 2025, 49(3): 475-487.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2024.0014
基因 Gene | 上游引物 Forward primer (5′-3′) | 下游引物 Reverse primer (5′-3′) |
---|---|---|
GAPDH | CACGGCCACTGGAAGCA | TCCTCAGGGTTCCTGATGCC |
MAPK | CATCGAGCGGATGCTAACCT | AGTCGAACGAGAATGGCTCC |
GST | TACATGGCACACCCTGCATT | AGGAACAATACGACGGAGCA |
PEPC | TCCACAGGATGAAATGCGCT | TGTAGGGAAGGCGCTGATTG |
Table 1 Information of primers for quantitative real-time PCR of aluminum response related genes in sugarcane
基因 Gene | 上游引物 Forward primer (5′-3′) | 下游引物 Reverse primer (5′-3′) |
---|---|---|
GAPDH | CACGGCCACTGGAAGCA | TCCTCAGGGTTCCTGATGCC |
MAPK | CATCGAGCGGATGCTAACCT | AGTCGAACGAGAATGGCTCC |
GST | TACATGGCACACCCTGCATT | AGGAACAATACGACGGAGCA |
PEPC | TCCACAGGATGAAATGCGCT | TGTAGGGAAGGCGCTGATTG |
菌株 Baterial stain | 产IAA能力 Capacity for producing IAA | 磷增溶 Phosphorus solubilization (mg·L-1) | 铁载体相对含量 Relative content of siderophore (A/Ar) | 固氮 Nitrogen fixation | ACC脱氨酶活性 ACC deaminase activity | 胞外多糖 EPS (mg·mL-1) |
---|---|---|---|---|---|---|
A1 | - | 54.94 ± 2.38a | 0.38 ± 0.03a | +++ | - | 0.27 ± 0.03c |
A23 | - | 59.32 ± 0.99a | - | + | + | 1.29 ± 0.12b |
X6 | + | 59.42 ± 3.41a | 0.43 ± 0.02b | +++ | + | 1.68 ± 0.07a |
Table 2 Growth-promoting characteristics of aluminum-tolerant bacteria from the rhizosphere soil of sugarcane (mean ± SD)
菌株 Baterial stain | 产IAA能力 Capacity for producing IAA | 磷增溶 Phosphorus solubilization (mg·L-1) | 铁载体相对含量 Relative content of siderophore (A/Ar) | 固氮 Nitrogen fixation | ACC脱氨酶活性 ACC deaminase activity | 胞外多糖 EPS (mg·mL-1) |
---|---|---|---|---|---|---|
A1 | - | 54.94 ± 2.38a | 0.38 ± 0.03a | +++ | - | 0.27 ± 0.03c |
A23 | - | 59.32 ± 0.99a | - | + | + | 1.29 ± 0.12b |
X6 | + | 59.42 ± 3.41a | 0.43 ± 0.02b | +++ | + | 1.68 ± 0.07a |
Fig. 2 Effect of different acidity of culture medium on growth of the aluminum-tolerant bacterial strains (A1, A23, X6) (mean ± SD). Different lowercase letters indicate significant differences (p < 0.05). OD600, the optical density of bacterial suspension at 600 nm.
Fig. 3 Effects of different Al3+ concentrations on the growth of aluminum-tolerant bacterial strains (A1, A23, X6) (mean ± SD). Under the same aluminum concentration treatment, the data on the left represent the OD600 values, and those on the right represent the final pH values. OD600 is the optical density of bacterial suspension at 600 nm, different lowercase letters indicate significant differences (p < 0.05).
菌株 Bacterial strain | 最终pH Final pH | 上清液中的Al3+浓度 Al3+ concentration in supernatant (mmol·L-1) | 剩余Al3+百分比 Percentage of residual Al3+ (%) |
---|---|---|---|
CK | 4.50 ± 0.00c | 0.995 ± 0.003a | 99.539 ± 0.003a |
A1 | 7.91 ± 0.16a | 0.816 ± 0.042b | 81.992 ± 4.038b |
A23 | 7.02 ± 0.04b | 0.825 ± 0.014b | 82.880 ± 1.331b |
X6 | 7.79 ± 0.20a | 0.772 ± 0.007b | 77.581 ± 0.830b |
Table 3 Changes of residual Al3+ content and pH of culture solution after aluminum-tolerant bacteria from the rhizosphere soil of sugarcane growth 2 days (mean ± SD)
菌株 Bacterial strain | 最终pH Final pH | 上清液中的Al3+浓度 Al3+ concentration in supernatant (mmol·L-1) | 剩余Al3+百分比 Percentage of residual Al3+ (%) |
---|---|---|---|
CK | 4.50 ± 0.00c | 0.995 ± 0.003a | 99.539 ± 0.003a |
A1 | 7.91 ± 0.16a | 0.816 ± 0.042b | 81.992 ± 4.038b |
A23 | 7.02 ± 0.04b | 0.825 ± 0.014b | 82.880 ± 1.331b |
X6 | 7.79 ± 0.20a | 0.772 ± 0.007b | 77.581 ± 0.830b |
处理 Treatment | 株高 Plant height (cm) | 叶面积 Leaf area (cm2) | 干质量 Dry mass (g) | 鲜质量 Fresh mass (g) | ||
---|---|---|---|---|---|---|
地上部分 Aboveground part | 地下部分 Underground part | 地上部分 Aboveground part | 地下部分 Underground part | |||
CK | 23.53 ± 1.72b | 12.84 ± 1.37b | 5.96 ± 1.14a | 1.06 ± 0.15a | 26.25 ± 6.73b | 8.00 ± 2.83a |
T | 29.40 ± 0.47a | 18.14 ± 2.57a | 8.49 ± 1.13a | 1.20 ± 0.09a | 36.80 ± 7.78a | 10.90 ± 0.42a |
Table 4 Effects of aluminum-tolerant bacterial strain mixture inoculation (T) on agronomic traits of sugarcane (mean ± SD)
处理 Treatment | 株高 Plant height (cm) | 叶面积 Leaf area (cm2) | 干质量 Dry mass (g) | 鲜质量 Fresh mass (g) | ||
---|---|---|---|---|---|---|
地上部分 Aboveground part | 地下部分 Underground part | 地上部分 Aboveground part | 地下部分 Underground part | |||
CK | 23.53 ± 1.72b | 12.84 ± 1.37b | 5.96 ± 1.14a | 1.06 ± 0.15a | 26.25 ± 6.73b | 8.00 ± 2.83a |
T | 29.40 ± 0.47a | 18.14 ± 2.57a | 8.49 ± 1.13a | 1.20 ± 0.09a | 36.80 ± 7.78a | 10.90 ± 0.42a |
Fig. 5 Effects of aluminum-tolerant bacteria inoculation (T) on total nitrogen (A), total phosphorus (B), total potassium (C) and total aluminum (D) contents in shoot and root of sugarcane under aluminum stress (mean ± SD). Different lowercase letters in the same part indicate significant differences among different concentrations and treatments (p < 0.05).
Fig. 6 Effects of aluminum-tolerant bacteria inoculation (T) on superoxide dismutase (SOD) (A), catalase (CAT) (B) and peroxidase (POD) (C) activities and soluble protein (SP) (D), proline (Pro) (E) and malondialdehyde (MDA) (F) contents in sugarcane leaves and root tips under aluminum stress (mean ± SD). Different lowercase letters in the same organ indicate significant differences among different concentrations and treatments (p < 0.05).
Fig. 7 Changes in the expression of aluminum tolerance related genes MAPK (A), GST (B) and PEPC (C) in sugarcane root tips and leaves under aluminum stress (mean ± SD). Different lowercase letters in the same part indicate significant differences among different concentrations and treatments in leaves and roots at the level p < 0.05. T, aluminum-tolerant bacterial strain mixture inoculation.
[1] | Aizawa T, Bao Ve N, Vijarnsorn P, Nakajima M, Sunairi M (2010). Burkholderia acidipaludis sp. nov., aluminum- tolerant bacteria isolated from Chinese water chestnut (Eleocharis dulcis) growing in highly acidic swamps in South-East Asia. International Journal of Systematic and Evolutionary Microbiology, 60, 2036-2041. |
[2] | Avelar Ferreira PA, Bomfeti CA, Lima Soares B, de Souza Moreira FM (2012). Efficient nitrogen-fixing Rhizobium strains isolated from amazonian soils are highly tolerant to acidity and aluminium. World Journal of Microbiology and Biotechnology, 28, 1947-1959. |
[3] | Begum HH, Osaki M, Watanabe T, Shinano T (2009). Mechanisms of aluminum tolerance in phosphoenolpyruvate carboxylase transgenic rice. Journal of Plant Nutrition, 32, 84-96. |
[4] |
Bojórquez-Quintal E, Escalante-Magaña C, Echevarría- Machado I, Martínez-Estévez M (2017). Aluminum, a friend or foe of higher plants in acid soils. Frontiers in Plant Science, 8, 1767. DOI: 10.3389/fpls.2017.01767.
PMID |
[5] | Bomfeti CA, Florentino LA, Guimarães AP, Cardoso PG, Guerreiro MC,de Souza Moreira FM (2011). Exopolysaccharides produced by the symbiotic nitrogen-fixing bacteria of leguminosae. Revista Brasileira de Ciência do Solo, 35, 657-671. |
[6] | Chen CJ, Xu JY, Liang CP, Huang YZ (2001). Aluminium stress to sugarcane in earlier growth stage. Ganzhe, 8, 10-14. |
[陈超君, 徐建云, 梁传平, 黄有总 (2001). 甘蔗生长前期铝胁迫研究初报. 甘蔗, 8, 10-14.] | |
[7] | Chen TL, Qian CM, Zhang JJ, Xu J, Peng XX (2010). Advances of mechanism of plant response to aluminum stress. Chinese Journal of Tropical Agriculture, 30(2), 37-48. |
[陈泰林, 钱春梅, 张建军, 徐健, 彭新湘 (2010). 植物铝胁迫响应机制的研究进展. 热带农业科学, 30(2), 37-48.] | |
[8] | Chen WL, Li J, Zhu HH, Chen JZ, Yao Q (2016). A review of the regulation of plant root system architecture by rhizosphere microorganisms. Acta Ecologica Sinica, 36, 5285-5297. |
[陈伟立, 李娟, 朱红惠, 陈杰忠, 姚青 (2016). 根际微生物调控植物根系构型研究进展. 生态学报, 36, 5285-5297.] | |
[9] | de la Luz Mora M, Demanet R, Acuña JJ, Viscardi S, Jorquera M, Rengel Z, Durán P (2017). Aluminum-tolerant bacteria improve the plant growth and phosphorus content in ryegrass grown in a volcanic soil amended with cattle dung manure. Applied Soil Ecology, 115, 19-26. |
[10] |
Ermolayev V, Weschke W, Manteuffel R (2003). Comparison of Al-induced gene expression in sensitive and tolerant soybean cultivars. Journal of Experimental Botany, 54, 2745-2756.
DOI PMID |
[11] | Farh MEA, Kim YJ, Sukweenadhi J, Singh P, Yang DC (2017). Aluminium resistant, plant growth promoting bacteria induce overexpression of aluminium stress related genes in Arabidopsis thaliana and increase the ginseng tolerance against aluminium stress. Microbiological Research, 200, 45-52. |
[12] | Ge HY, Song P, Feng L, Hong W, Wu CZ, Zhao XJ (2016). Plant growth-promoting properties and Al(III) absorption efficiency of three Al-tolerant rhizobacteria from tea plant. Acta Agriculturae Universitatis Jiangxiensis, 38, 1086-1091. |
[葛恒懿, 宋萍, 封磊, 洪伟, 吴承祯, 赵希俊 (2016). 三株茶树根际耐铝细菌的促生性能及Al(III)吸附效应. 江西农业大学学报, 38, 1086-1091.] | |
[13] | Haider FU, Coulter JA, Cheema SA, Farooq M, Wu J, Zhang R, Guo S, Cai L (2021). Co-application of biochar and microorganisms improves soybean performance and remediate cadmium-contaminated soil. Ecotoxicology and Environmental Safety, 214, 112112. DOI: 10.1016/j.ecoenv.2021.112112. |
[14] | Huang RL, Zhang N, Sun B, Liang YT (2020). Community structure of Burkholderiales and its diversity in typical maize rhizosphere soil. Acta Pedologica Sinica, 57, 975-985. |
[黄瑞林, 张娜, 孙波, 梁玉婷 (2020). 典型农田根际土壤伯克霍尔德氏菌群落结构及其多样性. 土壤学报, 57, 975-985.] | |
[15] | Huang SC, Liu AR, Ye MR, Cong RL, Zhan QW (2015). Morphological and physiological responses of sorghum BTx623 seedlings to aluminum toxicity. Acta Agriculturae Zhejiangensis, 27, 2129-2135. |
[黄守程, 刘爱荣, 叶梅荣, 从若琳, 詹秋文 (2015). 铝胁迫下高粱BTx623幼苗的形态及生理响应特征. 浙江农业学报, 27, 2129-2135.] | |
[16] | Jiang GB (2012). Screening and Characterization of an Phosphate-solubilizing Endophyte from Wheat and Primary Study on Characteristic of P-solubilizing. Master degree dissertation, Sichuan Normal University, Chengdu. |
[蒋国彪 (2012). 小麦溶磷内生菌的筛选鉴定及其溶磷特性的初步研究. 硕士学位论文, 四川师范大学, 成都.] | |
[17] | Kochian LV (1995). Cellular mechanisms of aluminum toxicity and resistance in plants. Annual Review of Plant Biology, 46, 237-260. |
[18] | Kochian LV, Hoekenga OA, Pineros MA (2004). How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annual Review of Plant Biology, 55, 459-493. |
[19] |
Kochian LV, Piñeros MA, Liu J, Magalhaes JV (2015). Plant adaptation to acid soils: the molecular basis for crop aluminum resistance. Annual Review of Plant Biology, 66, 571-598.
DOI PMID |
[20] | Li HS (2000). Principles and Techniques of Plant Physiological Biochemical Experiments. Higher Education Press, Beijing. 258-260. |
[李合生 (2000). 植物生理生化实验原理和技术. 高等教育出版社, 北京. 258-260.] | |
[21] | Li Y (2012). The soil fertility and improvement measures of sugarcane planting area in Daxin County. Journal of Guangxi Agriculture, 27(2), 34-39. |
[李英 (2012). 大新县甘蔗种植区域土壤肥力状况与改良对策. 广西农学报, 27(2), 34-39.] | |
[22] |
Liang C, Piñeros MA, Tian J, Yao Z, Sun L, Liu J, Shaff J, Coluccio A, Kochian LV, Liao H (2013). Low pH, aluminum, and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils. Plant Physiology, 161,1347-1361.
DOI PMID |
[23] | Lu YL, Chen DW, Jiang Y, Huang Y, Ao JH, Zhou WL, Huang ZR, Wang YB (2016). Alleviating effects of silicon on sugarcane seedlings under aluminum stress. Guangdong Agricultural Sciences, 43(5), 87-91. |
[卢颖林, 陈迪文, 江永, 黄莹, 敖俊华, 周文灵, 黄振瑞, 王亚彪 (2016). 硅对铝胁迫下甘蔗幼苗的缓解效应研究. 广东农业科学, 43(5), 87-91.] | |
[24] | Luo HW, Lin H, Chen C, Hong T, Xie AQ, He J (2023). Characteristics of activated aluminum contents in rhizosphere and bulk soils of three broad-leaved forest stands in northern Fujian Province. Journal of Forest and Environment, 43, 225-231. |
[罗汉伟, 林晗, 陈灿, 洪滔, 谢安强, 何俊 (2023). 闽北3种阔叶林分土壤根际活性铝特征. 森林与环境学报, 43, 225-231.] | |
[25] | Malviya MK, Solanki MK, Li CN, Htun R, Singh RK, Singh P, Yang LT, Li YR (2019). Beneficial linkages of endophytic Burkholderia anthina MYSP113 towards sugarcane growth promotion. Sugar Tech, 21, 737-748. |
[26] | Mao SM, Xu JZ, Zhou SF, Zhang YQ, Liu YH (2015). Determination of polysaccharide from Lonicera japonica at different flowering phases by phenol-sulfuric acid method. Central South Pharmacy, 13, 65-67. |
[毛淑敏, 许家珍, 周帅飞, 张永清, 刘玉红 (2015). 苯酚-硫酸法联合DNS法测定金银花不同花期多糖的含量. 中南药学, 13, 65-67.] | |
[27] | Oliveira ALM, Urquiaga S, Döbereiner J, Baldani JI (2002). The effect of inoculating endophytic N2-fixing bacteria on micropropagated sugarcane plants. Plant and Soil, 242, 205-215. |
[28] | Panda SK, Baluška F, Matsumoto H (2009). Aluminum stress signaling in plants. Plant Signaling & Behavior, 4, 592-597. |
[29] | Ren GD (2010). Increased Cd and Cu Accumulation and Heavy Metal-tolerance of Plants by ACC-deaminase Producing Bacteria and the Mechanisms. Master degree dissertation, Nanjing Agricultural University, Nanjing. |
[任改弟 (2010). 产ACC脱氨酶细菌提高植物富集和耐受镉、铜效应及机制研究. 硕士学位论文, 南京农业大学, 南京.] | |
[30] | Rosa-Santos TM, Silva RG, Kumar P, Kottapalli P, Crasto C, Kottapalli KR, França SC, Zingaretti SM (2020). Molecular mechanisms underlying sugarcane response to aluminum stress by RNA-Seq. International Journal of Molecular Sciences, 21, 7934. DOI:10.3390/ijms21217934. |
[31] |
Sharma M, Sharma V, Tripathi BN (2016). Rapid activation of catalase followed by citrate efflux effectively improves aluminum tolerance in the roots of chick pea (Cicer arietinum). Protoplasma, 253, 709-718.
DOI PMID |
[32] | Sun XY, Cai CL, Xu LL, Wang Q (2015). Comparison of methods for determination of polysaccharide content. Research and Practice on Chinese Medicines, 29(3), 58-62. |
[孙晓燕, 蔡昌利, 徐丽莉, 王强 (2015). 多糖含量测定方法的比较. 现代中药研究与实践, 29(3), 58-62.] | |
[33] | Wang F, Liu P, Xu GD, Luo LL (2005). Effects of aluminium on some physiological charactes of buckwheat. Journal of Agro-Environment Science, 24, 678-681. |
[王芳, 刘鹏, 徐根娣, 罗丽兰 (2005). 铝对荞麦生理影响的研究. 农业环境科学学报, 24, 678-681.] | |
[34] | Wang G, Ren Y, Bai X, Su Y, Han J (2022). Contributions of beneficial microorganisms in soil remediation and quality improvement of medicinal plants. Plants, 11, 3200. DOI:10.3390/plants11233200. |
[35] | Wang H, Han LZ (2019). Identification of four plant growth-promoting rhizobacteria isolated from tea rhizosphere. Microbiology China, 46, 548-562. |
[王欢, 韩丽珍 (2019). 4株茶树根际促生菌菌株的鉴定及促生作用. 微生物学通报, 46, 548-562.] | |
[36] |
Wang L, Fan XW, Pan JL, Huang ZB, Li YZ (2015). Physiological characterization of maize tolerance to low dose of aluminum, highlighted by promoted leaf growth. Planta, 242, 1391-1403.
DOI PMID |
[37] | Wang S (2015). Identification of Endophytic Bacteria from Ginkgo biloba L. and Optimization of Fermentation Conditions for Extracellular Polysaccharides of Endo Gin Ya6. Master degree dissertation, Dalian Polytechnic University, Dalian, Liaoning. |
[王爽 (2015). 银杏内生菌Endo Gin Ya6的鉴定及其胞外多糖发酵条件的优化. 硕士学位论文, 大连工业大学, 辽宁大连.] | |
[38] | Wu DM, Fu YQ, Yu ZW, Shen H (2013). Status of red soil acidification and aluminum toxicity in South China and prevention. Soils, 45, 577-584. |
[吴道铭, 傅友强, 于智卫, 沈宏 (2013). 我国南方红壤酸化和铝毒现状及防治. 土壤, 45, 577-584.] | |
[39] | Wu KC, Xu L, Qin XY, Li YP, Mo DQ, Huang CF, Deng ZN, Huang H, Pang T, Wang WZ (2021). The effect of CaO soil conditioner on pH regulation and sugarcane growth. Sugarcane and Canesugar, 50(3), 58-64. |
[吴凯朝, 徐林, 覃兴云, 李育鹏, 莫大强, 黄成丰, 邓智年, 黄海, 庞天, 王维赞 (2021). CaO型土壤调理剂对蔗地pH调节效果及对甘蔗生长的影响. 甘蔗糖业, 50(3), 58-64.] | |
[40] | Xie GJ, Duan ZF, Wang Z, Yu ZX, Xing YX, Li YR (2021). Plant growth-promoting characteristics and control effect of antagonistic bacteria against sugarcane smut. Journal of Southern Agriculture, 52, 3013-3021. |
[谢光杰, 段振峰, 王震, 余卓新, 邢永秀, 李杨瑞 (2021). 甘蔗黑穗病拮抗细菌的促生长特性及其防治效果研究. 南方农业学报, 52, 3013-3021.] | |
[41] | Yang TY, Cai LY, Qi YP, Yang LT, Lai NY, Chen LS (2019). Increasing nutrient solution pH alleviated aluminum-induced inhibition of growth and impairment of photosynthetic electron transport chain in Citrus sinensis seedlings. BioMed Research International, 2019, 9058715. DOI: 10.1155/2019/9058715. |
[42] | Yu J (2019). Study on Adsorption of Heavy Metals by Exopolysaccharide of Endophytic Bacteria from Seabuckthorn Nodules. Master degree dissertation, Northwest Normal University, Lanzhou. |
[于杰 (2019). 沙棘根瘤内生细菌胞外多糖对重金属吸附作用的研究. 硕士毕业论文, 西北师范大学, 兰州.] | |
[43] | Zeng QY, Ling QP, Hu F, Qi YW (2017). Effect of interaction between magnesium and aluminum on root growth in sugarcane. Chinese Journal of Tropical Crops, 38, 2066-2070. |
[曾巧英, 凌秋平, 胡斐, 齐永文 (2017). 镁铝互作对甘蔗根系的影响研究. 热带作物学报, 38, 2066-2070.] | |
[44] |
Zerrouk IZ, Benchabane M, Khelifi L, Yokawa K, Ludwig-Müller J, Baluska F (2016). A pseudomonas strain isolated from date-palm rhizospheres improves root growth and promotes root formation in maize exposed to salt and aluminum stress. Journal of Plant Physiology, 191, 111-119.
DOI PMID |
[45] |
Zhang L, Gu JP, Wei SQ, Zhou ZY, Zhang C, Yu YX (2011). Mechanism of acid tolerance in a rhizobium strain isolated from Pueraria lobata (Willd.) Ohwi. Canadian Journal of Microbiology, 57, 514-524.
DOI PMID |
[46] | Zhao XQ, Pan XZ, Ma HY, Dong XY, Che C, Wang C, Shi Y, Liu KL, Shen RF (2023). Scientific issues and strategies of acid soil use in China. Acta Pedologica Sinica, 60, 1248-1263. |
[赵学强, 潘贤章, 马海艺, 董晓英, 车景, 王超, 时玉, 柳开楼, 沈仁芳 (2023). 中国酸性土壤利用的科学问题与策略. 土壤学报, 60, 1248-1263.] | |
[47] | Zheng BS (2006). Research Techniques in Contemporary Plant Physiology and Biochemistry. China Meteorological Press, Beijing, 40-92. |
[郑丙松 (2006). 现代植物生理生化研究技术. 气象出版社, 北京. 40-92.] | |
[48] |
Zheng SJ, Yang JL, He YF, Yu XH, Zhang L, You JF, Shen RF, Matsumoto H (2005). Immobilization of aluminum with phosphorus in roots is associated with high aluminum resistance in buckwheat. Plant Physiology, 138, 297-303.
PMID |
[1] | ZHANG Hong-Xiang, WEN Zhi-Bin, WANG Qian. Population genetic structure of Malus sieversii and environmental adaptations [J]. Chin J Plant Ecol, 2022, 46(9): 1098-1108. |
[2] | Zheng Huiying, Shen Quanguan, Yan Tian. The Ecological and Physiological Adaptation of Kochia sieversiana and the Characteristics of the Communities [J]. Chin J Plan Ecolo, 1998, 22(1): 1-7. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn