Research Articles

Impact of increased inundation height on the net ecosystem CO2 exchange in a Cyperus malaccensis tidal marsh

  • LI Lin ,
  • HUANG Jia-Fang ,
  • DING Zhong-Hao ,
  • GUO Ping-Ping ,
  • CAI Yuan-Bin ,
  • LI Shi-Hua ,
  • LI Yun-Qin ,
  • LUO Min
Expand
  • 1Institute of Geography, Fujian Normal University, Fuzhou 350117, China
    2College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
    3Wetland Ecosystem Research Station of Minjiang Estuary, National Forestry and Grassland Administration, Fuzhou 350215, China
    4College of Advanced Manufacturing, Fuzhou University, Quanzhou, Fujian 362251, China
* (Huang JF, wahugeo@fjnu.edu.cn;Luo M, luomin@fzu.edu.cn)

Received date: 2024-07-31

  Accepted date: 2025-01-03

  Online published: 2025-01-07

Supported by

Public Welfare Project of Science and Technology Department of Fujian Province(2022R1002007);National Natural Science Foundation of China(32071598);Natural Science Foundation of Fujian Province(2020J01503);Science and Technology Projects of the Forest Bureau of Fujian Province(2021FKJ30)

Abstract

Aims Rising sea levels and the associated increase in inundation heights will alter the carbon (C) cycle in tidal marshes. However, current research primarily focuses on the impact of increased inundation on total soil C stocks, while the effects on the balance of C budget processes remain unclear. Therefore, understanding how sea level rise affects the C sequestration capacity of tidal marshes is essential for predicting future impacts.

Methods To address this, our study established a “marsh organ” experimental platform in the tidal marshes of the Minjiang River Estuary. Three inundation treatments—CK (control), CK + 20 cm, and CK + 40 cm—simulated the current and the projected sea level rise scenarios for the next 50 and 100 years. We measured the effects of increased inundation on the net ecosystem carbon dioxide exchange (NEE), gross primary productivity (GPP), ecosystem respiration (ER), plant biomass, plant photosynthetic characteristics, and soil physicochemical properties of the Cyperus malaccensis tidal marshes.

Important findings The results showed that increased inundation height led to a decrease in aboveground biomass and an increase in belowground biomass. Compared to the CK, GPP decreased by 27% and 32%, while ER increased by 20% and 58% in the CK + 20 cm and CK + 40 cm treatments, respectively. The reduction in GPP was related to decreased aboveground biomass and declining plant photosynthetic characteristics, such as net photosynthetic rates, stomatal conductance, intercellular CO2 concentrations. The increase in ER was associated with higher soil oxidation-reduction potential and dissolved organic carbon content. Under the CK, CK + 20 cm, and CK + 40 cm treatments, NEE was -539.8, -102.7, and 185.6 g C·m-2·a-1, respectively. These findings indicate that a 20 cm increase in inundation height leads to an increase in NEE, demonstrating a weakened carbon sequestration capacity of the Cyperus malaccensis tidal marshes. Furthermore, a 40 cm increase in inundation height results in NEE shifting from negative to positive, indicating a transition of the ecosystem from a carbon sink to a carbon source. This research provides a scientific basis for predicting and mitigating the impacts of future sea level rise on the C cycle of tidal marsh.

Cite this article

LI Lin , HUANG Jia-Fang , DING Zhong-Hao , GUO Ping-Ping , CAI Yuan-Bin , LI Shi-Hua , LI Yun-Qin , LUO Min . Impact of increased inundation height on the net ecosystem CO2 exchange in a Cyperus malaccensis tidal marsh[J]. Chinese Journal of Plant Ecology, 2025 , 49(4) : 526 -539 . DOI: 10.17521/cjpe.2024.0253

References

[1] Armstrong W, Cousins D, Armstrong J, Turner DW, Beckett PM (2000). Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere: a microelectrode and modelling study with Phragmites australis. Annals of Botany, 86, 687-703.
[2] Bai J, Luo M, Yang Y, Xiao SY, Zhai ZF, Huang JF (2021). Iron-bound carbon increases along a freshwater- oligohaline gradient in a subtropical tidal wetland. Soil Biology & Biochemistry, 154, 108128. DOI: 10.1016/j.soilbio.2020.108128.
[3] Bai XJ, Wang XF, Liu XH, Zhou XQ (2022). Dynamics and driving factors of carbon fluxes in wetland, cropland and grassland ecosystems in Heihe River Basin. Remote Sensing Technology and Application, 37, 94-107.
  [白雪洁, 王旭峰, 柳晓惠, 周旭强 (2022). 黑河流域湿地、农田、草地生态系统碳通量变化特征及驱动因子分析. 遥感技术与应用, 37, 94-107.]
[4] Bonneville MC, Strachan IB, Humphreys ER, Roulet NT (2008). Net ecosystem CO2 exchange in a temperate cattail marsh in relation to biophysical properties. Agricultural and Forest Meteorology, 148, 69-81.
[5] Duan X, Li Z, Li YH, Yuan HZ, Gao W, Chen XB, Ge TD, Wu JS, Zhu ZK (2023). Iron-organic carbon associations stimulate carbon accumulation in paddy soils by decreasing soil organic carbon priming. Soil Biology & Biochemistry, 179, 108972. DOI: 10.1016/j.soilbio.2023.108972.
[6] Eagle MJ, Kroeger KD, Spivak AC, Wang F, Tang J, Abdul-Aziz OI, Ishtiaq KS, O’Keefe Suttles J, Mann AG (2022). Soil carbon consequences of historic hydrologic impairment and recent restoration in coastal wetlands. Science of the Total Environment, 848, 157682. DOI: 10.1016/j.scitotenv.2022.157682.
[7] Forbrich I, Giblin AE (2015). Marsh-atmosphere CO2 exchange in a New England salt marsh. Journal of Geophysical Research: Biogeosciences, 120, 1825-1838.
[8] Han G, Chu X, Xing Q, Li D, Yu J, Luo Y, Wang G, Mao P, Rafique R (2015). Effects of episodic flooding on the net ecosystem CO2 exchange of a supratidal wetland in the Yellow River Delta. Journal of Geophysical Research: Biogeosciences, 120, 1506-1520.
[9] Han GX (2017). Effect of tidal action and drying-wetting cycles on carbon exchange in a salt marsh: progress and prospects. Acta Ecologica Sinica, 37, 8170-8178.
  [韩广轩 (2017). 潮汐作用和干湿交替对盐沼湿地碳交换的影响机制研究进展. 生态学报, 37, 8170-8178.]
[10] Han GX, Li JY, Qu WD (2021). Effects of nitrogen input on carbon cycle and carbon budget in a coastal salt marsh. Chinese Journal of Plant Ecology, 45, 321-333.
  [韩广轩, 李隽永, 屈文笛 (2021). 氮输入对滨海盐沼湿地碳循环关键过程的影响及机制. 植物生态学报, 45, 321-333.]
[11] Hao YB, Cui XY, Wang YF, Mei XR, Kang XM, Wu N, Luo P, Zhu D (2011). Predominance of precipitation and temperature controls on ecosystem CO2 exchange in Zoige alpine wetlands of Southwest China. Wetlands, 31, 413-422.
[12] Haywood BJ, Hayes MP, White JR, Cook RL (2020). Potential fate of wetland soil carbon in a deltaic coastal wetland subjected to high relative sea level rise. Science of the Total Environment, 711, 135185. DOI: 10.1016/j.scitotenv.2019.135185.
[13] Herbert ER, Schubauer-Berigan J, Craft CB (2018). Differential effects of chronic and acute simulated seawater intrusion on tidal freshwater marsh carbon cycling. Biogeochemistry, 138, 137-154.
[14] Hu DH, Lan WJ, Luo M, Fan TN, Chen X, Tan J, Li SH, Guo PP, Huang JF (2023). Increase in iron-bound organic carbon content under simulated sea-level rise: a “marsh organ” field experiment. Soil Biology & Biochemistry, 187, 109217. DOI: 10.1016/j.soilbio.2023.109217.
[15] Huang Y, Chen ZH, Tian B, Zhou C, Wang JT, Ge ZM, Tang JW (2020). Tidal effects on ecosystem CO2 exchange in a Phragmites salt marsh of an intertidal shoal. Agricultural and Forest Meteorology, 292, 108108. DOI: 10.1016/j.agrformet.2020.108108.
[16] IPCC the Intergovernmental Panel on Climate Change (2022). Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
[17] James CN, Copeland RC, Lytle DA (2004). Relationships between oxidation-reduction potential, oxidant, and pH in drinking water. Environmental Science, 2004, 8-14.
[18] Jia WT, Ma MH, Chen JL, Wu SJ (2021). Plant morphological, physiological and anatomical adaption to flooding stress and the underlying molecular mechanisms. International Journal of Molecular Sciences, 22, 1088. DOI: 10.3390/ijms22031088.
[19] Jimenez KL, Starr G, Staudhammer CL, Schedlbauer JL, Loescher HW, Malone SL, Oberbauer SF (2012). Carbon dioxide exchange rates from short- and long-hydroperiod Everglades freshwater marsh. Journal of Geophysical Research: Biogeosciences, 117, G04009. DOI: 10.1029/2012JG002117.
[20] Kandel TP, L?rke PE, Elsgaard L (2018). Annual emissions of CO2, CH4 and N2O from a temperate peat bog: comparison of an undrained and four drained sites under permanent grass and arable crop rotations with cereals and potato. Agricultural and Forest Meteorology, 256, 470-481.
[21] Khan N, Seshadri B, Bolan N, Saint CP, Kirkham MB, Chowdhury S, Yamaguchi N, Lee DY, Li G, Kunhikrishnan A, Qi F, Karunanithi R, Qiu R, Zhu YG, Syu CH (2016). Root iron plaque on wetland plants as a dynamic pool of nutrients and contaminants. Advances in Agronomy, 138, 1-96.
[22] Kirwan ML, Guntenspergen GR (2012). Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. Journal of Ecology, 100, 764-770.
[23] Kirwan ML, Guntenspergen GR (2015). Response of plant productivity to experimental flooding in a stable and a submerging marsh. Ecosystems, 18, 903-913.
[24] Kirwan ML, Megonigal JP (2013). Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 504, 53-60.
[25] Knox SH, Windham-Myers L, Anderson F, Sturtevant C, Bergamaschi B (2018). Direct and indirect effects of tides on ecosystem-scale CO2 exchange in a brackish tidal marsh in northern California. Journal of Geophysical Research: Biogeosciences, 123, 787-806.
[26] Krauss KW, Holm Jr GO, Perez BC, McWhorter DE, Cormier N, Moss RF, Johnson DJ, Neubauer SC, Raynie RC (2016). Component greenhouse gas fluxes and radiative balance from two deltaic marshes in Louisiana: Pairing chamber techniques and eddy covariance. Journal of Geophysical Research: Biogeosciences, 121, 1503-1521.
[27] Li HQ, Li YN, Zhang FW, Liu XQ, Wu QH, Mao SJ (2014). Carbon budget of alpine Potentilla fruticosa shrubland based on comprehensive techniques of static chamber and biomass harvesting. Acta Ecologica Sinica, 34, 925-932.
  [李红琴, 李英年, 张法伟, 刘晓琴, 吴启华, 毛绍娟 (2014). 基于静态箱式法和生物量评估海北金露梅灌丛草甸碳收支. 生态学报, 34, 925-932.]
[28] Li SH, Ge ZM, Xie LN, Chen W, Yuan L, Wang DQ, Li XZ, Zhang LQ (2018). Ecophysiological response of native and exotic salt marsh vegetation to waterlogging and salinity: implications for the effects of sea-level rise. Scientific Reports, 8, 2441. DOI: 10.1038/s41598-017-18721-z.
[29] Li X, Dong J, Han GX, Zhang QQ, Xie BH, Li PG, Zhao ML, Chen KL, Song WM (2023). Response of soil CO2 and CH4 emissions to changes in moisture and salinity at a typical coastal salt marsh of Yellow River Delta. Chinese Journal of Plant Ecology, 47, 434-446.
  [李雪, 董杰, 韩广轩, 张奇奇, 谢宝华, 李培广, 赵明亮, 陈克龙, 宋维民 (2023). 黄河三角洲典型滨海盐沼湿地土壤CO2和CH4排放对水盐变化的响应. 植物生态学报, 47, 434-446.]
[30] Li YL, Ge ZM, Xie LN, Li SH, Tan LS (2022). Effects of waterlogging and salinity increase on CO2 efflux in soil from coastal marshes. Applied Soil Ecology, 170, 104268. DOI: 10.1016/j.apsoil.2021.104268.
[31] Liao L, Yu F, Yi LT, Zhang MR, Xu Y (2023). Effects of different light environments on photosynthetic physiology of Dicranopteris dichotoma under successional stages in subtropical forests. Acta Ecologica Sinica, 43, 1853-1860.
  [廖靓, 俞飞, 伊力塔, 张明如, 许焱 (2023). 亚热带森林演替阶段下不同光环境对芒萁光合生理的影响. 生态学报, 43, 1853-1860.]
[32] Luo M, Huang JF, Zhu WF, Tong C (2019). Impacts of increasing salinity and inundation on rates and pathways of organic carbon mineralization in tidal wetlands: a review. Hydrobiologia, 827, 31-49.
[33] Luo M, Liu YX, Huang JF, Xiao LL, Zhu WF, Duan X, Tong C (2018). Rhizosphere processes induce changes in dissimilatory iron reduction in a tidal marsh soil: a rhizobox study. Plant and Soil, 433, 83-100.
[34] Luo M, Zeng CS, Tong C, Huang JF, Chen K, Liu FQ (2016). Iron reduction along an inundation gradient in a tidal sedge (Cyperus malaccensis) marsh: the rates, pathways, and contributions to anaerobic organic matter mineralization. Estuaries and Coasts, 39, 1679-1693.
[35] Luo M, Zhai ZF, Ye RZ, Xing RL, Huang JF, Tong C (2020). Carbon mineralization in tidal freshwater marsh soils at the intersection of low-level saltwater intrusion and ferric iron loading. Catena, 193, 104644. DOI: 10.1016/j.catena.2020.104644.
[36] Ma WJ, Li YN, Zhang FW, Han L (2023). Interannual dynamics and driving mechanism of CO2 flux in meadow grassland on the north shore of Qinghai Lake. Acta Ecologica Sinica, 43, 1102-1112.
  [马文婧, 李英年, 张法伟, 韩琳 (2023). 青海湖北岸草甸草原CO2通量年际动态及其驱动机制. 生态学报, 43, 1102-1112.]
[37] Marín-Mu?iz JL, Hernández ME, Moreno-Casasola P (2015). Greenhouse gas emissions from coastal freshwater wetlands in Veracruz Mexico: effect of plant community and seasonal dynamics. Atmospheric Environment, 107, 107-117.
[38] Maurel C, Nacry P (2020). Root architecture and hydraulics converge for acclimation to changing water availability. Nature Plants, 6, 744-749.
[39] McLeod E, Chmura GL, Bouillon S, Salm R, Bj?rk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011). A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9, 552-560.
[40] Megonigal JP, Neubauer SC (2019). Coastal Wetlands. 2nd ed. Elsevier, Amsterdam. 641-683.
[41] Morris JT (2007). Estimating net primary production of salt marsh macrophytes//Principles and Standards for Measuring Primary Production. Oxford University Press, Oxford. 106-119.
[42] Mueller P, Jensen K, Megonigal JP (2016). Plants mediate soil organic matter decomposition in response to sea level rise. Global Change Biology, 22, 404-414.
[43] Neubauer SC (2013). Ecosystem responses of a tidal freshwater marsh experiencing saltwater intrusion and altered hydrology. Estuaries and Coasts, 36, 491-507.
[44] Pan LH, Chen K, Liao X (2024). The complete chloroplast genome and phylogenetic analysis of Cyperus malaccensis Lam (Cyperaceae). Mitochondrial DNA. Part B, Resources, 9, 114-118.
[45] Rogers K, Kelleway JJ, Saintilan N, Patrick Megonigal J, Adams JB, Holmquist JR, Lu M, Schile-Beers L, Zawadzki A, Mazumder D, Woodroffe CD (2019). Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature, 567, 91-95.
[46] Schile LM, Callaway JC, Parker VT, Vasey MC (2011). Salinity and inundation influence productivity of the halophytic plant Sarcocornia pacifica. Wetlands, 31, 1165-1174.
[47] Seeberg-Elverfeldt J, Schlüter M, Feseker T, K?lling M (2005). Rhizon sampling of porewaters near the sediment-water interface of aquatic systems. Limnology and Oceanography: Methods, 3, 361-371.
[48] Setia R, Marschner P, Baldock J, Chittleborough D, Smith P, Smith J (2011). Salinity effects on carbon mineralization in soils of varying texture. Soil Biology & Biochemistry, 43, 1908-1916.
[49] Song HJ, Guo X, Yang JC, Liu LL, Li MY, Wang JF, Guo WH (2024). Phenotypic plasticity variations in Phragmites australis under different plant-plant interactions influenced by salinity. Journal of Plant Ecology, 17, rtae035. DOI: 10.1093/jpe/rtae035.
[50] Spivak AC, Sanderman J, Bowen JL, Canuel EA, Hopkinson CS (2019). Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. Nature Geoscience, 12, 685-692.
[51] Sulman BN, Desai AR, Mladenoff DJ (2013). Modeling soil and biomass carbon responses to declining water table in a wetland-rich landscape. Ecosystems, 16, 491-507.
[52] Syed KH, Flanagan LB, Carlson PJ, Glenn AJ, van Gaalen KE (2006). Environmental control of net ecosystem CO2 exchange in a treed, moderately rich Fen in northern Alberta. Agricultural and Forest Meteorology, 140, 97-114.
[53] Tan FF, Luo M, Zhang CW, Chen X, Huang JF (2023). Plants moderate the effects of emission fluxes of CO2 and CH4 on increased flooding in wetland soils. China Environmental Science, 43, 424-435.
  [谭凤凤, 罗敏, 张昌威, 陈欣, 黄佳芳 (2023). 植物调节湿地CO2和CH4排放对淹水增强的响应. 中国环境科学, 43, 424-435.]
[54] Tully K, Gedan K, Epanchin-Niell R, Strong A, Bernhardt ES, BenDor T, Mitchell M, Kominoski J, Jordan TE, Neubauer SC, Weston NB (2019). The invisible flood: the chemistry, ecology, and social implications of coastal saltwater intrusion. BioScience, 69, 368-378.
[55] Urbanski S, Barford C, Wofsy S, Kucharik C, Pyle E, Budney J, McKain K, Fitzjarrald D, Czikowsky M, Munger JW (2007). Factors controlling CO2 exchange on timescales from hourly to decadal at Harvard Forest. Journal of Geophysical Research: Biogeosciences, 112, G02020. DOI: 10.1029/2006JG000293.
[56] Voesenek LACJ, Colmer TD, Pierik R, Millenaar FF, Peeters AJM (2006). How plants cope with complete submergence. New Phytologist, 170, 213-226.
[57] Wang F, Lu X, Sanders CJ, Tang J (2019). Author Correction: Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nature Communications, 10, 5733. DOI: 10.1038/s41467-019-13800-3.
[58] Wang FM, Tang JW, Ye SY, Liu JH (2021). Blue carbon sink function of Chinese coastal wetlands and carbon neutrality strategy. Bulletin of Chinese Academy of Sciences, 36, 241-251.
  [王法明, 唐剑武, 叶思源, 刘纪化 (2021). 中国滨海湿地的蓝色碳汇功能及碳中和对策. 中国科学院院刊, 36, 241-251.]
[59] Wang JQ, Liu B, Chang F, Ma ZJ, Fan JH, He XJ, You SX, Aerziguli A, Yang YK, Shen XY (2022). Plant functional traits and ecological stoichiometric characteristics under water-salt gradient in the lakeshore zone of Bosten Lake. Chinese Journal of Plant Ecology, 46, 961-970.
  [王军强, 刘彬, 常凤, 马紫荆, 樊佳辉, 何想菊, 尤思学, 阿尔孜古力·阿布都热西提, 杨滢可, 沈欣艳 (2022). 博斯腾湖湖滨带水盐梯度下植物功能性状及生态化学计量特征分析. 植物生态学报, 46, 961-970.]
[60] Wang WW, Han WP, Liu WW (2023). Short-term response of leaf functional traits of the invasive plant Spartina alterniflora to a tidal gradient in coastal wetlands. Journal of Plant Ecology, 47, 216-226.
  [王文伟, 韩伟鹏, 刘文文 (2023). 滨海湿地入侵植物互花米草叶片功能性状对潮位的短期响应. 植物生态学报, 47, 216-226.]
[61] Wei SY, Han GX, Chu XJ, Song WM, He WJ, Xia JY, Wu HT (2020). Effect of tidal flooding on ecosystem CO2 and CH4 fluxes in a salt marsh in the Yellow River Delta. Estuarine, Coastal and Shelf Science, 232, 106512. DOI: 10.1016/j.ecss.2019.106512.
[62] Wilson BJ, Mortazavi B, Kiene RP (2015). Spatial and temporal variability in carbon dioxide and methane exchange at three coastal marshes along a salinity gradient in a northern Gulf of Mexico estuary. Biogeochemistry, 123, 329-347.
[63] Wilson BJ, Servais S, Charles SP, Davis SE, Gaiser EE, Kominoski JS, Richards JH, Troxler TG (2018). Declines in plant productivity drive carbon loss from brackish coastal wetland mesocosms exposed to saltwater intrusion. Estuaries and Coasts, 41, 2147-2158.
[64] Wolf AA, Drake BG, Erickson JE, Megonigal JP (2007). An oxygen-mediated positive feedback between elevated carbon dioxide and soil organic matter decomposition in a simulated anaerobic wetland. Global Change Biology, 13, 2036-2044.
[65] Wu LB, Gu S, Zhao L, Xu SX, Zhou HK, Feng C, Xu WX, Li YN, Zhao XQ, Tang YH (2010). Variation in net CO2 exchange, gross primary production and its affecting factors in the planted pasture ecosystem in Sanjiangyuan Region of the Qinghai-Tibetan Plateau of China. Chinese Journal of Plant Ecology, 34, 770-780.
  [吴力博, 古松, 赵亮, 徐世晓, 周华坤, 冯超, 徐维新, 李英年, 赵新全, 唐艳鸿 (2010). 三江源地区人工草地的生态系统CO2净交换、总初级生产力及其影响因子. 植物生态学报, 34, 770-780.]
[66] Xia JB, Ren JY, Zhao XM, Zhao FJ, Yang HJ, Liu JH (2018). Threshold effect of the groundwater depth on the photosynthetic efficiency of Tamarix chinensis in the Yellow River Delta. Plant and Soil, 433, 157-171.
[67] Xing QH, Shangguan KX, Liao GX, Liu CA, Lei W, Zhang Y (2021). Net ecosystem CO2 exchange and its environmental regulation in the Liao River estuarine reed wetland. Marine Environmental Science, 40, 228-234.
  [邢庆会, 上官魁星, 廖国祥, 刘长安, 雷威, 张悦 (2021). 辽河口芦苇湿地净生态系统CO2交换及其环境调控. 海洋环境科学, 40, 228-234.]
[68] Zhang HB, Luo YM, Liu XH, Fu CC (2015). Current researches and prospects on the coastal blue carbon. Scientia Sinica (Terrae), 45, 1641-1648.
  [章海波, 骆永明, 刘兴华, 付传城 (2015). 海岸带蓝碳研究及其展望. 中国科学: 地球科学, 45, 1641-1648.]
[69] Zhao J, Malone SL, Oberbauer SF, Olivas PC, Schedlbauer JL, Staudhammer CL, Starr G (2019). Intensified inundation shifts a freshwater wetland from a CO2 sink to a source. Global Change Biology, 25, 3319-3333.
Outlines

/