Chinese Journal of Plant Ecology >
Measuring seasonal dynamics of leaf area index in a mixed conifer-broadleaved forest with direct and indirect methods
Received date: 2014-05-09
Accepted date: 2014-06-11
Online published: 2014-08-18
Aims Leaf area index (LAI) is a commonly used parameter for quantifying canopy structure and can be quickly measured by indirect optical methods in a forest stand, but few studies have evaluated the accuracy of optical methods to estimate seasonal variations of LAI in a mixed conifer-broadleaved forest. The aims of this study are to (1) develop a practical field method for directly measuring seasonal variations in LAI for mixed conifer-broadleaved forest; (2) evaluate the accuracy of optical methods (digital hemispherical photography (DHP) and LAI-2000 plant canopy analyzer) for measuring the seasonality of LAI; and (3) determine how much the accuracy of estimating the seasonality of LAI can be improved by using optical methods after correcting for influencing factors (e.g., woody materials and clumping effects within a canopy).
Methods The seasonal variations of LAI in a mixed broadleaved-Korean pine (Pinus koraiensis) forest were estimated from litterfall and used to evaluate optical LAI (effective LAI, Le) measurements using the DHP and the LAI-2000 plant canopy analyzer. We corrected a systematic error due to incorrect automatic photographic exposure for DHP measurements. In addition to optical Le, we also measured the seasonality of other major factors influencing the determination of LAI, including woody-to-total area ratio (α), clumping index (ΩE) and needle-to-shoot area ratio (γE).
Important findings The LAI from different methods all showed a unimodal form, and peaked in early August. Effective LAIs from the optical methods underestimated LAI throughout the growing seasons (from May to November). Le from DHP underestimated LAI by an average of 55% (ranging from 50% to 59%) and from LAI-2000 plant canopy analyzer by an average of 27% (ranging from 19% to 35%). The accuracy of Le from DHP after correcting for the automatic exposure, α, ΩE and γE was greatly improved, but the LAI was underestimated by 6%-15% (with mean value of 9%) from May to November. In contrast, the accuracy of Le from LAI-2000 plant canopy analyzer after correcting for the α, ΩE and γE was also greatly improved, the difference between corrected Le from LAI-2000 plant canopy analyzer and observed LAI was less than 9%. The results from our study demonstrate that seasonal variations in LAI in mixed conifer-broadleaved forests can be optically measured with high accuracy (85% for DHP and 91% for LAI-2000 plant canopy analyzer), as long as corrections are made for the influences of woody materials and foliage clumping on the measurement.
LIU Zhi-Li, JIN Guang-Ze, ZHOU Ming . Measuring seasonal dynamics of leaf area index in a mixed conifer-broadleaved forest with direct and indirect methods[J]. Chinese Journal of Plant Ecology, 2014 , 38(8) : 843 -856 . DOI: 10.3724/SP.J.1258.2014.00079
[1] | Becksch?fer P, Seidel D, Kleinn C, Xu J (2013). On the exposure of hemispherical photographs in forests. iForest-Biogeosciences and Forestry, 6, 228-237. |
[2] | Bequet R, Campioli M, Kint V, Vansteenkiste D, Muys B, Ceulemans R (2011). Leaf area index development in temperate oak and beech forests is driven by stand characteristics and weather conditions. Trees-Structure and Function, 25, 935-946. |
[3] | Bolstad PV, Gower ST (1990). Estimation of leaf area index in fourteen southern Wisconsin forest stands using a portable radiometer. Tree Physiology, 7, 115-124. |
[4] | Bouriaud O, Soudani K, Bréda N (2003). Leaf area index from litter collection: impact of specific leaf area variability within a beech stand. Canadian Journal of Remote Sensing, 29, 371-380. |
[5] | Bréda NJJ (2003). Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. Journal of Experimental Botany, 54, 2403-2417. |
[6] | Chen JM (1996). Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands. Agricultural and Forest Meteorology, 80, 135-163. |
[7] | Chen JM, Black TA (1992). Defining leaf area index for non-flat leaves. Plant, Cell & Environment, 15, 421-429. |
[8] | Chen JM, Black TA, Adams RS (1991). Evaluation of hemispherical photography for determining plant area index and geometry of a forest stand. Agricultural and Forest Meteorology, 56, 129-143. |
[9] | Chen JM, Cihlar J (1995). Plant canopy gap-size analysis theory for improving optical measurements of leaf-area index. Applied Optics, 34, 6211-6222. |
[10] | Chen JM, Cihlar J (1996). Retrieving leaf area index of boreal conifer forests using landsat TM images. Remote Sensing of Environment, 55, 153-162. |
[11] | Chen JM, Govind A, Sonnentag O, Zhang Y, Barr A, Amiro B (2006). Leaf area index measurements at Fluxnet-Canada forest sites. Agricultural and Forest Meteorology, 140, 257-268. |
[12] | Chen JM, Rich PM, Gower ST, Norman JM, Plummer S (1997). Leaf area index of boreal forests: theory, techni- ques, and measurements. Journal of Geophysical Res-earch, 102, 29429-29443. |
[13] | Chen X, Sang WG (2007). Dynamics of leaf area index and canopy openness for three forest communities in the warm temperate zone of China. Journal of Plant Ecology (Chinese Version), 31, 431-436. (in Chinese with English abstract) |
[13] | [ 陈厦, 桑卫国 (2007). 暖温带地区3种森林群落叶面积指数和林冠开阔度的季节动态. 植物生态学报, 31, 431-436.] |
[14] | Cutini A, Matteucci G, Mugnozza GS (1998). Estimation of leaf area index with the LI-COR LAI 2000 in deciduous forests. Forest Ecology and Management, 105, 55-65. |
[15] | Dai LM, Xu ZB, Zhang YJ, Chen H (2001). Study on decomposition rate and fall of Pinus koraiensis needle. Acta Ecologica Sinica, 21, 1296-1300. (in Chinese with English abstract) |
[15] | [ 代力民, 徐振邦, 张扬建, 陈华 (2001). 红松针叶的凋落及其分解速率研究. 生态学报, 21, 1296-1300.] |
[16] | Englund SR, O’Brien JJ, Clark DB (2000). Evaluation of digital and film hemispherical photography and spherical densiometry for measuring forest light environments. Canadian Journal of Forest Research, 30, 1999-2005. |
[17] | Eriksson H, Eklundh L, Hall K, Lindroth A (2005). Estimating LAI in deciduous forest stands. Agricultural and Forest Meteorology, 129, 27-37. |
[18] | Gonsamo A, Chen JM (2014). Continuous observation of leaf area index at Fluxnet-Canada sites. Agricultural and Forest Meteorology, 189-190, 168-174. |
[19] | Grassi G, Vicinelli E, Ponti F, Cantoni L, Magnani F (2005). Seasonal and interannual variability of photosynthetic capacity in relation to leaf nitrogen in a deciduous forest plantation in northern Italy. Tree Physiology, 25, 349-360. |
[20] | Guiterman CH, Seymour RS, Weiskittel AR (2012). Long-term thinning effects on the leaf area of Pinus strobus L. as estimated from litterfall and individual-tree allometric models. Forest Science, 58, 85-93. |
[21] | Hoch G, Richter A, K?rner C (2003). Non-structural carbon compounds in temperate forest trees. Plant, Cell & Envir- onment, 26, 1067-1081. |
[22] | Ishihara MI, Hiura T (2011). Modeling leaf area index from litter collection and tree data in a deciduous broadleaf forest. Agricultural and Forest Meteorology, 151, 1016-1022. |
[23] | Jonckheere I, Fleck S, Nackaerts K, Muys B, Coppin P, Weiss M, Baret F (2004). Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, 121, 19-35. |
[24] | Jurik TW, Briggs GM, Gates DM (1985). A comparison of four methods for determining leaf area index in successional hardwood forests. Canadian Journal of Forest Research, 15, 1154-1158. |
[25] | Kucharik CJ, Norman JM, Gower ST (1998). Measurements of branch area and adjusting leaf area index indirect measurements. Agricultural and Forest Meteorology, 91, 69-88. |
[26] | Kü?ner R, Mosandl R (2000). Comparison of direct and indirect estimation of leaf area index in mature Norway spruce stands of eastern Germany. Canadian Journal of Forest Research, 30, 440-447. |
[27] | Leblanc SG, Chen JM, Fernandes R, Deering DW, Conley A (2005). Methodology comparison for canopy structure parameters extraction from digital hemispherical photo- graphy in boreal forests. Agricultural and Forest Meteor-ology, 129, 187-207. |
[28] | Leblanc SG, Fournier RA (2014). Hemispherical photography simulations with an architectural model to assess retrieval of leaf area index. Agricultural and Forest Meteorology, 194, 64-76. |
[29] | Liu JH, Pattey E, Admiral S (2013). Assessment of in situ crop LAI measurement using unidirectional view digital photography. Agricultural and Forest Meteorology, 169, 25-34. |
[30] | Liu ZL, Jin GZ (2013). Estimation of leaf area index of secondary Betula platyphylla forest in Xiaoxing’an mountains. Acta Ecologica Sinica, 33, 2505-2513. (in Chinese with English abstract) |
[30] | [ 刘志理, 金光泽 (2013). 小兴安岭白桦次生林叶面积指数的估测. 生态学报, 33, 2505-2513.] |
[31] | Liu ZL, Jin GZ, Qi YJ (2012). Estimate of leaf area index in an old-growth mixed broadleaved-Korean pine forest in northeastern China. PLoS ONE, 7, e32155. |
[32] | Liu ZL, Qi YJ, Jin GZ (2013). Seasonality and spatial pattern of leaf area index of a Spruce-fir forest at the valley in Xiaoxing’an mountains. Scientia Silvae Sinicae, 49(8), 58-64. (in Chinese with English abstract) |
[32] | [ 刘志理, 戚玉娇, 金光泽 (2013). 小兴安岭谷地云冷杉林叶面积指数的季节动态及空间格局. 林业科学, 49(8), 58-64.] |
[33] | Lopes D, Nunes L, Walford N, Aranha J, Sette C, Viana H, Hernandez C (2014). A simplified methodology for the correction of leaf area index (LAI) measurements obtained by ceptometer with reference to Pinus portuguese forests. iForest-Biogeosciences and Forestry, 7, 186-192. |
[34] | Ma ZQ, Liu QL, Zeng HQ, Li XR, Chen YR, Lin YM, Zhang SH, Yang FT, Wang HQ (2008). Estimation of leaf area index of planted forests in subtropical China by photogrammetry. Acta Ecologica Sinica, 28, 1971-1980. (in Chinese with English abstract) |
[34] | [ 马泽清, 刘琪碌, 曾慧卿, 李轩然, 陈永瑞, 林耀明, 张时煌, 杨风亭, 汪宏清 (2008). 南方人工林叶面积指数的摄影测量. 生态学报, 28, 1971-1980.] |
[35] | Macfarlane C, Hoffman M, Eamus D, Kerp N, Higginson S, McMurtrie R, Adams M (2007). Estimation of leaf area index in eucalypt forest using digital photography. Agricultural and Forest Meteorology, 143, 176-188. |
[36] | Mason EG, Diepstraten M, Pinjuv GL, Lasserre JP (2012). Comparison of direct and indirect leaf area index measurements of Pinus radiata D. Don. Agricultural and Forest Meteorology, 166-167, 113-119. |
[37] | Myneni RB, Nemani RR, Running SW (1997). Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Transactions on Geoscience and Remote Sensing, 35, 1380-1393. |
[38] | Nasahara KN, Muraoka H, Nagai S, Mikami H (2008). Vertical integration of leaf area index in a Japanese deciduous broad-leaved forest. Agricultural and Forest Meteorology, 148, 1136-1146. |
[39] | Neumann HH, Den Hartog G, Shaw RH (1989). Leaf area measurements based on hemispheric photographs and leaf-litter collection in a deciduous forest during autumn leaf-fall. Agricultural and Forest Meteorology, 45, 325-345. |
[40] | Nouvellon Y, Laclau JP, Epron D, Kinana A, Mabiala A, Roupsard O, Bonnefond JM, Le Maire G, Marsden C, Bontemps JD (2010). Within-stand and seasonal variations of specific leaf area in a clonal Eucalyptus plantation in the Republic of Congo. Forest Ecology and Management, 259, 1796-1807. |
[41] | Qi YJ, Jin GZ, Liu ZL (2013). Optical and litter collection methods for measuring leaf area index in an old-growth temperate forest in northeastern China. Journal of Forest Research, 18, 430-439. |
[42] | Ren H, Peng SL (1997). Comparison of methods of estimation leaf area index in Dinghushan forests. Acta Ecologica Sinica, 17, 220-223. (in Chinese with English abstract) |
[42] | [ 任海, 彭少麟 (1997). 鼎湖山森林群落的几种叶面积指数测定方法的比较. 生态学报, 17, 220-223.] |
[43] | Ross J (1981). The Radiation Regime and Architecture of Plant Stands. Kluwer Academic Publishers, The Hague. 391. |
[44] | Ryu Y, Verfaillie J, Macfarlane C, Kobayashi H, Sonnentag O, Vargas R, Ma S, Baldocchi DD (2012). Continuous observation of tree leaf area index at ecosystem scale using upward-pointing digital cameras. Remote Sensing of Environment, 126, 116-125. |
[45] | Simioni G, Gignoux J, Le Roux X, Appe R, Benest D (2004). Spatial and temporal variations in leaf area index, specific leaf area and leaf nitrogen of two co-occurring savanna tree species. Tree Physiology, 24, 205-216. |
[46] | Smith NJ (1991). Predicting radiation attenuation in stands of Douglas-fir. Forest Science, 37, 1213-1223. |
[47] | Song GZM, Doley D, Yates D, Chao KJ, Hsieh CF (2014). Improving accuracy of canopy hemispherical photography by a constant threshold value derived from an unobscured overcast sky. Canadian Journal of Forest Research, 44, 17-27. |
[48] | Sprintsin M, Cohen S, Maseyk K, Rotenberg E, Grünzweig J, Karnieli A, Berliner P, Yakir D (2011). Long term and seasonal courses of leaf area index in a semi-arid forest plantation. Agricultural and Forest Meteorology, 151, 565-574. |
[49] | Su HX, Bai F, Li GQ (2012). Seasonal dynamics in leaf area index in three typical temperate montane forests of China: a comparison of multi-observation methods. Chinese Journal of Plant Ecology, 36, 231-242. (in Chinese with English abstract) |
[49] | [ 苏宏新, 白帆, 李广起 (2012). 3类典型温带山地森林的叶面积指数的季节动态: 多种监测方法比较. 植物生态学报, 36, 231-242.] |
[50] | Thimonier A, Sedivy I, Schleppi P (2010). Estimating leaf area index in different types of mature forest stands in Switzerland: a comparison of methods. European Journal of Forest Research, 129, 543-562. |
[51] | van Gardingen PR, Jackson GE, Hernandez-Daumas S, Russell G, Sharp L (1999). Leaf area index estimates obtained for clumped canopies using hemispherical photography. Agricultural and Forest Meteorology, 94, 243-257. |
[52] | Viro PJ (1955). Investigations on forest litter. Communicationes Instituti Forestalis Fenniae, 45, 1-65. |
[53] | Wagner S (1998). Calibration of grey values of hemispherical photographs for image analysis. Agricultural and Forest Meteorology, 90, 103-117. |
[54] | Wagner S (2001). Relative radiance measurements and zenith angle dependent segmentation in hemispherical photo-graphy. Agricultural and Forest Meteorology, 107, 103-115. |
[55] | Wang BQ, Liu ZL, Qi YJ, Jin GZ (2014). Seasonal dynamics of leaf area index using different methods in the Korean pine plantation. Acta Ecologica Sinica, 34, 1956-1964. (in Chinese with English abstract) |
[55] | [ 王宝琦, 刘志理, 戚玉娇, 金光泽 (2014). 利用不同方法测定红松人工林叶面积指数的季节动态. 生态学报, 34, 1956-1964.] |
[56] | Wang M, Li GC, Wang JB (2011). Spatiotemporal variations of aboveground biomass and leaf area index of typical grassland in tower flux footprint. Chinese Journal of Applied Ecology, 22, 637-643. (in Chinese with English abstract) |
[56] | [ 王猛, 李贵才, 王军邦 (2011). 典型草原通量塔通量贡献区地上生物量和叶面积指数的时空变异. 应用生态学报, 22, 637-643.] |
[57] | Watson DJ (1947). Comparative physiological studies on the growth of field crops. I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Annals of Botany, 11, 41-76. |
[58] | Wilson KB, Baldocchi DD, Hanson PJ (2000). Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. Tree Physiology, 20, 565-578. |
[59] | Xiang HB, Guo ZH, Zhao ZQ, Wang JL (2009). Estimating method of forest leaf area index on different space scales. Scientia Silvae Sinicae, 45(6), 139-144. (in Chinese with English abstract) |
[59] | [ 向洪波, 郭志华, 赵占轻, 王建力 (2009). 不同空间尺度森林叶面积指数的估算方法. 林业科学, 45(6), 139-144.] |
[60] | Zeng XP, Zhao P, Rao XQ, Cai XA (2008). Measurement of leaf area index of three plantations and their seasonal changes in Heshan hilly land. Journal of Beijing Forestry University, 30(5), 33-38. (in Chinese with English abstract) |
[60] | [ 曾小平, 赵平, 饶兴权, 蔡锡安 (2008). 鹤山丘陵3种人工林叶面积指数的测定及其季节变化. 北京林业大学学报, 30(5), 33-38.] |
[61] | Zhang Y, Chen JM, Miller JR (2005). Determining digital hemispherical photograph exposure for leaf area index estimation. Agricultural and Forest Meteorology, 133, 166-181. |
[62] | Zhao CY, Shen WH, Peng HH (2009). Methods for determining canopy leaf area index of Picea crassifolia forest in Qilian mountains, China. Chinese Journal of Plant Ecology, 33, 860-869. (in Chinese with English abstract) |
[62] | [ 赵传燕, 沈卫华, 彭焕华 (2009). 祁连山区青海云杉林冠层叶面积指数的反演方法. 植物生态学报, 33, 860-869.] |
[63] | Zou J, Yan GJ (2010). Optical methods for in situ measuring leaf area index of forest canopy: a review. Chinese Journal of Applied Ecology, 21, 2971-2979. (in Chinese with English abstract) |
[63] | [ 邹杰, 阎广建 (2010). 森林冠层地面叶面积指数光学测量方法研究进展. 应用生态学报, 21, 2971-2979.] |
[64] | Zou J, Yan GJ, Zhu L, Zhang WM (2009). Woody-to-total area ratio determination with a multispectral canopy imager. Tree Physiology, 29, 1069-1080. |
/
〈 |
|
〉 |