Chin J Plant Ecol ›› 2024, Vol. 48 ›› Issue (12): 1612-1622.DOI: 10.17521/cjpe.2023.0293 cstr: 32100.14.cjpe.2023.0293
• Research Articles • Previous Articles Next Articles
QIANG Ya-Qi, ZHANG Xin-Na, WANG Juan, ZHANG Chun-Yu*()
Received:
2023-10-16
Accepted:
2024-04-08
Online:
2024-12-20
Published:
2024-12-20
Contact:
ZHANG Chun-Yu
Supported by:
QIANG Ya-Qi, ZHANG Xin-Na, WANG Juan, ZHANG Chun-Yu. Variation of conspecific and heterospecific density-dependent survival along life stages in natural secondary forests in Northeast China[J]. Chin J Plant Ecol, 2024, 48(12): 1612-1622.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.plant-ecology.com/EN/10.17521/cjpe.2023.0293
物种 Species | 幼苗 Seedling | 幼树 Sapling | 成树 Adult | DBH ≥ 1 cm个体数 No. of stems of DBH ≥ 1 cm | |||
---|---|---|---|---|---|---|---|
个体数 Individual No. | 平均基径 Average BD (cm) | 个体数 Individual No. | 平均胸径 Average DBH (cm) | 个体数 Individual No. | 平均胸径 Average DBH (cm) | ||
白桦 Betula platyphylla | - | - | - | - | 279 | 27.90 | 279 |
东北槭 Acer mandshuricum | 144 | 4.40 | 2 157 | 2.57 | 3 651 | 12.79 | 5 808 |
暴马丁香 Syringa reticulata var. amurensis | - | - | 670 | 2.75 | 1 095 | 5.74 | 1 765 |
稠李 Padus racemosa | - | - | 125 | 2.41 | 292 | 6.59 | 417 |
春榆 Ulmus davidiana var. japonica | 9 | 4.43 | 657 | 4.39 | 862 | 19.34 | 1 519 |
髭脉槭 Acer barbinerve | 114 | 6.07 | 1 170 | 1.88 | 825 | 3.51 | 1 995 |
大果榆 Ulmus macrocarpa | - | - | 109 | 4.54 | 221 | 25.32 | 330 |
硕桦 Betula costata | - | - | 32 | 8.09 | 444 | 28.66 | 476 |
黑樱桃 Cerasus maximowiczii | - | - | 31 | 3.00 | 30 | 28.60 | 61 |
红松 Pinus koraiensis | 193 | 1.82 | 201 | 5.11 | 2 118 | 31.82 | 2 319 |
胡桃楸 Juglans mandshurica | 43 | 4.58 | 34 | 2.85 | 1 940 | 8.50 | 1 974 |
朝鲜槐 Maackia amurensis | - | 36 | 4.66 | 111 | 13.54 | 147 | |
黄檗 Phellodendron amurense | 2 | 6.01 | 36 | 5.73 | 153 | 23.73 | 189 |
辽椴 Tilia mandshurica | 10 | 5.50 | 94 | 6.70 | 419 | 24.05 | 513 |
裂叶榆 Ulmus laciniata | 28 | 8.01 | 1 189 | 4.42 | 680 | 23.42 | 1 869 |
瘤枝卫矛 Euonymus verrucosus | - | - | 30 | 1.96 | 41 | 3.54 | 71 |
毛榛 Corylus mandshurica | - | - | 480 | 1.83 | 308 | 2.92 | 788 |
蒙古栎 Quercus mongolica | 1 | 1.97 | 144 | 6.85 | 626 | 32.45 | 770 |
三花槭 Acer triflorum | 2 | 1.30 | 270 | 4.03 | 539 | 20.93 | 809 |
千金榆 Carpinus cordata | 30 | 3.35 | 3 562 | 3.55 | 5 458 | 10.30 | 9 020 |
青楷槭 Acer tegmentosum | 4 | 6.10 | 225 | 5.06 | 195 | 13.86 | 420 |
色木槭 Acer mono | 233 | 2.61 | 3 864 | 3.50 | 4 319 | 20.74 | 8 183 |
杉松 Abies holophylla | 38 | 1.88 | 116 | 5.27 | 341 | 32.88 | 457 |
山荆子 Malus baccata | - | - | 50 | 3.54 | 30 | 14.33 | 80 |
山杨 Populus davidiana | - | - | - | - | 51 | 34.44 | 51 |
水曲柳 Fraxinus mandschurica | 1 786 | 1.42 | 89 | 7.44 | 1 948 | 30.51 | 2 037 |
水榆花楸 Sorbus alnifolia | - | - | 245 | 4.21 | 351 | 17.20 | 596 |
香杨 Populus koreana | - | - | - | - | 49 | 54.64 | 49 |
紫椴 Tilia amurensis | 312 | 1.36 | 494 | 6.58 | 1 898 | 27.66 | 2 392 |
合计 Total | 2 949 | 3.80 | 16 110 | 3.51 | 29 274 | 19.45 | 45 384 |
Table 1 Species and number of individuals at each life stage in the monitoring sample plots of natural secondary forests in Northeast China
物种 Species | 幼苗 Seedling | 幼树 Sapling | 成树 Adult | DBH ≥ 1 cm个体数 No. of stems of DBH ≥ 1 cm | |||
---|---|---|---|---|---|---|---|
个体数 Individual No. | 平均基径 Average BD (cm) | 个体数 Individual No. | 平均胸径 Average DBH (cm) | 个体数 Individual No. | 平均胸径 Average DBH (cm) | ||
白桦 Betula platyphylla | - | - | - | - | 279 | 27.90 | 279 |
东北槭 Acer mandshuricum | 144 | 4.40 | 2 157 | 2.57 | 3 651 | 12.79 | 5 808 |
暴马丁香 Syringa reticulata var. amurensis | - | - | 670 | 2.75 | 1 095 | 5.74 | 1 765 |
稠李 Padus racemosa | - | - | 125 | 2.41 | 292 | 6.59 | 417 |
春榆 Ulmus davidiana var. japonica | 9 | 4.43 | 657 | 4.39 | 862 | 19.34 | 1 519 |
髭脉槭 Acer barbinerve | 114 | 6.07 | 1 170 | 1.88 | 825 | 3.51 | 1 995 |
大果榆 Ulmus macrocarpa | - | - | 109 | 4.54 | 221 | 25.32 | 330 |
硕桦 Betula costata | - | - | 32 | 8.09 | 444 | 28.66 | 476 |
黑樱桃 Cerasus maximowiczii | - | - | 31 | 3.00 | 30 | 28.60 | 61 |
红松 Pinus koraiensis | 193 | 1.82 | 201 | 5.11 | 2 118 | 31.82 | 2 319 |
胡桃楸 Juglans mandshurica | 43 | 4.58 | 34 | 2.85 | 1 940 | 8.50 | 1 974 |
朝鲜槐 Maackia amurensis | - | 36 | 4.66 | 111 | 13.54 | 147 | |
黄檗 Phellodendron amurense | 2 | 6.01 | 36 | 5.73 | 153 | 23.73 | 189 |
辽椴 Tilia mandshurica | 10 | 5.50 | 94 | 6.70 | 419 | 24.05 | 513 |
裂叶榆 Ulmus laciniata | 28 | 8.01 | 1 189 | 4.42 | 680 | 23.42 | 1 869 |
瘤枝卫矛 Euonymus verrucosus | - | - | 30 | 1.96 | 41 | 3.54 | 71 |
毛榛 Corylus mandshurica | - | - | 480 | 1.83 | 308 | 2.92 | 788 |
蒙古栎 Quercus mongolica | 1 | 1.97 | 144 | 6.85 | 626 | 32.45 | 770 |
三花槭 Acer triflorum | 2 | 1.30 | 270 | 4.03 | 539 | 20.93 | 809 |
千金榆 Carpinus cordata | 30 | 3.35 | 3 562 | 3.55 | 5 458 | 10.30 | 9 020 |
青楷槭 Acer tegmentosum | 4 | 6.10 | 225 | 5.06 | 195 | 13.86 | 420 |
色木槭 Acer mono | 233 | 2.61 | 3 864 | 3.50 | 4 319 | 20.74 | 8 183 |
杉松 Abies holophylla | 38 | 1.88 | 116 | 5.27 | 341 | 32.88 | 457 |
山荆子 Malus baccata | - | - | 50 | 3.54 | 30 | 14.33 | 80 |
山杨 Populus davidiana | - | - | - | - | 51 | 34.44 | 51 |
水曲柳 Fraxinus mandschurica | 1 786 | 1.42 | 89 | 7.44 | 1 948 | 30.51 | 2 037 |
水榆花楸 Sorbus alnifolia | - | - | 245 | 4.21 | 351 | 17.20 | 596 |
香杨 Populus koreana | - | - | - | - | 49 | 54.64 | 49 |
紫椴 Tilia amurensis | 312 | 1.36 | 494 | 6.58 | 1 898 | 27.66 | 2 392 |
合计 Total | 2 949 | 3.80 | 16 110 | 3.51 | 29 274 | 19.45 | 45 384 |
模型类型 Model type | 模型表达式 Model expression | 固定效应 Fixed effect | 随机效应 Random effect |
---|---|---|---|
基础模型 Basic model | DBH/BD, Con, Het | Species identity, Quadrat, DBH/BD | |
引入交互作用的模型 Interaction model | DBH, Con, Het, Con × DBH, Het × DBH | Species identity, Quadrat, DBH/BD | |
引入物种间随机效应的模型 Random effects model | DBH/BD, Con, Het | Species identity, Quadrat, DBH/BD, Con, Het | |
单独引入物种间随机效应的模型 Individual random effects model | DBH/BD, Con, Het | Species identity, Quadrat, DBH/BD, Con/Het | |
Table 2 Four models used to examine the impact of biological neighborhood interactions on individual survival at various life stages of natural secondary forests in Northeast China
模型类型 Model type | 模型表达式 Model expression | 固定效应 Fixed effect | 随机效应 Random effect |
---|---|---|---|
基础模型 Basic model | DBH/BD, Con, Het | Species identity, Quadrat, DBH/BD | |
引入交互作用的模型 Interaction model | DBH, Con, Het, Con × DBH, Het × DBH | Species identity, Quadrat, DBH/BD | |
引入物种间随机效应的模型 Random effects model | DBH/BD, Con, Het | Species identity, Quadrat, DBH/BD, Con, Het | |
单独引入物种间随机效应的模型 Individual random effects model | DBH/BD, Con, Het | Species identity, Quadrat, DBH/BD, Con/Het | |
生物邻体变量 Biological neighborhood variable | 邻域半径 Neighbor radius (m) | AIC | ΔAIC |
---|---|---|---|
幼苗邻体变量_1 Seedling_1 | 5 | 1 991.4 | -1.3 |
10 | 1 992.0 | -0.7 | |
15 | 1 992.7 | 0.0 | |
20 | 1 994.2 | 1.5 | |
幼苗邻体变量_2 Seedling_2 | 5 | 1 992.9 | 0.3 |
10 | 1 993.8 | 1.2 | |
15 | 1 992.6 | 0.0 | |
20 | 1 995.2 | 2.6 | |
幼苗邻体变量_3 Seedling_3 | 1 | 1 991.8 | 0.0 |
幼树邻体变量 Sapling | 5 | 17 173.4 | 2.5 |
10 | 17 172.0 | 1.1 | |
15 | 17 170.9 | 0.0 | |
20 | 17 164.2 | -6.7 | |
成树邻体变量 Adult | 5 | 17 892.6 | 4.0 |
10 | 17 889.0 | 0.4 | |
15 | 17 888.6 | 0.0 | |
20 | 17 895.5 | 6.9 |
Table 3 Akaike’s Information Criterion (AIC) values and ΔAIC values for different neighborhood radius at various stages of natural secondary forests in Northeast China
生物邻体变量 Biological neighborhood variable | 邻域半径 Neighbor radius (m) | AIC | ΔAIC |
---|---|---|---|
幼苗邻体变量_1 Seedling_1 | 5 | 1 991.4 | -1.3 |
10 | 1 992.0 | -0.7 | |
15 | 1 992.7 | 0.0 | |
20 | 1 994.2 | 1.5 | |
幼苗邻体变量_2 Seedling_2 | 5 | 1 992.9 | 0.3 |
10 | 1 993.8 | 1.2 | |
15 | 1 992.6 | 0.0 | |
20 | 1 995.2 | 2.6 | |
幼苗邻体变量_3 Seedling_3 | 1 | 1 991.8 | 0.0 |
幼树邻体变量 Sapling | 5 | 17 173.4 | 2.5 |
10 | 17 172.0 | 1.1 | |
15 | 17 170.9 | 0.0 | |
20 | 17 164.2 | -6.7 | |
成树邻体变量 Adult | 5 | 17 892.6 | 4.0 |
10 | 17 889.0 | 0.4 | |
15 | 17 888.6 | 0.0 | |
20 | 17 895.5 | 6.9 |
Fig. 1 Conspecific and heterospecific neighborhood effects at various life history stages in different neighborhood radius in natural secondary forests in Northeast China. The horizontal coordinate of the graph indicates the effect size; the length of the line indicates the 95% confidence interval (CI), and the point in the middle of the line indicates the estimated value of the effect size of each neighborhood variables; the line x = 0 indicates the invalid line. Adult, adult neighborhood variable; Sapling, sapling neighborhood variable; Seedling_1, seedling neighborhood variable_1; Seedling_2, seedling neighborhood variable_2; Seedling_3, seedling neighborhood variable_3.
Fig. 2 Trend of predicted conspecific and heterospecific neighborhood variables on the probability of survival of individuals with neighborhood variables in natural secondary forests in Northeast China. Adult, adult neighborhood variable; Sapling, sapling neighborhood variable; Seedling_2, seedling neighborhood variable_2; Seedling_3, seedling neighborhood variable_3.
变量 Variable | 估计 Estimate | 标准误 SE | z | p |
---|---|---|---|---|
截距 Intercept | -0.972 5 | 0.304 7 | -3.19 | 0.001 4 |
胸径 DBH | 0.973 5 | 0.118 5 | 8.22 | <0.000 1 |
同种邻体变量 Con | -0.165 8 | 0.041 3 | -4.02 | <0.000 1 |
异种邻体变量 Het | -0.025 5 | 0.033 4 | -0.76 | 0.444 6 |
胸径与同种邻体变量交互作用 DBH × Con | 0.036 6 | 0.018 1 | 2.03 | 0.042 8 |
胸径与异种邻体变量交互作用 DBH × Het | 0.000 6 | 0.016 0 | 0.04 | 0.971 4 |
Table 4 Correlation between the conspecific (heterospecific) neighborhood effect and individual size in natural secondary forests in Northeast China
变量 Variable | 估计 Estimate | 标准误 SE | z | p |
---|---|---|---|---|
截距 Intercept | -0.972 5 | 0.304 7 | -3.19 | 0.001 4 |
胸径 DBH | 0.973 5 | 0.118 5 | 8.22 | <0.000 1 |
同种邻体变量 Con | -0.165 8 | 0.041 3 | -4.02 | <0.000 1 |
异种邻体变量 Het | -0.025 5 | 0.033 4 | -0.76 | 0.444 6 |
胸径与同种邻体变量交互作用 DBH × Con | 0.036 6 | 0.018 1 | 2.03 | 0.042 8 |
胸径与异种邻体变量交互作用 DBH × Het | 0.000 6 | 0.016 0 | 0.04 | 0.971 4 |
Fig. 3 Histograms of positive (negative) interspecies differences in survival rates of seedlings, saplings and adult trees under the conspecific and heterospecific neighborhood effects in natural secondary forests in Northeast China. The value < 0 represents the negative impact of the conspecific (heterospecific) neighborhood effect on survival rate, while the value > 0 represents the positive impact on survival rate. DBH, diameter at breast height.
[1] | Bachelot B, Uríarte M, Thompson J, Zimmerman JK (2016). The advantage of the extremes: tree seedlings at intermediate abundance in a tropical forest have the highest richness of above-ground enemies and suffer the most damage. Journal of Ecology, 104, 90-103. |
[2] | Blundell AG, Peart DR (2004). Density-dependent population dynamics of a dominant rain forest canopy tree. Ecology, 85, 704-715. |
[3] | Boege K, Marquis RJ (2006). Plant quality and predation risk mediated by plant ontogeny: consequences for herbivores and plants. Oikos, 115, 559-572. |
[4] | Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, White JS (2009). Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution, 24, 127-135. |
[5] | Chen L, Comita LS, Wright SJ, Swenson NG, Zimmerman JK, Mi XC, Hao ZQ, Ye WH, Hubbell SP, Kress WJ, Uriarte M, Thompson J, Nytch CJ, Wang XG, Lian JY, Ma KP (2018). Forest tree neighborhoods are structured more by negative conspecific density dependence than by interactions among closely related species. Ecography, 41, 1114-1123. |
[6] |
Comita LS, Muller-Landau HC, Aguilar S, Hubbell SP (2010). Asymmetric density dependence shapes species abundances in a tropical tree community. Science, 329, 330-332.
DOI PMID |
[7] |
Comita LS, Queenborough SA, Murphy SJ, Eck JL, Xu KY, Krishnadas M, Beckman N, Zhu Y, Gómez-Aparicio L (2014). Testing predictions of the Janzen-Connell hypothesis: a meta-analysis of experimental evidence for distance- and density-dependent seed and seedling survival. Journal of Ecology, 102, 845-856.
PMID |
[8] | Comita LS, Uriarte M, Thompson J, Jonckheere I, Canham CD, Zimmerman JK (2009). Abiotic and biotic drivers of seedling survival in a hurricane-impacted tropical forest. Journal of Ecology, 97, 1346-1359. |
[9] | Connell JH (1971). On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees// Dynamics of Populations. Center for Agricultural Publishing and Documentation, Wageningen, The Netherlands. 298-313. |
[10] | Dalgleish HJ, Monteith L, Collins E (2023). Age, size and neighbors influence the survival and growth of understory trees in a naturally reproducing population of American chestnut, Castanea dentata. Forest Ecology and Management, 532, 120824. DOI: 10.1016/j.foreco.2023.120824. |
[11] | Fan CY, Zhang CY, Zhao XH (2022). Functional traits explain growth-mortality trade-offs in a mixed broadleaf-conifer forest in northeastern China. European Journal of Forest Research, 141, 117-128. |
[12] | Franklin AB, Anderson DR, Burnham KP (2002). Estimation of long-term trends and variation in avian survival probabilities using random effects models. Journal of Applied Statistics, 29, 267-287. |
[13] | Getzin S, Dean C, He F, Trofymow JA, Wiegand K, Wiegand T (2006). Spatial patterns and competition of tree species in a Douglas-fir chronosequence on Vancouver Island. Ecography, 29, 671-682. |
[14] | Harms KE, Condit R, Hubbell SP, Foster RB (2001). Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. Journal of Ecology, 89, 947-959. |
[15] | Harms KE, Wright SJ, Calderón O, Hernández A, Herre EA (2000). Pervasive density-dependent recruitment enhances seedling diversity in a tropical forest. Nature, 404, 493-495. |
[16] | Hille Ris Lambers J, Clark JS, Beckage B (2002). Density- dependent mortality and the latitudinal gradient in species diversity. Nature, 417, 732-735. |
[17] | Hubbell SP, Ahumada JA, Condit R, Foster RB (2001). Local neighborhood effects on long-term survival of individual trees in a neotropical forest. Ecological Research, 16, 859-875. |
[18] | Janzen DH (1970). Herbivores and the number of tree species in tropical forests. The American Naturalist, 104, 501-528. |
[19] | Jevon FV, de la Cruz D, LaManna JA, Lang AK, Orwig DA, Record S, Kouba PV, Ayres MP, Matthes JH (2022). Experimental and observational evidence of negative conspecific density dependence in temperate ectomycorrhizal trees. Ecology, 103, e3808. DOI: 10.1002/ecy.3808. |
[20] |
Johnson DJ, Beaulieu WT, Bever JD, Clay K (2012). Conspecific negative density dependence and forest diversity. Science, 336, 904-907.
DOI PMID |
[21] | LaManna JA, Mangan SA, Alonso A, Bourg NA, Brockelman WY, Bunyavejchewin S, Chang LW, Chiang JM, Chuyong GB, Clay K, Condit R, Cordell S, Davies SJ, Furniss TJ, Giardina CP, et al. (2017). Plant diversity increases with the strength of negative density dependence at the global scale. Science, 356, 1389-1392. |
[22] | Lin LX, Comita LS, Zheng Z, Cao M (2012). Seasonal differentiation in density-dependent seedling survival in a tropical rain forest. Journal of Ecology, 100, 905-914. |
[23] |
Liu HM, Ma ZP, Yang QS, Fang XF, Lin QK, Zong Y, Aqing A, Wang XH (2017). Relationships between established seedling survival and growth in evergreen broad-leaved forest in Tiantong. Biodiversity Science, 25, 11-22.
DOI |
[ 刘何铭, 马遵平, 杨庆松, 方晓峰, 林庆凯, 宗意, 阿尔达克·阿庆, 王希华 (2017). 天童常绿阔叶林定居幼苗存活和生长的关联. 生物多样性, 25, 11-22.]
DOI |
|
[24] |
Lu J, Johnson DJ, Qiao X, Lu Z, Wang Q, Jiang M (2015). Density dependence and habitat preference shape seedling survival in a subtropical forest in central China. Journal of Plant Ecology, 8, 568-577.
DOI |
[25] | Mangan SA, Schnitzer SA, Herre EA, Mack KML, Valencia MC, Sanchez EI, Bever JD (2010). Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature, 466, 752-755. |
[26] | Meng LJ, Zhang CY, Yao J, Zhao XH (2019). Effects of density and habitat on Arbor seedling survival in a mixed conifer and broad-leaved forest in Jiaohe, Jilin Province. Scientia Silvae Sinicae, 55(11), 172-180. |
[ 孟令君, 张春雨, 姚杰, 赵秀海 (2019). 吉林蛟河针阔混交林乔木幼苗存活对密度和生境的响应. 林业科学, 55(11), 172-180.] | |
[27] | Metz MR, Sousa WP, Valencia R (2010). Widespread density- dependent seedling mortality promotes species coexistence in a highly diverse Amazonian rain forest. Ecology, 91, 3675-3685. |
[28] | Nathan R, Muller-Landau HC (2000). Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology & Evolution, 15, 278-285. |
[29] | Packer A, Clay K (2000). Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature, 404, 278-281. |
[30] | Peters HA (2003). Neighbour-regulated mortality: the influence of positive and negative density dependence on tree populations in species-rich tropical forests. Ecology Letters, 6, 757-765. |
[31] |
Piao TF, Comita LS, Jin GZ, Kim JH (2013). Density dependence across multiple life stages in a temperate old-growth forest of Northeast China. Oecologia, 172, 207-217.
DOI PMID |
[32] | Pu XC (2021). Variation and the Driving Mechanism of Density Dependence in Temperate Forests, Northeastern China. PhD dissertation,Northeast Forestry University, Harbin. 20-27. |
[ 濮旭才 (2021). 东北温带森林密度制约变异及其影响机制. 博士学位论文, 东北林业大学, 哈尔滨. 20-27.] | |
[33] | Schupp EW (1992). The Janzen-Connell model for tropical tree diversity: population implications and the importance of spatial scale. The American Naturalist, 140, 526-530. |
[34] | Song X, Johnson DJ, Cao M, Umaña MN, Deng X, Yang X, Zhang W, Yang J (2018). The strength of density-dependent mortality is contingent on climate and seedling size. Journal of Vegetation Science, 29, 662-670. |
[35] | Stoll P, Newbery DM (2005). Evidence of species-specific neighborhood effects in the Dipterocarpaceae of a Bornean rain forest. Ecology, 86, 3048-3062. |
[36] | Umaña MN, Zipkin EF, Zhang C, Cao M, Lin L, Swenson NG (2018). Individual-level trait variation and negative density dependence affect growth in tropical tree seedlings. Journal of Ecology, 106, 2446-2455. |
[37] | Wu H, Franklin SB, Liu J, Lu Z (2017). Relative importance of density dependence and topography on tree mortality in a subtropical mountain forest. Forest Ecology and Management, 384, 169-179. |
[38] | Yao J (2019). Patterns of Species Diversity and Its Maintenance Machanism in Jiaohe Coniferous and Broad- leaved Mixed Forest, Jilin Province. PhD dissertation,Beijing Forestry University, Beijing. 84-97. |
[ 姚杰 (2019). 吉林蛟河针阔混交林物种多样性格局及维持机制. 博士学位论文, 北京林业大学, 北京. 84-97.] | |
[39] | Yao J, Bachelot B, Meng L, Qin J, Zhao X, Zhang C (2020). Abiotic niche partitioning and negative density dependence across multiple life stages in a temperate forest in northeastern China. Journal of Ecology, 108, 1299-1310. |
[40] | Zhu Y, Comita LS, Hubbell SP, Ma K (2015). Conspecific and phylogenetic density-dependent survival differs across life stages in a tropical forest. Journal of Ecology, 103, 957-966. |
[41] |
Zhu Y, Queenborough SA, Condit R, Hubbell SP, Ma K, Comita LS (2018). Density-dependent survival varies with species life-history strategy in a tropical forest. Ecology Letters, 21, 506-515.
DOI PMID |
[1] | WEN Jia, ZHANG Xin-Na, WANG Juan, ZHAO Xiu-Hai, ZHANG Chun-Yu. Traits mediate response of seedling survival rate to neighborhood competition and abiotic environment [J]. Chin J Plant Ecol, 2024, 48(6): 719-729. |
[2] | QIN Jiang-Huan, ZHANG Chun-Yu, ZHAO Xiu-Hai. Testing Janzen-Connell hypothesis based on plant-soil feedbacks in a temperate coniferous and broadleaved mixed forest [J]. Chin J Plant Ecol, 2022, 46(6): 624-631. |
[3] | CHEN Ying. DETECTING EFFECT OF PHYLOGENETIC DIVERSITY ON SEEDLING MORTALITY IN AN EVERGREEN BROAD-LEAVED FOREST IN CHINA [J]. Chin J Plant Ecol, 2009, 33(6): 1084-1089. |
[4] | Li Rui, Zhong Zhangcheng, M. J. A. Werger. Density Regulation of the Clonal Growth of New Shoots in the Giant Bamboo Phyllostachys pubescens in Subtropical China [J]. Chin J Plan Ecolo, 1997, 21(1): 9-18. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2022 Chinese Journal of Plant Ecology
Tel: 010-62836134, 62836138, E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn