MULTI-SCALE ANALYSES OF POPULATION DISTRIBUTION PATTERNS

Expand
  • School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China

Received date: 2003-11-11

  Accepted date: 2003-11-11

  Online published: 2005-03-10

Abstract

The analyses of spatial distribution patterns of plant populations are useful for understanding pattern types and intra/inter-specific relationships. One of the most frequently employed methods in detecting spatial distribution patterns of populations is the nearest neighbor analysis proposed by Clark and Evans in 1954. This method has been highly successful for analyzing spatial patterns at a single scale but is rarely used for analyzing distribution patterns at multiple scales. We present the extended nearest neighbor analysis (ENNA) in this paper to solve the scale-dependent problem associated with the traditional method of nearest neighbor analysis. The Clark-Evans index was modified by using a distance scale parameter d (m), described in the following equation: CE (d) =r dA /r dE = (1N d∑N di=1r di ) / (0.5A d/N d+0.051 4P d/N d+0.041P d/N d 3/2 ). Accordingly, the equation for testing the calculated CE index values against the significant deviation from 1 was changed into u (d) = (r dA -r dE ) /σ d, where the parameters, r dA, r dE, N d, r di, A d, P d, σ d, refer to the mean distance between an individual and its nearest neighbor (m), the expected mean distance of the individuals of a population randomly scattered (m), the number of individuals in the current sample plot, distance between individual i and its nearest neighbor (m), surface of the current sample plot (m 2), circumference of the current sample plot (m), and the standard deviation, respectively. The procedure of scaling transformation in this approach was similar to that of the sandbox experiment in fractal theory, and the rule for detecting the pattern type was the same as that in the traditional nearest neighbor analysis. The traditional nearest neighbor analysis is a special case for the extended nearest neighbor analysis in which the minimum value of the distance scale parameter (d) is used. An example using the data from a needle and broad-leaved mixed forest community at Heishiding Nature Reserve, Guangdong Province was presented to explain the procedure. Five typical plant populations of this community, Pinus massoniana, Symplocos laurina, Castanopsis nigrescens, Itea chinensis and Rhodomyrtus tomentosa, were chosen for the multi-scale analysis of spatial distribution patterns. The results showed that spatial patterns of all five populations were scale-dependent with varying degrees of intensity. The Pinus massoniana population was randomly distributed at most scales examined, which may have been caused by the random self-thinning process in the population. The population of Itea chinensis was clumped at all scales examined. A simulation with the aid of geographic information system (GIS) also revealed that the distribution patterns of Symplocos laurina, Castanopsis nigrescens, Itea chinensis and Rhodomyrtus tomentosa were mainly clumped or random with an increase of distance scale. These results demonstrated that the ENNA method presented in this paper could be used for multi-scale analysis of spatial distribution patterns of plant populations that could not be solved using the traditional nearest neighbor analysis.

Cite this article

WANG Ben-Yang, YU Shi-Xiao . MULTI-SCALE ANALYSES OF POPULATION DISTRIBUTION PATTERNS[J]. Chinese Journal of Plant Ecology, 2005 , 29(2) : 235 -241 . DOI: 10.17521/cjpe.2005.0030

References

[1] Antonovics J, Levin DA (1980). Theecologicaland geneticconsequencesofdensity_dependentregulationinplants. An nualReviewofEcologyandSystematics, 11,411-452.
[2] Hen YF (陈玉福), Dong M (董鸣) (2003). Spatialhetero geneityinecologicalsystems. ActaEcologicaSinica (生态学报), 23,346-352. (inChinesewithEnglishabstract).
[3] Clark PJ, Evans FC (1954). Distancetonearestneighbourasameasureofspatialrelationshipsinpopulations. Ecology, 35,445-453.
[4] Dai XH (戴小华), Yu SX (余世孝) (2003). Analysisofpop ulationdistributionpatternbasedonGIStechnique. ActaScientiarumNaturaliumUniversitatisSunyatseni (中山大学学报 (自然科学版) ), 42,75-78. (inChinesewithEnglishabstract).
[5] Ding SY (丁圣彦), Song YC (宋永昌) (1998). DecliningcausesofPinusmassonianaintheprocessofsuccessionofev ergreenbroad_leavedforest. ActaBotanicaSinica (植物学报), 40,755-760. (inChinesewithEnglishabstract).
[6] Dong LK (董连科) (1991). FractalTheoryandItsApplica tions. LiaoningScienceandTechnologyPublishingHouse, Shenyang. (inChinese).
[7] Donnelly KP (1978). Simulationstodeterminethevarianceandedgeeffectoftotalnearest-neighbourdistance.In:Hod derIed. SimulationStudiesinArchaeology.CambridgeU niversityPress, Cambridge,91-95.
[8] Füldnerk (1995). ZurStructurbeschreibunginMischbest nden. Forstarchiv, 66,235-240.
[9] Greig-Smith P (1983). QuantitativePlantEcology3rdedn.BlackwellScientificPublications, London.
[10] Haase P (1995). SpatialpatternanalysisinecologybasedonRipley'sK_function:introductionandmethodsofedgecor rection. JournalofVegetationScience, 6,575-582.
[11] Hou XY (侯向阳), Han JX (韩进轩) (1997). SimulationanalysisofspatialpatternsofmainspeciesintheKorean-pinebroadleavedforestinChangbaiMountain. ActaPhytoecolog icaSinica (植物生态学报), 21,242-249. (inChinesewithEnglishabstract).
[12] Kint V, Lust N, Ferris R, Olsthoorn AFM (2000). Quantifi cationofforeststandstructureappliedtoScotspine (PinussylvestrisL.)forests.In:MasonBed.SilvicultureandBiodiversityofScotsPineForestsinEurope. ProceedingoftheFinalMeetingofaConcertedAction, June1999,Valsain, Spain.Investigaci ón A-graria:Sistemas y Recursos Forestales, FueradeSerie, 1,147-164.
[13] Li H, Reynolds JF (1995). Ondefinitionandquantificationofheterogeneity. Oikos, 73,280-284.
[14] Li HB (李哈滨), Wang ZQ (王政权), Wang QC (王庆成) (1998). Theoryandmethodologyofspatialheterogeneityquantification. ChineseJournalofAppliedEcology (应用生态学报), 9,651-657. (inChinesewithEnglishabstract).
[15] Lü YH (吕一河), Fu BJ (傅伯杰) (2001). Ecologicalscaleandscaling. ActaEcologicaSinica (生态学报), 21,2096-2105. (inChinesewithEnglishabstract).
[16] Ma KM (马克明), Zu YG (祖元刚) (2000). Fractalproper tiesofvegetationpatterns. ActaPhytoecologicaSinica (植物生态学报), 24,111-117. (inChinesewithEnglishab stract).
[17] Moeur M (1993). Characterizingspatialpatternsoftreesusingstem_mappeddata. ForestScience, 39,756-775.
[18] Perry JN, Liebhold AM, Rosenberg MS, Dungan J, Miriti M, Jakomulska A, Citron-Pousty S (2002). Illustrationsandguidelinesforselectingstatisticalmethodsforquantifyingspa tialpatterninecologicaldata. Ecography, 25,578-600.
[19] Peterson JC, Squiers ER (1995). Anunexpectedchangeinspatialpatternacross10 yearsinanaspen-white-pineforest. JournalofEcology, 83,847-855.
[20] Richards P, Williamson GB (1975). Treefallsandpatternsofunderstoryspeciesinawetlowlandtropicalforest. Ecology, 56,1226-1229.
[21] Stewart GH, Rose AB (1990). Thesignificanceoflifehistorystrategiesinthedevelopmentalhistoryofmixedbeechforests, NewZewland. Vegetatio, 87,101-114.
[22] Tang MP (汤孟平), Tang SZ (唐守正), Lei XD (雷相东), Zhang HR (张会儒), Hong LX (洪玲霞), Feng YM (冯益民) (2003). EdgecorrectionofRipley'sK (d) functiononpopulationspatialpatternanalysis. ActaEcologicaSinica (生态学报), 23,1533-1538. (inChinesewithEnglishabstract).
[23] Wang ZF (王峥峰), An SQ (安树青), Zhu XL (朱学雷), Campell DG, Yang XB (杨小波) (1998). Distributionpat ternoftreepopulationsintropicalforestandcomparisonofitsstudymethods. ChineseJournalofAppliedEcology (应用生态学报), 9,575-580. (inChinesewithEnglishab stract).
[24] Xiao DN (肖笃宁), Bu RC (布仁仓), Li XZ (李秀珍) (1997). Spatialecologyandlandscapeheterogeneity. ActaEcologicaSinica (生态学报), 17,453-461. (inChinesewithEnglishabstract).
[25] Xu HC (徐化成), Fan ZF (范兆飞), Wang S (王胜) (1994). AstudyinspatialpatternsoftreesinvirginLarixgmeliniforest. ActaEcologicaSinica (生态学报), 14,155-160. (inChinesewithEnglishabstract).
[26] Yu SX (余世孝), Li Y (李勇), Wang YF (王永繁), Zhou CF (周灿芳) (2000). ThevegetationclassificationanditsdigitizedmapofHeishidingNatureReserve, GuangdongI.Thedistributionofthevegetationtypeandformation. ActaScientiarumNaturaliumUniversitatisSunyatseni (中山大学学报 (自然科学版) ), 39,61-66. (inChinesewithEnglishabstract).
[27] Zan QJ (昝启杰), Li MG (李鸣光), Wang BS (王伯荪), Zhou XY (周先叶) (2000). Dynamicsofcommunitystruc tureinsuccessionalprocessofneedleandbroad_leavedmixedforestinHeishidingofGuangdong. ChineseJournalofAp pliedEcology (应用生态学报), 11,1-4. (inChinesewithEnglishabstract).
[28] Zhang JT (张金屯) (1998). Analysisofspatialpointpatternforplantspecies. ActaPhytoecologicaSinica (植物生态学报), 22,344-349. (inChinesewithEnglishabstract).
[29] Zhou XY (周先叶), Wang BS (王伯荪), Li MG (李鸣光), Zan QJ (昝启杰) (1999). ThecommunitydynamicsoftheforestsecondarysuccessioninHeishidingNaturalReserveofGuangdongprovince. ActaBotanicaSinica (植物学报), 41,877-886. (inChinesewithEnglishabstract).
Outlines

/