Review

Blue carbon sink function, formation mechanism and sequestration potential of coastal salt marshes

Expand
  • 1CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China
    2Yellow River Delta Field Observation and Research Station of Coastal Wetland Ecosystem, Chinese Academy of Sciences, Dongying, Shandong 257000, China
    3Xiaoliang Research Station for Tropical Coastal Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
    4Key Laboratory of Biodiversity and Ecological Engineering, Fudan University, Ministry of Education, Shanghai 200438, China

Received date: 2021-07-14

  Accepted date: 2021-11-08

  Online published: 2021-12-16

Supported by

National Natural Science Foundation of China(U2106209);National Natural Science Foundation of China(42071126)

Abstract

Owing to the high carbon capture and storage capacity, salt marshes are considered an effective blue carbon sink for mitigating global warming. In addition, salt marshes are likely to increase their carbon sink capacity in the future in response to climate warming and sea level rise. Therefore, the blue carbon sink function of salt marshes has received increasing attention from the international research community. This study reviewed the five aspects comprising the key processes of blue carbon formation, photosynthetic carbon allocation, burial fluxes and sources of sedimentary organic carbon, stability of soil carbon pools and the associated microbial mechanisms, and the simulation and assessment of blue carbon sequestration potentials in salt marshes. On this basis, concerning the main knowledge gaps, this paper proposes further research on the effect of vegetation distribution pattern along the land-to-sea hydrologic gradient on photosynthetic carbon fixation and allocation, the response of soil organic carbon deposition and burial to global change, the stability of soil carbon pools and its lateral exchange, blue carbon simulation and assessment of blue carbon sink potential in the context of climate change and sea level rise, and technologies and approaches of blue carbon sequestration in salt marshes. Prioritizing these research topics may elucidate the formation processes and mechanisms of blue carbon, predict the changing trend of blue carbon sequestration potential under global changes, and offer new insights into achieving the goal of “carbon peak and carbon neutrality”.

Cite this article

HAN Guang-Xuan, WANG Fa-Ming, MA Jun, XIAO Lei-Lei, CHU Xiao-Jing, ZHAO Ming-Liang . Blue carbon sink function, formation mechanism and sequestration potential of coastal salt marshes[J]. Chinese Journal of Plant Ecology, 2022 , 46(4) : 373 -382 . DOI: 10.17521/cjpe.2021.0264

References

[1] Antler G, Mills JV, Hutchings AM, Redeker KR, Turchyn AV (2019). The sedimentary carbon-sulfur-iron interplay—A lesson from East Anglian salt marsh sediments. Frontiers in Earth Science, 7, 140. DOI: 10.3389/feart.2019.00140.
[2] Cao L, Song JM, Li XG, Yuan HM, Li N, Duan LQ (2013). Research progresses in carbon budget and carbon cycle of the coastal salt marshes in China. Acta Ecologica Sinica, 33, 5141-5152.
[2] [ 曹磊, 宋金明, 李学刚, 袁华茂, 李宁, 段丽琴 (2013). 中国滨海盐沼湿地碳收支与碳循环过程研究进展. 生态学报, 33, 5141-5152.]
[3] Choi Y, Wang Y (2004). Dynamics of carbon sequestration in a coastal wetland using radiocarbon measurements. Global Biogeochemical Cycles, 18, 133-147.
[4] Chu XJ, Han GX, Xing QH, Xia JY, Sun BY, Yu JB, Li DJ (2018). Dual effect of precipitation redistribution on net ecosystem CO2 exchange of a coastal wetland in the Yellow River Delta. Agricultural and Forest Meteorology, 249, 286-296.
[5] de Lacerda LD, Marins RV, da Silva Dias FJ(2020). An arctic paradox: response of fluvial Hg inputs and bioavailability to global climate change in an extreme coastal environment. Frontiers in Earth Science, 8, 93. DOI: 10.3389/feart.2020.00093.
[6] DeLaune RD, White JR (2012). Will coastal wetlands continue to sequester carbon in response to an increase in global sea level?: a case study of the rapidly subsiding Mississippi river deltaic plain. Climatic Change, 110, 297-314.
[7] Diao H, Wang A, Yuan F, Guan D, Dai G, Wu J (2020). Environmental effects on carbon isotope discrimination from assimilation to respiration in a coniferous and broad-leaved mixed forest of northeast China. Forests, 11, 1156. DOI: 10.3390/f11111156.
[8] Doroski AA, Helton AM, Vadas TM (2019). Greenhouse gas fluxes from coastal wetlands at the intersection of urban pollution and saltwater intrusion: a soil core experiment. Soil Biology & Biochemistry, 131, 44-53.
[9] Duarte CM, Losada IJ, Hendriks IE, Mazarrasa I, Marbà N (2013). The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3, 961-968.
[10] Elschot K, Bakker JP, Temmerman S, van de Koppel J, Bouma TJ (2015). Ecosystem engineering by large grazers enhances carbon stocks in a tidal salt marsh. Marine Ecology Progress Series, 537, 9-21.
[11] Ewers Lewis CJ, Young MA, Ierodiaconou D, Baldock JA, Hawke B, Sanderman J, Carnell PE, Macreadie PI (2020). Drivers and modelling of blue carbon stock variability in sediments of southeastern Australia. Biogeosciences, 17, 2041-2059.
[12] Feng XJ, Wang YY, Liu T, Jia J, Dai GH, Ma T, Liu ZG (2020). Biomarkers and their applications in ecosystem research. Chinese Journal of Plant Ecology, 44, 384-394.
[12] [ 冯晓娟, 王依云, 刘婷, 贾军, 戴国华, 马田, 刘宗广 (2020). 生物标志物及其在生态系统研究中的应用. 植物生态学报, 44, 384-394.]
[13] Georgiou K, Abramoff RZ, Harte J, Riley WJ, Torn MS (2017). Microbial community-level regulation explains soil carbon responses to long-term litter manipulations. Nature Communications, 8, 1223. DOI: 10.1038/s41467-017-02134-7.
[14] Gu J, Luo M, Zhang X, Christakos G, Agusti S, Duarte CM, Wu J (2018). Losses of salt marsh in China: trends, threats and management. Estuarine Coastal and Shelf Science, 214, 98-109.
[15] Han GX (2017). Effect of tidal action and drying-wetting cycles on carbon exchange in a salt marsh: progress and prospects. Acta Ecologica Sinica, 37, 8170-8178.
[15] [ 韩广轩 (2017). 潮汐作用和干湿交替对盐沼湿地碳交换的影响机制研究进展. 生态学报, 37, 8170-8178.]
[16] Han GX, Chu XJ, Xing QH, Li DJ, Yu JB, Luo YQ, Wang GM, Mao PL, Rafique R (2015). Effects of episodic flooding on the net ecosystem CO2 exchange of a supratidal wetland in the Yellow River Delta. Journal of Geophysical Research: Biogeosciences, 120, 1506-1520.
[17] Han GX, Sun BY, Chu XJ, Xing QH, Song WM, Xia JY (2018). Precipitation events reduce soil respiration in a coastal wetland based on four-year continuous field measurements. Agricultural and Forest Meteorology, 256-257, 292-303.
[18] Han GX, Wang GM, Bi XL, Wang CY (2018). Evolution Mechanism and Ecological Restoration of Coastal Wetlands in the Yellow River Delta. Science Press, Beijing.
[18] [ 韩广轩, 王光美, 毕晓丽, 王传远 (2018). 黄河三角洲滨海湿地演变机制与生态修复. 科学出版社, 北京.]
[19] Hoegh-Guldberg O, Caldeira K, Chopin T, Gaines S, Haugan P, Herner M, Howard J, Konar M, Krause-Jensen D, Lindstad E, Lovelock CE, Michelin M, Nielsen FG, Northrop E, Parker R, et al. (2019). The Ocean as a Solution to Climate Change: Five Opportunities for Action. World Resources Institute, Washington D.C.
[20] Huang M, Ge CD, Zuo P, Ji ZQ, Fang WL, Zhou MY (2018). The contribution of Spartina introduction on organic matter source and its effects on carbon burial in tidal flats. Journal of Nanjing University (Natural Science), 54, 656-664.
[20] [ 黄梅, 葛晨东, 左平, 纪振强, 方文丽, 周孟洋 (2018). 米草引种对潮滩沉积物有机质的贡献及碳埋藏的影响. 南京大学学报(自然科学版), 54, 655-664.]
[21] Joergensen RG (2018). Amino sugars as specific indices for fungal and bacterial residues in soil. Biology and Fertility of Soils, 54, 559-568.
[22] Kauffman JB, Giovanonni L, Kelly J, Dunstan N, Borde A, Diefenderfer H, Cornu C, Janousek C, Apple J, Brophy L (2020). Total ecosystem carbon stocks at the marine-terrestrial interface: blue carbon of the Pacific Northwest Coast, United States. Global Change Biology, 26, 5679-5692.
[23] Kelleway JJ, Serrano O, Baldock JA, Burgess R, Cannard T, Lavery PS, Lovelock CE, Macreadie PI, Masqué P, Newnham M, Saintilan N, Steven ADL (2020). A national approach to greenhouse gas abatement through blue carbon management. Global Environmental Change, 63, 102083. DOI: 10.1016/j.gloenvcha.2020.102083.
[24] Kirwan ML, Mudd SM (2012). Response of salt-marsh carbon accumulation to climate change. Nature, 489, 550-553.
[25] Langley JA, McKee KL, Cahoon DR, Cherry JA, Megonigal JP (2009). Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proceedings of the National Academy of Sciences of the United States of America, 106, 6182-6186.
[26] Lehmann J, Hansel CM, Kaiser C, Kleber M, Maher K, Manzoni S, Nunan N, Reichstein M, Schimel JP, Torn MS, Wieder WR, Kögel-Knabner I (2020). Persistence of soil organic carbon caused by functional complexity. Nature Geoscience, 13, 529-534.
[27] Li J, Liu YM, Sun H, Huang JT, Lu JF (2019). Analysis of blue carbon in Chinaʼs coastal zone. Environmental Science & Technology, 42(10), 207-216.
[27] [ 李捷, 刘译蔓, 孙辉, 黄建涛, 路景钫 (2019). 中国海岸带蓝碳现状分析. 环境科学与技术, 42(10), 207-216.]
[28] Liu YL, Ge TD, Zhu ZK, Liu SL, Luo Y, Li Y, Wang P, Gavrichkova O, Xu XL, Wang JK, Wu JS, Guggenberger G, Kuzyakov Y (2019). Carbon input and allocation by rice into paddy soils: a review. Soil Biology & Biochemistry, 133, 97-107.
[29] Luk SY, Todd-Brown K, Eagle M, McNichol AP, Sanderman J, Gosselin K, Spivak AC (2021). Soil organic carbon development and turnover in natural and disturbed salt marsh environments. Geophysical Research Letters, 48, e2020GL090287. DOI: 10.1029/2020GL090287.
[30] Macreadie PI, Anton A, Raven JA, Beaumont N, Connolly RM, Friess DA, Kelleway JJ, Kennedy H, Kuwae T, Lavery PS, Lovelock CE, Smale DA, Apostolaki ET, Atwood TB, Baldock J, et al. (2019). The future of Blue Carbon science. Nature Communications, 10, 3998. DOI: 10.1038/s41467-019-11693-w.
[31] Macreadie PI, Nielsen DA, Kelleway JJ, Atwood TB, Seymour JR, Petrou K, Connolly RM, Thomson ACG, Trevathan- Tackett SM, Ralph PJ (2017). Can we manage coastal ecosystems to sequester more blue carbon? Frontiers in Ecology and the Environment, 15(4), 206-213.
[32] McLeod E, Chmura GL, Bouillon S, Salm R, Björk M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011). A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9, 552-560.
[33] Mou XM, Li XG, Zhao N, Yu YW, Kuzyakov Y (2018). Tibetan sedges sequester more carbon belowground than grasses: a 13C labeling study. Plant and Soil, 426, 287-298.
[34] Nellemann C, Corcoran E, Duarte CM, Valdés L, De Young C, Fonseca L, Grimsditch G (2009). Blue Carbon—The Role of Healthy Oceans in Binding Carbon. United Nations Environment Programme, GRID-Arendal, Arendal, Norway.
[35] Newton A, Icely J, Cristina S, Perillo GME, Turner RE, Ashan DW, Cragg S, Luo Y, Tu C, Li Y, Zhang H, Ramesh R, Forbes DL, Solidoro C, Béjaoui B, et al. (2020). Anthropogenic, direct pressures on coastal wetlands. Frontiers in Ecology and Evolution, 8, 144. DOI: 10.3389/fevo.2020. 00144.
[36] Pausch J, Kuzyakov Y (2018). Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Global Change Biology, 24, 1-12.
[37] Peck EK, Wheatcroft RA, Brophy LS (2020). Controls on sediment accretion and blue carbon burial in tidal saline wetlands: insights from the oregon coast, USA. Journal of Geophysical Research: Biogeosciences, 125, e2019JG005464. DOI: 10.1029/2019JG005464.
[38] Preece C, Farré-Armengol G, Llusià J, Peñuelas J (2018). Thirsty tree roots exude more carbon. Tree Physiology, 38, 690-695.
[39] Radabaugh KR, Moyer RP, Chappel AR, Powell CE, Bociu I, Clark BC, Smoak JM (2018). Coastal blue carbon assessment of mangroves, salt marshes, and salt barrens in Tampa Bay, Florida, USA. Estuaries and Coasts, 41, 1496-1510.
[40] Rogers K, Kelleway JJ, Saintilan N, Megonigal JP, Adams JB, Holmquist JR, Lu M, Schile-Beers L, Zawadzki A, Mazumder D, Woodroffe CD (2019). Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature, 567, 91-95.
[41] Roth VN, Lange M, Simon C, Hertkorn N, Bucher S, Goodall T, Griffiths? RI, Mellado-Vázquez PG, Mommer L, Oram NJ, Weigelt A, Dittmar T, Gleixner G (2019). Persistence of dissolved orgTnic matter explained by molecular changes during its passage through soil. Nature Geoscience, 12, 755-761.
[42] Samper-Villarreal J, Lovelock CE, Saunders MI, Roelfsema C, Mumby PJ (2016). Organic carbon in seagrass sediments is influenced by seagrass canopy complexity, turbidity, wave height, and water depth. Limnology and Oceanography, 61, 938-952.
[43] Sanderman J, Hengl T, Fiske GJ (2017). Soil carbon debt of 12,000 years of human land use. Proceedings of the National Academy of Sciences of the United States of America, 114, 9575-9580.
[44] Sapkota Y, White JR (2021). Long-term fate of rapidly eroding carbon stock soil profiles in coastal wetlands. Science of the Total Environment, 753, 141913. DOI: 10.1016/ j.scitotenv.2020.141913.
[45] Schuerch M, Spencer T, Temmerman S, Kirwan ML, Wolff C, Lincke D, McOwen CJ, Pickering MD, Reef R, Vafeidis AT, Hinkel J, Nicholls RJ, Brown S (2018). Future response of global coastal wetlands to sea-level rise. Nature, 561, 231-234.
[46] Sousa AI, Lillebø AI, Pardal MA, Cacador I (2010). Productivity and nutrient cycling in salt marshes: contribution to ecosystem health. Estuarine, Coastal and Shelf Science, 87, 640-646.
[47] Spencer T, Schuerch M, Nicholls RJ, Hinkel J, Lincke D, Vafeidis AT, Reef R, McFadden L, Brown L (2016). Global coastal wetland change under sea-level rise and related stresses: the DIVA Wetland Change Model. Global and Planetary Change, 139, 15-30.
[48] Spivak AC, Sanderman J, Bowen JL, Canuel EA, Hopkinson CS (2019). Global-change controls on soil-carbon accumulation and loss in coastal vegetated ecosystems. Nature Geoscience, 12, 685-692.
[49] Stefan K, Angela A, Johannes I, Hasibeder R, Lange M, Lavorel S, Bahn M, Gleixner G (2018). Land use in mountain grasslands alters drought response and recovery of carbon allocation and plant-microbial interactions. Journal of Ecology, 106, 1230-1243.
[50] Street LE, Garnett MH, Subke JA, Baxter R, Dean JF, Wookey PA (2020). Plant carbon allocation drives turnover of old soil organic matter in permafrost tundra soils. Global Change Biology, 26, 4559-4571.
[51] Wang B, Gong JR, Zhang ZH, Yang B, Liu M, Zhu CC, Shi JY, Zhang WY, Yue KX (2019a). Nitrogen addition alters photosynthetic carbon fixation, allocation of photoassimilates, and carbon partitioning of Leymus chinensis in a temperate grassland of Inner Mongolia. Agricultural and Forest Meteorology, 279, 107743. DOI: 10.1016/j.agrformet.2019.107743.
[52] Wang F, Lu X, Sanders CJ, Tang J (2019b). Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nature Communications, 10, 5434. DOI: 10.1038/s41467-019-13294-z.
[53] Wang F, Sanders CJ, Santos IR, Tang J, Schuerch M, Kirwan ML, Kopp RE, Zhu K, Li X, Yuan J, Liu W, Li Z (2021a). Global blue carbon accumulation in tidal wetlands increases with climate change. National Science Review, 8, nwaa296. DOI: 10.1093/nsr/nwaa296.
[54] Wang FM, Tang JW, Ye SY, Liu JH (2021). Blue carbon sink function of Chinese coastal wetlands and carbon neutrality strategy. Bulletin of Chinese Academy of Sciences, 36, 241-251.
[54] [ 王法明, 唐剑武, 叶思源, 刘纪化 (2021). 中国滨海湿地的蓝色碳汇功能及碳中和对策. 中国科学院院刊, 36, 241-251.]
[55] Wang R, Bicharanloo B, Shirvan MB, Cavagnaro TR, Jiang Y, Keitel C, Dijkstra FA (2021b). A novel 13C pulse-labelling method to quantify the contribution of rhizodeposits to soil respiration in a grassland exposed to drought and nitrogen addition. New Phytologist, 230, 857-866.
[56] Wang XJ, Zhang HB, Han GX (2016). Carbon cycle and “blue carbon” potential in China’s coastal zone. Bulletin of Chinese Academy of Sciences, 31, 1218-1225.
[56] [ 王秀君, 章海波, 韩广轩 (2016). 中国海岸带及近海碳循环与蓝碳潜力. 中国科学院院刊, 31, 1218-1225.]
[57] Williams A, de Vries FT (2020). Plant root exudation under drought: implications for ecosystem functioning. New Phytologist, 225, 1899-1905.
[58] Xia P, Meng XW, Li Z, Feng AP (2016). Sedimentary records of mangrove evolution during the past one hundred years based on stable carbon isotope and pollen evidences in Maowei, SW China. Journal of Ocean University of China, 15, 447-455.
[59] Xia SP, Song ZL, Li Q, Guo LD, Yu CX, Singh BP, Fu XL, Chen CM, Wang YD, Wang HL (2021a). Distribution, sources, and decomposition of soil organic matter along a salinity gradient in estuarine wetlands characterized by C:N ratio, δ13C-δ15N, and lignin biomarker. Global Change Biology, 27, 417-434.
[60] Xia SP, Wang WQ, Song ZL, Kuzyakov Y, Guo LD, van Zwieten L, Li Q, Hartley IP, Yang YH, Wang YD, Andrew Quine T, Liu CQ, Wang HL (2021b). Spartina alterniflora invasion controls organic carbon stocks in coastal marsh and mangrove soils across tropics and subtropics. Global Change Biology, 27, 1627-1644.
[61] Xiong YM, Liao BW, Wang FM (2018). Mangrove vegetation enhances soil carbon storage primarily through in situ inputs rather than increasing allochthonous sediments. Marine Pollution Bulletin, 131, 378-385.
[62] Xu X, Liu H, Liu Y, Zhou C, Pan L, Fang C, Nie M, Li B (2020). Human eutrophication drives biogeographic salt marsh productivity patterns in China. Ecological Applications, 30, e02045. DOI: 10.1002/eap.2045.
[63] Ye S, Laws EA, Yuknis N, Yu XY, Ding X, Yuan H, Zhao G, Wang J, Pei S, Brix H (2018). Carbon sequestration and its controlling factors in the temperate wetland communities along the Bohai Sea, China. Marine and Freshwater Research, 69, 700-713.
[64] Yuan Y, Li Y, Mou Z, Kuang L, Wu W, Zhang J, Wang F, Hui D, Peñuelas J, Sardans J, Lambers H, Wang J, Kuang Y, Li Z, Liu Z (2021). Phosphorus addition decreases microbial residual ontribution to soil organic carbon pool in a tropical coastal forest. Global Change Biology, 27, 454-466.
[65] Zhang P, Nie M, Li B, Wu JH (2017). The transfer and allocation of newly fixed C by invasive Spartina alterniflora and native Phragmites australis to soil microbiota. Soil Biology & Biochemistry, 113, 231-239.
[66] Zhou CH, Mao QY, Xu X, Fang CM, Luo YM, Li B (2016). Preliminary analysis of C sequestration potential of blue carbon ecosystems on Chinese coastal zone. Scientia Sinica Vitae, 46, 475-486.
[66] [ 周晨昊, 毛覃愉, 徐晓, 方长明, 骆永明, 李博 (2016). 中国海岸带蓝碳生态系统碳汇潜力的初步分析. 中国科学: 生命科学, 46, 475-486.]
Outlines

/

005-264X/bottom_en.htm"-->