植物生态学报, 2007, 31(1): 150-165 DOI: 10.17521/cjpe.2007.0019

论文

植物功能性状与环境和生态系统功能

孟婷婷1,2, 倪健,1,*, 王国宏1

1 中国科学院植物研究所植被数量生态学重点实验室,北京 100093

2 中国科学院研究生院,北京 100049

PLANT FUNCTIONAL TRAITS, ENVIRONMENTS AND ECOSYSTEM FUNCTIONING

MENG Ting-Ting1,2, NI Jian,1,*, Wang Guo-Hong1

1Laboratory of Quantitative Vegetation Ecology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China

2Graduate University of Chinese Academy of Sciences, Beijing 100049, China

通讯作者: * E-mail:jni@ibcas.ac.cn.

编委: 刘世荣

责任编辑: 张丽赫

收稿日期: 2005-11-30   接受日期: 2006-06-9   网络出版日期: 2007-01-30

基金资助: 国家自然科学基金重大项目.  30590383
面上项目.  30370251

Corresponding authors: * E-mail:jni@ibcas.ac.cn.

Received: 2005-11-30   Accepted: 2006-06-9   Online: 2007-01-30

摘要

植物性状反映了植物对生长环境的响应和适应,将环境、植物个体和生态系统结构、过程与功能联系起来(所谓的“植物功能性状”)。该文介绍了植物功能性状的分类体系,综述了国内外植物功能性状与气候(包括气温、降水、光照)、地理空间变异(包括地形地貌、生态梯度、海拔)、营养、干扰(包括火灾、放牧、生物入侵、土地利用)等环境因素,以及与生态系统功能之间关系的研究进展,探讨了全球变化(气候变化和CO2浓度升高)对个体和群落植物功能性状的影响。植物功能性状的研究已经取得很多成果,并应用于全球变化、古植被恢复和古气候定量重建、环境监测与评价、生态保护和恢复等研究中,但大尺度、多生境因子下的植物功能性状研究仍有待于加强,同时需要改进性状的测量手段;我国的植物功能性状研究还需要更加明朗化和系统化。

关键词: 植物性状 ; 植物功能性状 ; 植物功能型 ; 环境 ; 生态系统功能

Abstract

Plant traits link environmental factors, individuals and ecosystem structure and functions as plants respond and adapt to the environment. This review introduces worldwide classification schemes of plant functional traits and summarizes research on the relationships between plant functional traits and environmental factors such as climate (e.g., temperature, precipitation and light), geographical variation (e.g., topography, ecological gradients and altitude), nutrients and disturbance (including fire, grazing, invasion and land use), as well as between plant functional traits and ecosystem functions. We synthesize impacts of global change (e.g., climate change) on plant functional traits of individuals and plant communities. Research on plant functional traits is very fruitful, being applicable to research on global change, paleovegetation and paleoclimate reconstruction, environmental monitoring and assessment and vegetation conservation and restoration. However, further studies at large scale and including multi-environmental factors are needed and methods of measuring traits need to be improved. In the future, study of plant functional traits in China should be accelerated in a clear and systematic way.

Keywords: plant traits ; plant functional traits ; plant functional types ; environments ; ecosystem functioning

PDF (682KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

孟婷婷, 倪健, 王国宏. 植物功能性状与环境和生态系统功能. 植物生态学报[J], 2007, 31(1): 150-165 DOI:10.17521/cjpe.2007.0019

MENG Ting-Ting, NI Jian, Wang Guo-Hong. PLANT FUNCTIONAL TRAITS, ENVIRONMENTS AND ECOSYSTEM FUNCTIONING. Chinese Journal of Plant Ecology[J], 2007, 31(1): 150-165 DOI:10.17521/cjpe.2007.0019

植物在漫长的进化和发展过程中,与环境相互作用,逐渐形成了许多内在生理和外在形态方面的适应对策,以最大程度地减小环境的不利影响,这些适应对策的表现即为植物性状(Plant traits),也称为植物属性(Plant attributes)。植物性状能够客观表达植物对外部环境的适应性(McIntyre et al., 1999),而某些植物性状的存在与否及其数量多少,也反映了植物种所在生态系统的功能特征(Cornelissen et al., 2003),因此这种植物性状也被称为植物功能性状(Plant functional traits)。

植物性状的研究已经有相当长的历史了,从生态学的角度研究植物性状,最早的经典工作可追溯到1934年Raunkiaer的生活型分类系统。最近的20年来,随着国际上全球变化研究的不断深入,人们将植物功能性状与植物功能型(Plant functional types)两个概念相结合,应用到气候变化对生态系统功能影响的定量分析、模拟和评价中。尤其是近10年来,植物性状相关的新概念和测度方法不断涌现,应用领域也不断拓展,研究的科学问题已经涉及到了生态学研究的许多层面,其中最为关键的问题是植物功能性状与环境的关系及其与生态系统功能的关系,环境如何影响植物的功能性状,植物功能性状如何反映生态系统的过程和功能,从而达到建立环境与生态系统功能之间密切联系的目的。

在此对植物性状和植物功能性状国际研究前沿,包括植物功能性状与环境、生态系统过程和功能之间的关系及其应用等方面进行综述,供国内相关科学工作者参考,以方便国内读者及时了解学科发展动态,推动国内植物功能性状的研究进程。

1 植物功能性状相关术语及分类系统

植物性状是指易于观测或者度量的植物特征,是物种长期进化过程中适应不同环境的结果,能够客观表达植物对外部环境的适应性,如植物高度、叶片大小等(McIntyre et al., 1999)。植物属性也称植物性状,即植物适应外部环境而形成的生物学特征。植物功能性状是能够响应生存环境的变化并(或)对生态系统功能有一定影响的植物性状,如叶片大小和寿命、种子大小和扩散模式、冠层高度等(Díaz & Cabido,2001);它反映了植物在表征生态系统功能方面的生态指示作用,强调其与生态系统过程和功能的关系,而植物性状一般仅限植物自身的结构特征,二者有一定的差异,但由于目前对植物功能性状与生态系统过程与功能关系的认识还十分有限,因此难以划定二者之间的明确界限。植物功能型是对环境因子有相似响应、在生态系统或者生物群区中起相似作用的所有植物种的组合,这种相似性的基础就是它们趋于分享一套关键的植物功能性状(Díaz & Cabido,2001;Cornelissen et al., 2003)。植物功能群(组)(Plant functional groups)实际上等同于植物功能型,部分植物群落生态学家和进化生态学家喜欢使用该名词,它是对某一特征因子有相似响应、具有某些相似性状的物种集合;根据生理、形态、生活史或其它与某一生态系统过程相关以及与物种行为相联系的一些生物学特性来划分,这些性状一般是个体生态学性状,并不一定是分类学性状(孙国钧等,2003)。

植物功能性状的分类方法很多。根据植物对策,可分为植物营养性状(Vegetative traits)和繁殖性状(Regenerative traits);根据与生态系统的关系,可以分响应性状(Response traits)和影响性状(Effect traits),前者反映植物对环境因子(如资源有效性和干扰)的响应,后者决定植物对生态系统功能(如生物地球化学循环和干扰抵抗性)的影响,这两类性状在一定程度上相互重叠(Lavorel & Garnier, 2002);根据其快速测量和定量描述的难易程度可以分为“软性状(Soft traits)”,即那些相对容易获得和量化的特性,如生长型、生活型等,以及“硬性状(Hard traits)”,即那些难以在许多地区和大量植物中定量的特性,如相对生长速率、光合能力等(Cornelissenet al., 2003)。软性状虽然应用广泛,却不易与生态系统功能建立直接联系,而硬性状虽然较难获得,却能更加准确地反映生态系统的功能特征。软性状和硬性状又是相互联系的,而且这种联系在不同的环境条件下是一致的,因此可利用合适的软性状来代替硬性状,用于大尺度的研究中(Hodgson et al., 1999;Lavorel & Garnier, 2002)。

植物功能性状的分类和测量依赖于具体的研究目的、实验条件和自然环境等。目前存在几个大尺度的功能性状分类体系,例如Barboni等(2004)建立的地中海地区植物性状分类体系,McIntyre等(1999)的全球范围草本占优势的植被中响应干扰的功能性状体系,Mabry等(2000)的温带木本植被的形态和生活史性状体系,以及Cornelissen等(2003)的全球植物功能性状分类体系手册,该手册还给出了每一个性状的详细测量方法。根据这4个常见的分类体系,我们综合归纳出一个比较全面的全球植物功能性状分类系统(表1),根据区域生态特征补充修正后,可尝试应用于我国的植物功能性状研究中。

表1   植物功能性状分类体系

Table 1  Plant functional traits classification system

新窗口打开| 下载CSV


2 植物功能性状与环境

植物性状与环境之间的联系是气候、干扰和生物条件筛选效应的结果(Díazet al., 1998),其研究历史如同生态学本身一样古老。此处我们所涉及到的环境分为自然环境和干扰环境两类,前者主要包括气候(如气温、降水、光照等)、地形地貌(如地理空间梯度变异、海拔高度、坡向等)和营养状况等,后者主要包括火、放牧(包括草食动物啃食)、生物入侵和土地利用等。植物功能性状与环境关系的研究,可为我们研究当前环境条件下的生态系统功能奠定基础,为预测未来全球变化对生态系统的影响提供方法和依据。

2.1 气候

根据经典的植被/植物种与气候的关系,全球、洲际和区域尺度的气候与植物功能性状应该有密切的联系。然而,全球尺度上175个地点2 548个植物种的叶经济谱(叶片的主要化学、结构和生理特征)的研究揭示,单位面积叶质量(Leaf mass per area, LMA)与气候(年平均气温、可能蒸散、水气压亏缺、太阳辐射和降水)间虽然存在某些显著相关,全球总体格局却并不十分明显(Wright et al., 2004a);但如果能够找到合适的气候指标和选择合适的植物性状,可以肯定全球及不同地区植物功能性状与气候的关系应是显著的。在区域尺度上,植物功能性状与气候的关系则比全球尺度更加紧密,但不同区域间和不同性状间也存在不少差异,而且植物营养性状比繁殖性状与气候的关系更紧密些(Díazet al., 1998)。

气温影响多种植物性状。法国地中海南部地区植物的比叶面积与平均最低温度正相关,而叶干物质含量与平均最低温度负相关(Roche et al., 2004);澳大利亚大豆属(Glycine)植物种子质量与气温和太阳辐射关系最密切,与降水的关系稍弱,在气温和太阳辐射较高的地方种子质量较大(Murray et al., 2004);不同光合作用途径植物的数量沿气温梯度变化,如蒙古植被C4植物数量沿升温梯度递增,但禾草和藜科的响应不同,藜科C4植物的丰富度与干燥度相关,而禾草C4植物的丰富度更依赖于气温(Pyankov et al., 2000)。

降水对植物叶性状也具有显著影响,叶片性状的干湿季节差异明显反映了这种影响,比如澳大利亚北部的稀树草原(Prior et al., 2004);在旱季,巴拿马中部地区的热带森林冠层落叶性程度与降水梯度成负相关(Condit et al., 2000)。澳大利亚东南部的多年生植物的叶宽、比叶面积和成熟冠层高度与降水和土壤总含磷量呈正相关(Fonseca et al., 2000)。在新西兰草地上,潮湿的生境能降低光合水分利用率,减小叶和根的组织密度(Craine & Lee, 2003)。植物性状与降水的关系同样存在地区、生态系统和种间差异,比如西班牙东北地区落叶树种葡萄牙橡木(Quercus faginea)叶片性状与降水无显著相关,常绿灌木胭脂虫栎(Q. coccifera)和常绿乔木冬青栎(Q. ilex)部分叶片形态和化学组成性状与降水成正相关,部分性状与降水成负相关(Castro-Díezet al., 1997)。

植物性状可受到气温和降水的共同作用,如南非银叶树属(Leucadendron)特有植物的生态位分布、叶面积、开花性状(Thuiller et al., 2004)和美国与日本部分地区落叶与常绿树种的叶寿命(Chabot & Hicks, 1982)。地中海地区孢粉类群的12个植物形态学和物候学性状的相对重要性格局,也由植物水分有效性(实际蒸散与可能蒸散的比值)和冬季温度(最冷月平均气温)共同决定(Barboni et al., 2004)。

光照对植物叶片的影响非常明显,叶大小和比叶面积都随日照的增强而减小,常绿植物的比叶面积(Specific leaf area, SLA)明显低于落叶植物,如加利福尼亚海湾地中海气候区内的22种常绿阔叶灌丛物种在群落水平和单个种水平都存在这种趋势(Ackerly et al., 2002)。亚马逊雨林中长期荫蔽植物的叶寿命较向阳植物长(Reich et al., 2004);西班牙南部林下阴地植物比叶面积较大、叶的叶绿素与氮含量的比值较高(Sack et al., 2003)。

光照影响植物的生长和发育,利比亚的53种热带雨林树种的成体高度与它们的光需求呈正相关(Poorter et al., 2003);法国圭亚那热带雨林树种的冠层发育受光照和树高的影响,随光照有效性降低,冠层生长速率减慢、冠层变宽、叶层减少、叶伸展成本降低、比叶面积增大,但光照有效性的变化不能完全解释性状随树高的变化(Sterck & Bongers, 2001)。

2.2 地理空间变异

地理空间变异包括地形地貌、海拔、坡度、坡向等,其变化与气候和土壤等的变化密切相关。经向和纬向地形地貌的地理空间变异对植物功能性状的影响主要来自于气温、降水和土壤特性的梯度变化。全球不同生物群区类型(热带森林到温带森林,高山冻原到荒漠)的植物功能性状存在明显差异(Reich et al., 1997,1999;Villar & Merino, 2001);世界主要阔叶林叶性状如比叶面积、叶厚度、氮和磷含量等在不同植被类型之间和相同植被类型内都存在很大差异(Turner,1994);美洲、非洲、印度和澳大利亚地区的季节性干旱热带生态系统有不同的物候性状(常绿、落叶、半落叶、短落叶),木本植物的生理生态性状(气孔导度、光合作用)差异与土壤和大气水分含量相关(Eamus,1999)。

植物生活史和生理性状与植物种分布范围内的土壤水分、土壤营养和火灾体制紧密相关,如美国佛罗里达中北部疏林17种栎属(Quercus)植物(Cavender-Bares et al., 2004);北美8种云杉(Picea)幼苗的相对生长速率、比叶面积与纬度成正相关,叶重比率(Leaf weight ratio, LWR)与干旱度成负相关(Miyazawa & Lechowicz, 2004)。同种植物的叶片形态、解剖和水分性状在不同地点间可明显不同,如意大利的冬青栎幼苗(Gratani et al., 2003)。果实大小和种子质量也存在地理变异,如日本的栲属植物(Castanop-sis),环境适合母树生长则坚果较大(Yamada & Miyaura, 2005);北美8种云杉种子质量与纬度呈负相关(Miyazawa & Lechowicz, 2004)。

海拔高度对植物功能性状的影响也是多种因素的综合作用。新西兰南岛118种植物随着海拔升高,叶和根的氮含量降低、厚度增加(Craine & Lee, 2003);德国黑森州北部4个树种随海拔升高其高度增量减小、叶大小和叶面积降低、气孔密度增加(Hølscheret al., 2002)。生活型丰富度和海拔高度成负相关,墨西哥一个半干旱河谷中小高位芽植物、柱状仙人掌植物、肉质植物和地上芽植物的丰富度与海拔高度和土壤氮含量明显相关(Pavónet al., 2000),阿根廷火地岛(Tierra del Fuego)南部高山地区不同海拔高度以及南北两坡的植物生活型分布显著不同(Mark et al., 2001),表明沿海拔梯度的环境变化限制着生活型的分布。

2.3 营养

树木的叶寿命不仅与气候梯度和对环境胁迫的适应有关,也与其自身的营养循环、营养保存和碳平衡相关(Chabot & Hicks, 1982)。常绿植物在低营养环境占优势,常绿特性与低营养有效性间存在正反馈;常绿物种对环境变化的响应能力较低,因此全球变暖可能会影响它们的地理分布(Aerts,1995)。Dormann和Woodin(2002)对北极地区气候和植物响应的实验表明,土壤肥力对植物生物量、叶、繁殖、生理学、化学测量性状都有影响,其中对繁殖性状的影响最明显;禾草植物功能型对肥力的反应是最强烈的。

2.4 干扰

干扰包括破坏生态系统、群落或种群结构,改变资源、基质可利用性或物理环境的事件(Díazet al., 2002),如火灾、放牧、生物入侵和土地利用等,虽然它们所涉及的空间尺度通常比气候要小,但在许多生态系统中占据主导地位。以植物功能型作为植物对干扰响应的指示,可将性状与干扰联系在一起,其中生活型被认为是反映群落对干扰响应的最有效性状(McIntyre et al., 1995)。当然,性状与植物对干扰响应之间的联系并不是孤立的,而是与气候和资源有效性相关的(Díazet al., 2002)。

2.4.1 火灾

火是全球范围内改变植被的一个重要因子,可以作为某些地区如地中海盆地植物生活史性状的选择性驱动力(Ne'eman et al., 2004)。不同的火适应性状在不同大洲和生态系统间存在差异,所以不同地区植物对火的响应是不一致的,对澳大利亚东部、美国加利福尼亚和地中海盆地的数据分析证明了这一点(Pausas et al., 2004)。

植物对火灾的响应策略可分为火灾前和火灾中的逃避策略(生存适应对策)及火灾后的萌芽重生策略,并对不同层位的森林火有不同的适应性状。迟季结果和早开花是对火的逃逸对策,有利于松树在频繁的冠层火中生存下来和火后成功重生;高度迟季性和薄树皮是对频繁的林分替换冠层火(Stand-replacing crown fire)的适应;而厚树皮个体则有能力生存于地面火中(Tapias et al., 2004)。对于冠层火生态系统来说,与火后留存相关的植物性状主要包括再萌芽能力(个体持续)和保存一个持久种子库的能力(种群持续)(Pausas et al., 2004)。而植物种无法完全划分为萌生者和非萌生者,只能称之为弱萌生植物和强萌生植物,澳大利亚东南部45种不同生长型植物(禾草、杂类草、半灌木、木本灌木、乔木)中禾草萌生能力最强,藜科植物较弱,杂类草和木本植物则有强有弱(Vesk et al., 2004b),萌生能力与植物的大小成正比,且一定程度上与生长型相关。

2.4.2 放牧

放牧是一个不太强烈但很连续的干扰形式,可以强烈破坏或改变自然植被,尤其是草原生态系统。然而,草原植物对家畜放牧的响应存在明显差异,我们对放牧影响植被变化的预测能力还非常有限(Vesk et al., 2004a)。

在遭受放牧干扰时,具有适应性状的物种会继续存活,而不适应的物种则可能会被淘汰,具有不同性状的植物群相对优势度会发生变化。全球不同地区草地(葡萄牙牧场、苏格兰草地、以色列草本群落、澳大利亚昆士兰亚热带多草桉树疏林草场和亚热带干旱牧场、乌拉圭塞罗拉尔戈(Cerro Largo)平原地区天然草地以及阿根廷山区草地)等受干扰植被的研究不同程度地表明,放牧强度增加时,一年生生活史、适度休眠、杂草、地下芽、小个体、矮分生组织、匍匐莲座冠层结构、小光合结构、高光需求、小叶、有覆被的叶、大比叶面积、受保护花序、小种子、季节性种子繁殖、早开花和早散布种子、高的再生长潜力、对放牧响应的可塑性和高繁殖力等性状明显增加;生活史、生活型、无性和有性繁殖等性状对放牧的响应还受到生产力的调节,在不同地点和物种间也可能有一定的变化(Landsberg et al., 1999;Lavorel et al., 1999;Díazet al., 2001;McIntyre & Lavorel, 2001;Rodríguezet al., 2003;Pakeman,2004)。不仅放牧强度而且放牧时间的长短也影响植物性状对放牧的响应。阿根廷和美国西北部草原的植物形态性状与叶片化学成分对放牧历史长短的响应有显著差异,阿根廷巴塔戈尼亚(Patagonia)草原的低饲草质量(低叶片延展性、纤维和氮素含量)明显指示着该地区的长期放牧历史(Adler et al., 2004)。

放牧条件下植物功能性状的变化可以作为划分植物功能型的依据,从而探讨不同放牧强度对植物的影响(McIntyre & Lavorel, 2001)。也可用植物功能性状来反映放牧压力,但是在不同条件下植物功能性状对放牧响应的预测能力存在差异。例如阿根廷和以色列半湿润草地中,植物高度是最好的放牧响应标志,叶片质量其次,植物高度、生活史和叶片质量的联合可很好地表达植物的放牧响应(Díazet al., 2001)。但澳大利亚半干旱和干旱灌丛与疏林的简单植物性状如生活史、生长型、比叶面积与放牧的关系很弱,不能预测植物对放牧的响应(Vesk et al., 2004a)。

2.4.3 生物入侵

外来种对自然生态系统的入侵是全球生物多样性变化所面临的一个严重威胁,不同的生活史性状如植物寿命、生活型、营养生长、传粉和生殖系统、耐阴性和毒性等与外来种的可入侵性(Invasiveness)密切相关(Gerlach & Rice, 2003;Sutherland,2004)。许多植物功能性状有利于外来种的成功入侵,如大的比叶面积。在不同的环境基质下,促进外来种成功入侵的植物性状也不同,比如受到物理干扰且高土壤肥力的生境中,小草本植物和花期长、无辅助传播或风传播种子的禾草更容易入侵,而富养分生境中无性繁殖、靠脊椎动物传播种子的攀援植物更容易入侵(Lake & Leishman, 2004)。

2.4.4 土地利用

土地利用往往与植物的繁殖性状相关。综合分析来自欧洲和美国的数据显示,根据生活史性状划分的植物类型,可反映植物对土地利用变化的响应类型,降低植物扩散能力的性状(如大种子、低结实性、无辅助传播)会减慢植物的克隆速度(Verheyen et al., 2003)。奥地利阿尔卑斯高山地区71种植物因受干扰(如伐木、夏季放牧、草场利用等)而频率增加的扩散和克隆定居过程,影响着许多高山植物种的分布(Dirnbøck & Dullinger,2004)。

3 植物功能性状与生态系统过程和功能

植物功能性状之间相互关联,不同植物区系间可能存在相似的性状格局;多个性状的结合决定着植物之间的关系以及植物种与群落和生态系统功能之间的相互作用,也影响着生物多样性与生态系统功能之间的联系(Reich et al., 1997,1999;Díaz & Cabido,2001;Villar & Merino, 2001;Craine et al., 2002;Westoby et al., 2002;Eviner & Chapin, 2003;Chown et al., 2004;Díazet al., 2004),这种联系的建立以植物功能型作为媒介,根据特有的植物功能性状组合来划分植物功能型,利用植物功能型来描述植物群落或生态系统的格局和过程,从而建立植物功能性状与群落和生态系统结构与功能之间的联系,为研究和预测植被和生态系统对全球变化的响应提供了一个有力的工具(Díaz & Cabido,1997;Lavorel & Garnier, 2002)。

3.1 性状相互关系

多种叶性状之间关系紧密。不同生态系统和众多物种数据的综合分析都表明,叶片寿命与比叶面积、植物整体叶面积比、光合能力、叶片氮和磷含量成显著负相关(Reich & Walters, 1992;Wright & Westoby, 2003;Wright et al., 2004b),与单位面积叶质量成正相关(Wright et al., 2002);比叶面积、光合作用能力、暗呼吸、气体交换性状、叶片氮和磷含量相互之间成正相关(Wright et al., 2004a)。德国8种禾草植物叶片的伸长速率与比叶面积成正相关,与叶片干物质含量成负相关(Arredondo & Schnyder, 2003)。亚州东南部8种演替早期热带树种的最大气孔导度与叶面积和叶片氮含量密切相关,其中与叶大小呈显著负相关(Juhrbandt et al., 2004)。比叶面积和叶干物质含量间成负相关,它们尤其是叶干物质含量是量化植物功能的最佳性状,可代替相对生长速率等硬性状,用于大尺度的监测和研究(Garnier et al., 2001;Vendramini et al., 2002;Roche et al., 2004)。叶或根的组织密度、木质素含量、厚度(直径)与它们的氮含量成负相关。叶性状和根性状间联系较小,在区域尺度上仅两者的氮含量正相关、δ15N含量正相关,如在新西兰、澳大利亚、南非和北美4个草原区;在全球尺度上两组性状间的关系则由土壤冰冻和营养限制类型等因素决定,C4禾草的叶和根的氮含量都比C3禾草的低(Craine et al., 2005)。

种子质量和冠层大小、植物高度、茎干直径、植物质量、冠层体积、第一次繁殖的时间、植物寿命和繁殖寿命间都有正相关关系(Moles et al., 2004)。地中海木本植物的物候多样性与相对生长速率、生活型、种子质量和果实质量潜在相关(Castro-Díezet al., 2003)。

植物的营养性状和繁殖性状间也存在密切联系。澳大利亚木本双子叶植物中,相对生长速率和比叶面积、比根长成正相关,而与种子质量成负相关(Wright & Westoby, 1999)。新西兰的20种草本植物凋落物的分解速度与植物质量、开花前的时间、植物生长速率成负相关,与茎干氮含量成正相关,幼苗和叶片对无脊椎食草动物的适口性与多种营养性状以及开花植物茎干的氮浓度密切相关(Wardle et al., 1998)。

3.2 物种分布

竞争能力和克隆扩散能力是限制物种分布范围的主要性状。较大的高度、叶面积和克隆生长范围、更高的种子产量和形成更大更长久的土壤种子库的能力使得美国的Solidago altissimo具有比同属种S. shortii更强的竞争力和克隆能力,分布范围更广(Walck et al., 2001);而扩散能力(而非繁殖能力)是限制某些森林植物种克隆的关键因子(Verheyen et al., 2003)。比叶面积也与物种的分布格局紧密相关,加拿大范库弗峰岛上6种石南属(Erica)植物,低比叶面积(SLA)的物种在沼泽中更丰富,高SLA的物种在森林中更丰富(Burns,2004)。物种分布格局与哪些植物功能性状相关依赖于物种生存环境和研究尺度,但与种子产量的关系在各种环境和尺度上的一致性最强(Murray et al., 2002)。

3.3 演替和竞争

植物功能性状会随演替进程而发生变化,如植物高度、叶片沿茎干的分布、营养扩展、开花时间、种子质量、比叶面积、叶干物质含量、叶氮含量、叶寿命、叶片出现和脱落的时间等性状,但这些变化与物种组成和具体演替状态的关系还没有一致结论(Navas et al., 2003;Garnier et al., 2004;Kahmen & Poschlod, 2004)。某些植物性状的组合可以决定一个植物种的生活史对策和竞争能力,如最大枝条质量、茎质量、繁殖质量、茎分配、叶面积、比叶面积、生长高度和直径、叶面积比等与植物大小相关的性状(Røschet al., 1997)。植物结构性状(如叶面积)和生理性状(如叶片光合作用速率)对竞争的贡献较大,如高叶面积和较高的叶光合作用速率使得黑麦草属(Lolium)的竞争能力远强于羊茅(Festuca)(Teughels et al., 1995)。

3.4 植物定居和生长

16种草本植物幼苗与其成体的定居实验证明,种子质量、相对生长速率和成体高度与定居能力的关系不明显(Leishman,1999)。种子大小是影响植物定居和克隆过程的关键性状,大种子物种的幼苗定居成活能力通常高于小种子物种,但是也应考虑到种子大小和种子产量间的平衡关系(Eriksson & Jakobsson, 1998;Castro,1999;Moles & Westoby, 2004)。

根性状在植物的营养吸收和生长中起着关键作用。生长迅速的物种根可能更有利于快速地开发土壤和更快地更新,与生长缓慢植物相比它们的比根长大、根直径小、分支程度大、酚浓度低,而根组织密度、呼吸作用和磷的吸收的差异随比较的物种不同而不同,如美国宾夕法尼亚州中部多种落叶阔叶树和常绿针叶树(Comas & Eissenstat, 2004)。

某些形态性状如直立与匍匐习性、无性繁殖能力、叶片长宽比例、活跃生长季节可影响乌拉圭中南部草地群落优势种的空间动态变化(不变、短距离扩展、长距离扩展)(Altesor et al., 1999)

3.5 生产力、碳循环和资源利用

生态系统的净第一性生产力、凋落物分解速率、土壤总碳和总氮含量与群落的叶片功能性状相关,比叶面积、叶片干物种含量、氮浓度可以作为法国南部地中海地区生态系统的“功能标记物(Functional markers)”(Garnieret al., 2004)。菌根类型在某种程度上决定了英国的83种植物幼苗的相对生长速率、叶片营养浓度和叶片凋落物的分解能力,菌根类型的联合可以用来解释植物碳循环性状的变异,如植被生产力和凋落物周转(Cornelissen et al., 2001)。美国科罗拉多高山草甸冻原(Miller & Bowman, 2002)和日本北部低地苔草沼泽(Nakamura et al., 2002)的不同植物通过不同的氮利用性状来利用多种有机和无机氮资源。

不同植物在影响生态系统功能上存在差异,大多数物种都有影响生态系统的独特性状组合,单一性状或者单一功能群无法代替这些性状组合的作用,也不能预测不同物种表现出来的多种功能(Eviner & Chapin, 2003)。不同的性状组合联系着不同的生态系统特征,例如单位面积叶质量——叶片寿命与营养周转和对环境的响应相关,种子质量——种子产量与散播和定居相关,叶片大小——嫩枝大小与冠层结构相关,而植物体高度包含多个方面的适应和平衡,具有重要的生态学意义(Westobyet al., 2002)。这些植物功能性状在不同的气候带和不同的景观内样点类型间有差异,与植物对物理环境的适应有关,不同植物对策也与资源利用有关(Westoby,1998;Wilson et al., 1999;Craine et al., 2002;Vendramini et al., 2002)。

4 植物功能性状与全球变化

4.1 气候变化

气温升高影响到不同生物群区、不同植被类型和不同植物种的生长和繁殖性状,如芽生长、开花表型、叶片大小、种子数量和重量、光合能力、凋落物分解等,这些都与全球变化下物种分布和植被结构的变化密切相关(Totland,1999;Saxe et al., 2001)。

气候变化对植物的物候性状影响很大。在美国东部地区落叶林(Fitzjarrald et al., 2001)、德国欧洲白桦(Betula pendula)和夏栎(Quercus robur)(Badeck et al., 2004)及地中海植被(Penuelas et al., 2002)中都发生了物候性状的变化,温度升高可使出芽时间、叶出现和开展时间、开花时间、结果时间提前,而使落叶时间推迟,从而延长植物生长季。遥感分析也表明过去的20年来北半球地区生长季节延长(Badeck et al., 2004)。

美国犹他州东北地区的干旱可延长多年生荒漠草本植物的叶寿命,降低新叶产量(Casper et al., 2001)。不同物种对气候变化的响应不同,在北极地区灌木和草本对温度升高是最敏感的;不同物种间的响应差异可能会改变它们的竞争力,甚至改变生态系统的结构和功能(Dormann & Woodin, 2002;Penuelas et al., 2002)。除了平均气候的影响,气候变异性如北大西洋涛动(North Atlantic Oscillation,NAO)也与植物的物候期显著相关,正的NAO(暖湿)冬季使得挪威地区的植物开花期提前,草本植物比木本植物对NAO更敏感,早开花植物比晚开花植物更容易受到气候变异性的影响(Post & Stenseth, 1999)。

4.2 CO2浓度升高

CO2浓度升高能引起生理学性状的明显变化(Dormann & Woodin, 2002),如光合速率、光补偿点、叶的暗呼吸、叶氮含量、比叶面积、叶面积比、气孔密度、叶的形态结构、生态系统中不同形态叶所占的比例和不同植物部位间的生物质分配等性状(Teughels et al., 1995;Hättenschwiler,2001)。大气CO2浓度升高可能会提高碳同化能力和旱地多年生灌木的成活率,但它可能不会抵消长期干旱对死亡率的影响(Housman et al., 2003)。植物对CO2浓度升高的响应存在种间差异 (Hunt et al., 1991;Poorter,1993)。美国明尼苏达州具有不同光合作用途径(C3、C4禾草)和不同固氮性状(豆科、非豆科杂类草)的16种植物中,CO2浓度升高导致杂类草、豆科植物和C3禾草生物量增加,C4植物生物量减少(Craine et al., 2001;Reich et al., 2001)。

5 中国植物功能性状研究

植物性状或者属性的研究贯穿于我国植物生态学发展的各个阶段,只是前期的工作没有把“Traits”这个概念明确提出来,近期的工作虽然明确了“Traits”概念,但其功能特征体现不完全,植物功能性状的研究刚刚处于起步阶段。

降水梯度对我国北方不同草原地区的植物生活型和光合作用途径等性状有明显影响(Wang,2002c)。干旱能降低中国东北样带中羊草(Leymus chinensis)的枝密度、繁殖分配和枝的生物量(Wang & Gao, 2003)。施水实验表明,土壤水份可以影响植物的高度、枝和叶片的数目、总叶面积、比叶面积、叶的质地、根冠比、净光合速率、光饱和点、气孔导度、水分利用效率、植物生物量等多种性状,如焕镛木(Woonyoungia septentrionalis)幼苗和毛乌素沙地油蒿(Artemisia ordosica)幼苗(曾小平等,2004;肖春旺等,2001a)。

由于物种对升温的响应不同,气温升高不仅可以在全球尺度,同样可以在区域尺度改变生态系统功能,如鄂尔多斯高原的植被结构(肖春旺等,2001b)。水热联合因子能影响植物的生活型、生长型和果实类型的发育和分布格局(王国宏和周广胜,2001;白永飞等,2002;Wang,2002a)。

在青藏高原,随海拔高度增加,冠层平均叶寿命、基于面积的叶氮含量、叶面积指数、叶氮库都相应增加,而冠层平均比叶面积、基于质量的叶氮含量都下降。温度和降水是驱动这些性状变化的主要因子,土壤有机碳和总氮含量也有重要作用(Luo et al., 2005)。He等(2006)的研究也表明在青藏高原植物的叶片氮含量和光合能力较全球平均数据高,而单位面积叶质量和在指定基于质量的氮含量下基于质量的叶片光合能力稍低,但是各叶性状间的关系与全球尺度下的关系格局相一致。韩文轩等(Han et al., 2005)对全国753个物种的综合分析表明,植物叶片的氮和磷含量随海拔升高而增加,氮和磷比值没有明显变化;虽然中国植被的氮和磷比值较全球平均值高,但中国各个植物功能群间的氮、磷含量及氮和磷的比值与全球水平较一致,这些性状在中国植被中存在一定的生物地理格局。张林和罗天祥(2004)综述了叶寿命及其相关叶性状如比叶面积和叶氮含量间的相互关系以及这些性状对环境的适应策略,并介绍了叶寿命模型,具有重要的指导意义。

放牧是我国北方草原的主要干扰形式。科尔沁沙质草地上,禾本科植物的平均盖度对重牧敏感,牧草高度随放牧强度的增加有规律的降低,且多年生牧草的高度对放牧强度最敏感(张铜会等,2004)。C3和C4植物对放牧的耐受程度不同,C4植物更能耐受由放牧导致的环境胁迫(干旱和盐化等),草地物种中C4植物的比例和C4/C3植物的比值均随放牧强度增加而增加(Wang,2002d)。草地利用方式对群落组成也有明显影响,如能影响植物生物量的积累(白永飞等,2002)。黄土高原自然植被演替早期和中期优势植物种的具体性状和与土壤营养元素变化相关的植物性状,如生活史对策、克隆能力、扩散能力、种子传播模式等也进行了研究(Wang,2002b)。此外,刘志民等(2002)综述了干扰与植被的关系,从多方面论述了植物种对干扰的适应,如种子性状、再萌芽能力、物候、形态特征、生活史等。

然而,生态系统功能与植物功能性状关系的研究目前还较欠缺,植物性状功能表达的尝试性工作开始于中国东北样带草原植物性状与降水梯度和资源利用等的关系(Wang & Ni, 2005a,2005b)以及青藏高原植物生理生态学功能性状的研究(Luo et al., 2005;He et al., 2006),沿环境梯度的植物功能性状研究将对我国的全球变化领域的研究有所贡献。

6 研究展望

植物功能性状在植被生态学、全球变化生态学、恢复生态学和古生态学等领域应用广泛。在植被模型与模拟方面,陆地生态系统对全球变化的响应模拟研究需要以植物功能型作为植物种和生态系统之间的桥梁,而划分植物功能型的主要依据之一就是植物功能性状(Díaz & Cabido,1997;Roderick et al., 2000;Lavorel & Garnier, 2002)。植物功能性状还用于许多其它模型研究中,如不同火烧制度对以不同性状为特征的植物功能群的影响模拟(Franklin et al.,2001)以及利用植物功能性状和植物功能型相结合预测火灾对生态系统的影响(Pausas,1999;Boer & Stafford Smith, 2003;de Groot et al.,2003)、预测木本植物在顶极森林群落中的优势度(Koike,2001)和利用植物生活史性状模拟物种灭绝时间(Wilcox & Possingham, 2002)等。

在气候与植被重建方面,根据某些植物性状与现代气候的关系可以估测现代气候特征,如在美国佛罗里达和康乃提克木本植物的叶片形态和木材解剖性状与年平均气温关系密切,由此可建立统计模型模拟现代气候特征(Wiemann et al., 2001)。这种植物性状与气候因子的关系应用可以拓展到孢粉研究中,利用表土花粉反推现代气候,利用地层花粉定量重建古气候。如地中海地区602个地点的表土花粉植物性状与植物有效湿度和冬季最冷月平均温度有很好的相关性,由此可建立孢粉与气候的定量关系(Barboni et al., 2004)。同样,植物性状可以刻划孢粉类群的特征,用以定量重建古植被类型和分布格局,这在欧洲地区已经得到很好的应用(Gachet et al., 2003;Gritti et al., 2004)。

在环境监测与评价、生态保护和恢复方面,植物性状的变异可以作为监测环境质量的有效生物学工具。澳大利亚葡萄藤的最大节间长度、叶片大小和叶片形状的变化是对盐胁迫比较敏感的响应,可作为葡萄园含盐度的监测工具(Sinclair & Hoffmann, 2003)。土地退化、荒漠化和过度放牧等环境问题也可以利用植物功能性状特征进行评价。通过把15种多年生植物的性状归并为3类:竞争能力、胁迫耐受性和杂草性,可以揭示非洲北部干旱区的植被变化,从而评价土地退化和生态恢复问题(Jauffret & Visser, 2003)。英国低地草原生态恢复的成效可以用相关植物性状作为指示,在植被恢复过程中能够成功定居和生存发展下去的植物需要好的拓展能力、强竞争力、无性繁殖能力和肥沃的生境(Pywell et al., 2003)。

为更好地研究植物功能性状与环境、生态系统功能之间的关系,更好地利用它们作为生态规划、自然保护和生态恢复等的有用工具,科学家们已经和正在努力建设植物性状库(Trait base),如欧洲西北部植物区系的生活史性状库LEDA(Life-history traits of the Northwest European flora:a database, www.Leda-database.org),选择了26种植物性状来描述植物动态变化的关键特征(Knevel et al., 2003)。另一个与入侵生态学有关的植物性状库为BiolFlor(www.Biolflor.de),该性状库包含了德国3 659个植物种的450 000条记录,将植物总体分为本地种和外来种,对66个性状进行了描述。

植物功能性状及其与环境、生态系统结构和功能的研究虽然已经取得了很多进展,建立起了一套有效的研究方法和理论体系,但仍然有许多问题需要解决。首先,要根据具体的研究环境、时空尺度和目的来选择合适的功能性状;由于性状间相互联系,必须采用多个性状才能建立全面的植物功能性状与环境、生态系统功能之间的联系。其次,目前很多植物功能性状的测量方法还不成熟,很多性状较难获得,如茎干性状、地下性状等,测量方法和技术手段还需要改进。再者,自然环境是复杂多样的,某个因子的驱动作用往往与其它多个环境因子相互牵连,因此植物功能性状与环境的关系需要考虑多因子的共同作用。而且,很多生态系统功能之间也是相互关联的,其与植物功能性状的关系也是多层次、多时空尺度的;尤其是目前人类活动所造成的全球变化对环境的影响日渐突出,研究人为干扰和环境变化对植物功能性状的影响就更为重要。

我国有着特殊的气候、植被条件,又有着长期的人为干扰和土地利用历史,为植物功能性状的研究提供了得天独厚的优势,既可进行国家尺度和温度、降水等气候梯度上的研究,又可进行区域和局域尺度的探讨。为此,应逐步建立和完善适合于我国的功能性状体系和研究方法,在不同的时间和空间尺度上进行细致的植物性状和植物功能性状研究,为揭示我国植被格局变化的环境和生态系统过程驱动机制、更好的进行生态保护和生态恢复奠定良好的基础。

参考文献

Ackerly DD, Knight CA, Weiss SB, Barton K, Starmer KP (2002).

Leaf size, specific leaf area and microhabitat distribution of chaparral woody plants: contrasting patterns in species level and community level analyses

Oecologia, 130,449-457.

DOI      URL     PMID      [本文引用: 1]

We examined variation in leaf size and specific leaf area (SLA) in relation to the distribution of 22 chaparral shrub species on small-scale gradients of aspect and elevation. Potential incident solar radiation (insolation) was estimated from a geographic information system to quantify microclimate affinities of these species across north- and south-facing slopes. At the community level, leaf size and SLA both declined with increasing insolation, based on average trait values for the species found in plots along the gradient. However, leaf size and SLA were not significantly correlated across species, suggesting that these two traits are decoupled and associated with different aspects of performance along this environmental gradient. For individual species, SLA was negatively correlated with species distributions along the insolation gradient, and was significantly lower in evergreen versus deciduous species. Leaf size exhibited a negative but non-significant trend in relation to insolation distribution of individual species. At the community level, variance in leaf size increased with increasing insolation. For individual species, there was a greater range of leaf size on south-facing slopes, while there was an absence of small-leaved species on north-facing slopes. These results demonstrate that analyses of plant functional traits along environmental gradients based on community level averages may obscure important aspects of trait variation and distribution among the constituent species.

Adler PB, Milchunas DG, Lauenroth WK, Sala OE, Burke IC (2004).

Functional traits of graminoids in semi-arid steppes: a test of grazing histories

Journal of Applied Ecology, 41,653-663.

DOI      URL     [本文引用: 1]

Aerts R (1995).

The advantages of being evergreen

Trends in Ecology & Evolution, 10,402-407.

DOI      URL     PMID      [本文引用: 1]

Recent research shows that the dominance of evergreen species in nutrient-poor environments can be explained by their low nutrient loss rates. From this work It appears that the plant traits that are associated with low nutrient loss rates lead to low maximum-dry-matter production and to low rates of litter decomposition. This suggests a positive feedback between the evergreen habit and low nutrient availability. The growth characteristics of evergreens lead to a low responsiveness to environmental changes. As a result, global warming may lead to changes in the distribution of evergreens.

Altesor A, Pezzani F, Grun S, Rodrguez C (1999).

Relationship between spatial strategies and morphological attributes in a Uruguayan grassland: a functional approach

Journal of Vegetation Science, 10,457-462.

DOI      URL     [本文引用: 1]

Arredondo JT, Schnyder H (2003).

Components of leaf elongation rate and their relationship to specific leaf area in contrasting grasses

New Phytologist, 158,305-314.

DOI      URL     [本文引用: 1]

Badeck FW, Bondeau A, Bøttcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004).

Responses of spring phenology to climate change

New Phytologist, 162,295-309.

DOI      URL     [本文引用: 2]

Bai YF (白永飞), Zhang LX(张丽霞), Zhang Y (张焱), Chen ZZ (陈佐忠) (2002).

Changes in plant functional composition along gradients of precipitation and temperature in the Xilin River Basin, Inner Mongolia

Acta Phytoecologica Sinica (植物生态学报), 26,308-316. (in Chinese with English abstract)

URL     [本文引用: 2]

用样带法调查了草原群落植物功能群组成沿水热梯度的变化。结果表明,随着海拔高度的降低,降水量的减少,热量和干燥度的增加,群落植物生活型功能群组成中,多年生杂类草的相对多度逐渐减少,而多年生丛生禾草的相对多度逐渐增加,多年生丛生禾草对多年生杂类草具有强烈的生态替代作用。在植物生态类群功能群组成中,中旱生植物的作用逐渐减弱,而旱生植物的作用显著增强。草地的利用方式对群落组成具有重要的影响,永久样地和割草场中不耐牧种的相对生物量显著地高于放牧场,而放牧场中耐牧种的相对生物量则显著地高于永久样地和割草场。受草地利用

Barboni D, Harrison SP, Bartlein PJ, Jalut G, New M, Prentice IC, Sanchez-Go†i MF, Spessa A, Davis B, Stevenson AC (2004).

Relationships between plant traits and climate in the Mediterranean region: a pollen data analysis

Journal of Vegetation Science, 15,635-646.

DOI      URL     [本文引用: 3]

Boer M, Stafford Smith M, (2003).

A plant functional approach to the prediction of changes in Australian rangeland vegetation under grazing and fire

Journal of Vegetation Science, 14,333-344.

DOI      URL     [本文引用: 1]

Burns KC (2004).

Patterns in specific leaf area and the structure of a temperate heath community

Diversity and Distributions, 10,105-112.

DOI      URL     [本文引用: 1]

Casper BB, Forseth IN, Kempenich H, Seltzer S, Xavier K (2001).

Drought prolongs leaf life span in the herbaceous desert perennial Cryptantha flava

Functional Ecology, 15,740-747.

DOI      URL     [本文引用: 1]

Castro J (1999).

Seed mass versus seedling performance in Scots pine: a maternally dependent trait

New Phytologist, 144,153-161.

DOI      URL     [本文引用: 1]

Castro-Díez P, Montserrat-Martí G, Cornelissen JHC (2003).

Trade-offs between phenology, relative growth rate, life form and seed mass among 22 Mediterranean woody species

Plant Ecology, 166,117-129.

DOI      URL     [本文引用: 1]

Mediterranean woody plants exhibit a wide phenological diversity which cannot be explained just on the basis of climatic constraints. We assessed the role of relative growth rate (RGR), life form, seed and fruit mass as potential constraints of plant phenology. In a comparison of traits of 22 Mediterranean woody plant species, the duration of the primary shoot growing period decreased from climbers to shrubs and to trees. A hypothesised negative association between RGR and primary shoot growth duration did not emerge in our species set. The mechanism underlying phenological differences between plant life forms might relate to differences in the proportion of respiring to photosynthetic tissues, which decreases from climbers to trees. It is suggested that the degree of shoot preformation within the bud correlates with primary shoot growth duration, but not with RGR. Development of big fruits and seeds competes for carbon with vegetative growth. Indeed, species with bigger seeds and fruits exhibited shorter primary shoot growing periods, which tended to overlap with flower bud formation and flowering periods. We suggest that duration of primary shoot growth allow to short out the species between two extreme growth strategies: The conservative one would be characterised by a concentration of the primary shoot growth into a short period, free of frosts and droughts, and by a diversion of part of the current resources to assure next year's growth. The opportunistic strategy, on the other extreme, would be defined by the allocation of resources to current growth whenever they are available, achieving longer growing periods at the expense of higher risk of tissue damage. These strategies should have been selected for in environments of predictable and unpredictable resource availability, respectively.]]>

Castro-Díez P, Villar-Salvador P, Pérez-Rontomé C, Maestro-Martínez M, Montserrat-Martí G (1997).

Leaf morphology and leaf chemical composition in three Quercus (Fagaceae)species along a rainfall gradient in NE Spain

Trees, 11,127-134.

[本文引用: 1]

Cavender-Bares J, Kitajima K, Bazzaz FA (2004).

Multiple traits associations in relation to habitat differentiation among 17 Floridian oak species

Ecological Monographs, 74,635-662.

DOI      URL     [本文引用: 1]

Chabot BF, Hicks DJ (1982).

The ecology of leaf life spans

Annual Review of Ecology and Systematics, 13,229-259.

DOI      URL     [本文引用: 2]

Chown SL, Gaston KJ, Robinson D (2004).

Macrophysiology: large-scale patterns in physiological traits and their ecological implications

Functional Ecology, 18,159-167.

DOI      URL     [本文引用: 1]

Comas LH, Eissenstat DM (2004).

Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species

Functional Ecology, 18,388-397.

DOI      URL     [本文引用: 1]

Condit R, Watts K, Bohlman SA, Pérez R, Hubbell SP, Foster RB (2000).

Quantifying the deciduousness of tropical forest canopies under varying climates

Journal of Vegetation Science, 11,649-658.

DOI      URL     [本文引用: 1]

Cornelissen JHC, Aerts R, Cerabolini B, Werger MJA,van der Heijden MGA (2001).

Carbon cycling traits of plant species are linked with mycorrhizal strategy

Oecologia, 129,611-619.

DOI      URL     PMID      [本文引用: 1]

Ecosystem carbon cycling depends strongly on the productivity of plant species and the decomposition rates of the litter they produce. We tested the hypothesis that classifying plant functional types according to mycorrhizal association explains important interspecific variation in plant carbon cycling traits, particularly in those traits that feature in a hypothesized feedback between vegetation productivity and litter turnover. We compared data from standardized 'screening' tests on inherent potential seedling relative growth rate (RGR), foliar nutrient concentrations, and leaf litter decomposability among 83 British plant species of known mycorrhizal type. There was important variation in these parameters between mycorrhizal plant types. Plant species with ericoid mycorrhiza showed consistently low inherent RGR, low foliar N and P concentrations, and poor litter decomposability; plant species with ectomycorrhiza had an intermediate RGR, higher foliar N and P, and intermediate to poor litter decomposability; plant species with arbuscular-mycorrhiza showed comparatively high RGR, high foliar N and P, and fast litter decomposition. Within the woody species subset, differentiation in RGR between mycorrhizal types was mostly confounded with deciduous versus evergreen habit, but the overall differentiation in litter mass loss between mycorrhizal types remained strong within each leaf habit. These results indicate that, within a representative subset of a temperate flora, ericoid and ectomycorrhizal strategies are linked with low and arbuscular-mycorrhizal species with high ecosystem carbon turnover. The incorporation of mycorrhizal association into current functional type classifications is a valuable tool in the assessment of plant-mediated controls on carbon and nutrient cycling.

Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H (2003).

A handbook of protocols for standardized and easy measurement of plant functional traits worldwide

Australian Journal of Botany, 51,335-380.

DOI      URL     [本文引用: 4]

Craine JM, Tilman D, Wedin D, Reich P, Tjoelker M, Knops J (2002).

Functional traits, productivity and effects on nitrogen cycling of 33 grassland species

Functional Ecology, 16,563-574.

DOI      URL     [本文引用: 2]

Craine JM, Lee WG (2003).

Covariation in leaf and root traits for native and non-native grasses along analtitudinal gradient in New Zealand

Oecologia, 134,471-478.

DOI      URL     PMID      [本文引用: 2]

Across 30 grassland sites in New Zealand that ranged from native alpine grasslands to low elevation improved pastures, there were consistent patterns of leaf and root traits and significant differences between native and non-native grasses. Plants of high altitude sites have low N concentrations in both their leaves and roots, have thick leaves and roots, yet no differences in tissue density or photosynthetic water use efficiency when compared to plants of low altitude sites. Both the leaves and roots of the low altitude plants were enriched in (15)N relative to the plants of higher altitude, indicating that the low-N set of traits is associated with a more closed N cycle at high altitude. A second independent set of correlations shows that plants of wetter habitats have lower photosynthetic water use efficiency (more negative partial differential (13)C) and lower leaf and root tissue density than the plants of drier sites. For both leaves and roots, plants of native species consistently had traits associated with lower resource availability: lower N concentrations, denser tissues, more negative partial differential (15)N, and more positive partial differential (13)C than non-native species. If root %N is correlated with root longevity as has been shown in other systems, root longevity may be able to be predicted from simple measurements of leaf %N, though a hysteresis in the relationship between leaf and root N concentrations may make prediction of high longevity roots difficult.

Craine JM, Lee WG, Bond WJ, Williams RJ, Johnson LC (2005).

Environmental constraints on a global relationship among leaf and root traits of grasses

Ecology, 86,12-19.

DOI      URL     [本文引用: 1]

Craine JM, Wedin DA, Reich PB (2001).

Grassland species effects on soil CO 2 flux track the effects of elevated CO 2 and nitrogen

New Phytologist, 150,425-434.

DOI      URL     [本文引用: 1]

de Groot WJ, Bothwell PM, Carlsson DH, Logan KA (2003).

Simulating the effects of future fire regimes on western Canadian boreal forest

Journal of Vegetation Science, 14,355-364.

DOI      URL     [本文引用: 1]

Díaz S, Cabido M (1997).

Plant functional types and ecosystem function in relation to global change

Journal of Vegetation Science, 8,463-474.

DOI      URL     [本文引用: 2]

Díaz S, Cabido M (2001).

Vive la difference: plant functional diversity matters to ecosystem processes

Trends in Ecology & Evolution, 16,646-655.

DOI      URL     [本文引用: 3]

Díaz S, Cabido M, Casanoves F (1998).

Plant functional traits and environmental filters at a regional scale

Journal of Vegetation Science, 9,113-122.

DOI      URL     [本文引用: 2]

Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Funes G, Hamzehee B, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany FA, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-Campo J, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR (2004).

The plant traits that drive ecosystems: evidence from three continents

Journal of Vegetation Science, 15,295-304.

DOI      URL     [本文引用: 1]

Díaz S, McIntyre S, Lavorel S, Pausas JG (2002).

Does hairiness matter in Harare?Resolving controversy in global comparisons of plant traits responses to ecosystem disturbance

New Phytologist, 154,1-14.

DOI      URL     [本文引用: 2]

Díaz S, Noy-Meir I, Cabido M (2001).

Can grazing response of herbaceous plants be predicted from simple vegetative traits?

Journal of Applied Ecology, 38,497-508.

DOI      URL     [本文引用: 2]

Dirnbøck T, Dullinger S (2004).

Habitat distribution models, spatial autocorrelation, functional traits and dispersal capacity of alpine plant species

Journal of Vegetation Science, 15,77-84.

DOI      URL     [本文引用: 1]

Dormann CF, Woodin SJ (2002).

Climate change in the Arctic: using plant functional types in a meta-analysis of field experiments

Functional Ecology, 16,4-17.

DOI      URL     [本文引用: 3]

Eamus D (1999).

Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics

Trees, 14,11-16.

[本文引用: 1]

Eriksson O, Jakobsson A (1998).

Abundance, distribution and life histories of grassland plants: a comparative study of 81 species

Journal of Ecology, 86,922-933.

DOI      URL     [本文引用: 1]

Eviner VT, Chapin FS Ⅲ (2003).

Functional matrix: a conceptual framework for predicting multiple plant effects on ecosystem processes

Annual Review of Ecology and Systematics, 34,455-485.

[本文引用: 2]

Fitzjarrald DR, Acevedo OC, Moore KE (2001).

Climatic consequences of leaf presence in the eastern United States

Journal of Climate, 14,598-614.

[本文引用: 1]

Fonseca CR, Overton JM, Collins B, Westoby M (2000).

Shifts in trait-combinations along rainfall and phosphorus gradients

Journal of Ecology, 88,964-977.

[本文引用: 1]

Franklin J, Syphard AD, Mladenoff DJ, He HS, Simons DK, Martin RP, Deutschman D, O'Leary JF (2001).

Simulating the effects of different fire regimes on plant functional groups in Southern California

Ecological Modelling, 142,261-283.

[本文引用: 1]

Gachet S, Brewer S, Cheddadi R, Davis B, Gritti E, Guiot J (2003).

A probabilistic approach to the use of pollen indicators for plant attributes and biomes: an application to European vegetation at 0 and 6 ka.

Global Ecology and Biogeography, 12,103-118.

[本文引用: 1]

Garnier E, Cortez J, Billès G, Navas ML, Roumet C, Debussche M, Laurent G, Blanchard A, Aubry D, Bellmann A, Neill C, Toussaint JP (2004).

Plant functional markers capture ecosystem properties during secondary succession

Ecology, 85,2630-2637.

[本文引用: 2]

Garnier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas ML (2001).

Consistency of species ranking based on functional leaf traits

New Phytologist, 152,69-83.

[本文引用: 1]

Gerlach JD Jr, Rice KJ (2003).

Testing life history correlations of invasiveness using congeneric plant species

Ecological Applications, 13,167-179.

[本文引用: 1]

Gratani L, Meneghini M, Pesoli P, Crescente MF (2003).

Structural and functional plasticity of Quercus ilex seedlings of different provenances in Italy

Trees, 17,515-521.

[本文引用: 1]

Gritti ES, Gachet S, Sykes MT, Guiot J (2004).

An extended probabilistic approach of plant vital attributes: an application to European pollen records at 0 and 6 ka

Global Ecology and Biogeography, 13,519-533.

[本文引用: 1]

Han WX, Fang JY, Guo DL, Zhang Y (2005).

Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China

New Phytologist, 168,377-385.

[本文引用: 1]

He JS, Wang ZH, Wang XP, Schmid B, Zuo WY, Zhou M, Zheng CY, Wang MF, Fang JY (2006).

A test of the generality of leaf trait relationships on the Tibetan Plateau

New Phytologist, 170,835-848.

[本文引用: 2]

Hodgson JG, Wilson PJ, Hunt R, Grime JP, Thompson K (1999).

Allocating C-S-R plant functional types: a soft approach to a hard problem

Oikos, 85,282-294.

[本文引用: 1]

Housman DC, Zitzer SF, Huxman TE, Smith SD (2003).

Functional ecology of shrub seedlings after a natural recruitment event at the Nevada Desert FACE Facility

Global Change Biology, 9,718-728.

[本文引用: 1]

Hunt R, Hand DW, Hannah MA, Neal AM (1991).

Response to CO 2 enrichment in 27 herbaceous species

Functional Ecology, 5,410-421.

[本文引用: 1]

Hättenschwiler S (2001).

Tree seedling growth in natural deep shade: functional traits related to interspecific variation in response to elevated CO 2

Oecologia, 129,31-42.

DOI      URL     PMID      [本文引用: 1]

The mechanisms for species-specific growth responses to changes in atmospheric CO2 concentration within narrow ecological groups of species, such as shade-tolerant, late-successional trees, have rarely been addressed and are not well understood. In this study the underlying functional traits for interspecific variation in the biomass response to elevated CO2 were explored for seedlings of five late-successional temperate forest tree species (Fagus sylvatica, Acer pseudoplatanus, Quercus robur, Taxus baccata, Abies alba). The seedlings were grown in the natural forest understorey in very low and low light microsites (an average of 1.3% and 3.4% full sun in this experiment), and were exposed to either current ambient CO2 concentrations, 500, or 660 microl CO2 l(-1) in 36 open-top chambers (OTC) over two growing seasons. Even across the narrow range of successional status and shade tolerance, the study species varied greatly in photosynthesis, light compensation point, leaf dark respiration (R d), leaf nitrogen concentration, specific leaf area (SLA), leaf area ratio (LAR), and biomass allocation among different plant parts, and showed distinct responses to CO2 in these traits. No single species combined all characteristics traditionally considered as adaptive to low light conditions. At very low light, the CO2 stimulation of seedling biomass was related to increased LAR and decreased R d, responses that were observed only in Fagus and Taxus. At slightly higher light levels, interspecific differences in the biomass response to elevated CO2 were reversed and correlated best with leaf photosynthesis. The data provided here contribute to a mechanistic process-based understanding of distinct response patterns in co-occurring tree species to elevated CO2 in natural deep shade. I conclude that the high variation in physiological and morphological traits among late-successional species, and the consequences for their responses to slight changes in resource availability, have previously been underestimated. The commonly used broad definitions of functional groups of species may not be sufficient for the understanding of recruitment success and dynamic changes in species composition of old-growth forests in response to rising concentrations of atmospheric CO2.

Hølscher D, Schmitt S, Kupfer K (2002).

Growth and leaf traits of four broad-leaved tree species along a hillside gradient

Forstwissenschaftliches Centralblatt, 121,229-239.

[本文引用: 1]

Jauffret S, Visser M (2003).

Assigning life-history traits to plant species to better qualify arid land degradation in Presaharian Tunisia

Journal of Arid Environments, 55,1-28.

[本文引用: 1]

Juhrbandt J, Leuschner C, Hølscher D (2004).

The relationship between maximal stomatal conductance and leaf traits in eight Southeast Asian early successional tree species

Forest Ecology and Management, 202,245-256.

[本文引用: 1]

Kahmen S, Poschlod P (2004).

Plant functional trait responses to grassland succession over 25 years

Journal of Vegetation Science, 15,21-32.

DOI      URL     [本文引用: 1]

Knevel IC, Bekker RM, Bakker JP, Kleyer M (2003).

Life history traits of the Northwest European flora: the LEDA database

Journal of Vegetation Science, 14,611-614.

[本文引用: 1]

Koike F (2001).

Plant traits as predictors of woody species dominance in climax forest communities

Journal of Vegetation Science, 12,327-336.

[本文引用: 1]

Lake JC, Leishman MR (2004).

Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores

Biological Conservation, 117,215-226.

[本文引用: 1]

Landsberg J, Lavorel S, Stol J (1999).

Grazing response groups among understory plants in arid rangelands

Journal of Vegetation Science, 10,683-696.

[本文引用: 1]

Lavorel S, Garnier E (2002).

Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail

Functional Ecology, 16,545-556.

[本文引用: 4]

Lavorel S, McIntyre S, Grigulis K (1999).

Plant response to disturbance in a Mediterranean grassland: how many functional groups?

Journal of Vegetation Science, 10,661-672.

[本文引用: 1]

Leishman MR (1999).

How well do plant traits correlate with establishment ability? Evidence from a study of 16 calcareous grassland species

New Phytologist, 141,487-496.

[本文引用: 1]

Liu ZM (刘志民), Zhao XY (赵晓英), Liu XM (刘新民) (2002).

Relationship between disturbance and vegetation

Acta Prataculturae Sinica (草业学报), 11(4),1-9. (in Chinese with English abstract)

[本文引用: 1]

Luo TX, Luo J, Pan YD (2005).

Leaf traits and associated ecosystem characteristics across subtropical and timberline forests in the Gongga Mountains, Eastern Tibetan Plateau

Oecologia, 142,261-273.

URL     PMID      [本文引用: 2]

Mabry C, Ackerly D, Gerhardt F (2000).

Landscape and species-level distribution of morphological and life history traits in a temperate woodland flora

Journal of Vegetation Science, 11,213-224.

[本文引用: 1]

Mark AF, Dickinson KJM, Allen J, Smith R, West CJ (2001).

Vegetation patterns, plant distribution and life forms across the alpine zone in southern Tierra del Fuego, Argentina

Austral Ecology, 26,423-440.

[本文引用: 1]

McIntyre S, Lavorel S (2001).

Livestock grazing in subtropical pastures: steps in the analysis of attribute response and plant functional types

Journal of Ecology, 89,209-226.

[本文引用: 2]

McIntyre S, Lavorel S, Landsberg J, Forbes TDA (1999).

Disturbance response in vegetation—towards a global perspective on functional traits

Journal of Vegetation Science, 10,621-630.

[本文引用: 3]

McIntyre S, Lavorel S, Tremont RM (1995).

Plant life-history attributes: their relationship to disturbance response in herbaceous vegetation

Journal of Ecology, 83,31-44.

[本文引用: 1]

Miller AE, Bowman WD (2002).

Variation in nitrogen-15 natural abundance and nitrogen uptake traits among co-occurring alpine species: do species partition by nitrogen form?

Oecologia, 130,609-616.

DOI      URL     PMID      [本文引用: 1]

In the N-limited alpine tundra, plants may utilize a diversity of N sources (organic and inorganic N) in order to meet their nutritional requirements. To characterize species-level differences in traits related to N acquisition, we analyzed foliar delta(15)N, nitrate reductase activity (NRA) and mycorrhizal infection in co-occurring alpine species during the first half of the growing season and compared these traits to patterns of N uptake using a (15)N ((15)N-NH4(+), (15)N-NO3(-)) or (13)C,(15)N ([1]-(13)C-(15)N-glycine) tracer addition in the greenhouse. (13)C enrichment in belowground tissue indicated that all species were capable of taking up labeled glycine, although only one species showed uptake of glycine potentially exceeding that of inorganic N. Species showing the most depleted foliar delta(15)N and elevated NRA in the field also tended to show relatively high rates of NO3(-) uptake in the greenhouse. Likewise, species showing the most enriched foliar delta(15)N also showed high rates of NH4(+) uptake. The ratio of NO3(-):NH4(+) uptake rates and growth rate explained 64% and 72% of the variance in foliar delta(15)N, respectively, suggesting that species differ in the ability to take up NO3(-) and NH4(+) in the field and that such differences may enable species to partition soil N on the basis of N form.

Miyazawa K, Lechowicz MJ (2004).

Comparative seeding ecology of eight North America Spruce ( Picea) species in relation to their geographic ranges

Annals of Botany, 94,635-644.

DOI      URL     PMID      [本文引用: 2]

BACKGROUND AND AIMS: Allowing for dispersal limitation, a species' geographic distribution should reflect its environmental requirements. Comparisons among closely related species should reveal adaptive differentiation in species characteristics that are consistent with their differences in geographic distribution. This expectation was tested by comparing characteristics of seedlings of spruce species in relation to environmental factors representative of their current natural ranges. METHODS: Seedlings were grown from a total of 34 populations representing eight North American spruce (Picea) species in a controlled environment chamber for 140 d. Traits related to the potential of seedling establishment, including tolerance to stress events (high temperature, desiccation) were evaluated. Correlations were sought between these characteristics and modal values of latitude, aridity and continentality in the geographic range of each species. KEY RESULTS: Many seedling traits changed significantly in response to stress events, but only the response of chlorophyll concentration differed significantly among species. Components of seedling growth were good correlates of species distribution. Seedling relative growth rate (RGR) and specific leaf area (SLA) were positively correlated with latitude, and leaf weight ratio (LWR) negatively correlated with aridity. Seed mass was negatively correlated with latitude. CONCLUSIONS: Relationships found between seedling traits and geographical variation in environmental conditions suggest that factors such as temperature regime, water availability and perhaps litter depth affect species range in North American spruces. Seedling characteristics appear to be elements in a reasonably distinct environmental niche for each spruce species at the continental scale.

Moles AT, Falster DS, Leishman MR, Westoby M (2004).

Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime

Journal of Ecology, 92,384-396.

[本文引用: 1]

Moles AT, Westoby M (2004).

Seedling survival and seed size: a synthesis of the literature

Journal of Ecology, 92,372-383.

[本文引用: 1]

Murray BR, Brown AHD, Dickman CR, Crowther MS (2004).

Geographical gradients in seed mass in relation to climate

Journal of Biogeography, 31,379-388.

[本文引用: 1]

Murray BR, Thrall PH, Gill AM, Nicotra AB (2002).

How plant life-history and ecological traits relate to species rarity and commonness at varying spatial scales

Austral Ecology, 27,291-310.

[本文引用: 1]

Nakamura T, Uemuea S, Yabe K (2002).

Variation in nitrogen-use traits within and between five Carex species growing in the lowland mires of Northern Japan

Functional Ecology, 16,67-72.

DOI      URL     [本文引用: 1]

Navas ML, Ducout B, Roumet C, Richarte J, Garnier J, Garnier E (2003).

Leaf life span, dynamics and construction cost of species from Mediterranean old-field differing in successional status

New Phytologist, 159,213-228.

[本文引用: 1]

Ne'eman G, Goubitz S, Nathan R (2004).

Reproductive traits of Pinus halepensis in the light of fire—a critical review

Plant Ecology, 171,69-79.

[本文引用: 1]

Pakeman RJ (2004).

Consistency of plant species and traits responses to grazing along a productivity gradient: a multi-site analysis

Journal of Ecology, 92,893-905.

DOI      URL     [本文引用: 1]

Pausas JG (1999).

Response of plant functional types to changes in fire regime in Mediterranean ecosystems: a simulation approach

Journal of Vegetation Science, 10,717-722.

DOI      URL     [本文引用: 1]

Pausas JG, Bradstock RA, Keith DA, Keeley JE (2004).

Plant functional traits in relation to fire in crown-fire ecosystems

Ecology, 85,1085-1100.

DOI      URL     [本文引用: 2]

Pavón NP, Hernández-Trejo H, Rico-Gray V (2000).

Distribution of plant life forms along an altitudinal gradient in the semi-arid valley of Zapotitlán, Mexico

Journal of Vegetation Science, 11,39-42.

[本文引用: 1]

Penuelas J, Filella I, Comas P (2002).

Changed plant and animal life cycle from 1952 to 2000 in the Mediterranean region

Global Change Biology, 8,531-544.

[本文引用: 2]

Poorter L, Bongers F, Sterck FJ, Wøll H (2003).

Architecture of 53 rain forest tree species differing in adult stature and shade tolerance

Ecology, 84,602-608.

[本文引用: 1]

Poorter H (1993).

Interspecific variation in the growth response of plants to an elevated ambient CO 2 concentration

Vegetatio, 104 /105,77-97.

DOI      URL     [本文引用: 1]

Post E, Stenseth NC (1999).

Climatic variability, plant phenology, and northern ungulates

Ecology, 80,1322-1339.

[本文引用: 1]

Prior LD, Bowman DMJS, Eamus D (2004).

Seasonal differences in leaf attributes in Australian tropical tree species: family and habitat comparisons

Functional Ecology, 18,707-718.

[本文引用: 1]

Pyankov VI, Gunin PD, Tsoog S, Black CC (2000).

C 4 plants in the vegetation of Mongolia: their natural occurrence and geographical distribution in relation to climate

Oecologia, 123,15-31.

DOI      URL     PMID      [本文引用: 1]

The natural geographical occurrence, carbon assimilation, and structural and biochemical diversity of species with C4 photosynthesis in the vegetation of Mongolia was studied. The Mongolian flora was screened for C4 plants by using (13)C/(12)C isotope fractionation, determining the early products of (14)CO2 fixation, microscopy of leaf mesophyll cell anatomy, and from reported literature data. Eighty C4 species were found among eight families: Amaranthaceae, Chenopodiaceae, Euphorbiaceae, Molluginaceae, Poaceae, Polygonaceae, Portulacaceae and Zygophyllaceae. Most of the C4 species were in three families: Chenopodiceae (41 species), Poaceae (25 species) and Polygonaceae, genus Calligonum (6 species). Some new C4 species in Chenopodiaceae, Poaceae and Polygonaceae were detected. C4 Chenopodiaceae species make up 45% of the total chenopods and are very important ecologically in saline areas and in cold arid deserts. C4 grasses make up about 10% of the total Poaceae species and these species naturally concentrate in steppe zones. Naturalized grasses with Kranz anatomy,of genera such as Setaria, Echinochloa, Eragrostis, Panicum and Chloris, were found in almost all the botanical-geographical regions of Mongolia, where they commonly occur in annually disturbed areas and desert oases. We analyzed the relationships between the occurrence of C4 plants in 16 natural botanical-geographical regions of Mongolia and their major climatic influences. The proportion of C4 species increases with decreasing geographical latitude and along the north-to-south temperature gradient; however grasses and chenopods differ in their responses to climate. The abundance of Chenopodiaceae species was closely correlated with aridity, but the distribution of the C4 grasses was more dependent on temperature. Also, we found a unique distribution of different C4 Chenopodiaceae structural and biochemical subtypes along the aridity gradient. NADP-malic enzyme (NADP-ME) tree-like species with a salsoloid type of Kranz anatomy, such as Haloxylon ammodendron and Iljinia regelii, plus shrubby Salsola and Anabasis species, were the plants most resistant to ecological stress and conditions in highly arid Gobian deserts with less than 100 mm of annual precipitation. Most of the annual C4 chenopod species were halophytes, succulent, and occurred in saline and arid environments in steppe and desert regions. The relative abundance of C3 succulent chenopod species also increased along the aridity gradient. Native C4 grasses were mainly annual and perennial species from the Cynodonteae tribe with NAD-ME and PEP-carboxykinase (PEP-CK) photosynthetic types. They occurred across much of Mongolia, but were most common in steppe zones where they are often dominant in grazing ecosystems.

Pywell RF, Bullock JM, Roy DB, Warman L, Walker KJ, Rothery P (2003).

Plant traits as predictors of performance in ecological restoration

Journal of Applied Ecology, 40,65-77.

[本文引用: 1]

Reich PB, Ellsworth DS, Walters MB, Vose JM, Gresham C, Volin JC, Bowman WD (1999).

Generality of leaf trait relationships: a test across six biomes

Ecology, 80,1955-1969.

[本文引用: 2]

Reich PB, Tilman D, Craine J, Ellsworth D, Tjoelker MG, Knops J, Wedin D, Naeem S, Bahauddin D, Goth J, Bengtson W, Lee TD (2001).

Do species and functional groups differ in acquisition and use of C, N and water under varying atmospheric CO 2 and N availability regimes?A field test with 16 grassland species

New Phytologist, 150,435-448.

[本文引用: 1]

Reich PB, Uhl C, Walters MB, Prugh L, Ellsworth DS (2004).

Leaf demography and phenology in Amazonian rain forest: a census of 40000 leaves of 23 tree species

Ecological Monographs, 74,3-23.

[本文引用: 1]

Reich PB, Walters MB (1992).

Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems

Ecological Monographs, 62,365-392.

[本文引用: 1]

Reich PB, Walters MB, Ellsworth DS (1997).

From tropics to tundra: global convergence in plant functioning

Proceeding of the National Academy of Sciences of the United States of America, 94,13730-13734.

[本文引用: 2]

Roche P, Díaz -Burlinson N, Gachet S (2004).

Congruency analysis of species ranking based on leaf traits: which traits are the more reliable?

Plant Ecology, 174,37-48.

[本文引用: 2]

Roderick ML, Berry SL, Noble IR (2000).

A framework for understanding the relationship between environment and vegetation based on the surface area to volume ratio of leaves

Functional Ecology, 14,423-437.

[本文引用: 1]

Rodríguez C, Leoni E, Lezama F, Altesor A (2003).

Temporal trends in species composition and plant traits in natural grasslands of Uruguay

Journal of Vegetation Science, 14,433-440.

[本文引用: 1]

Røsch H, van Rooyen MW, Theron GK (1997).

Predicting competitive interactions between pioneer plant species by using plant traits

Journal of Vegetation Science, 8,489-494.

[本文引用: 1]

Sack L, Grubb PJ, Mara†ón T (2003).

The functional morphology of juvenile plants tolerant of strong summer drought in shaded forest understories in Southern Spain

Plant Ecology, 168,139-163.

[本文引用: 1]

Saxe H, Cannell MGR, Johnsen Ø, Ryan MG, Vourlitis G (2001).

Tree and forest functioning in response to global warming

New Phytologist, 149,369-400.

[本文引用: 1]

Sinclair C, Hoffmann AA (2003).

Monitoring salt stress in grapevines: are measures of plant traits variability useful?

Journal of Applied Ecology, 40,928-937.

[本文引用: 1]

Sterck FJ, Bongers F (2001).

Crown development in tropical rain forest trees: patterns with tree height and light availability

Journal of Ecology, 89,1-13.

[本文引用: 1]

Sun GJ (孙国钧), Zhang R (张荣), Zhou L (周立) (2003).

Trends and advance in researches on plant functional diversity and functional groups

Acta Ecologica Sinica (生态学报), 23,1430-1435. (in Chinese with English abstract)

[本文引用: 1]

Sutherland S (2004).

What makes a weed a weed: life history traits of native and exotic plants in the USA

Oecologia, 141,24-39.

DOI      URL     PMID      [本文引用: 1]

I compared ten life history traits (vegetative reproduction, breeding system, compatibility, pollination system, shade tolerance, habitat, life span, life form, morphology, and toxicity) from two existing databases for the 19,960 plant species that occur in the USA. I used two-way tests of independence to determine if there were significant life history traits that distinguish weeds from non-weeds, exotic weeds from native weeds, and invasive exotic weeds from non-invasive exotic weeds. Life span was the most significant life history trait for weeds in general; weeds were more likely to be annuals and biennials and less likely to perennials than non-weeds. In addition, vegetative reproduction, breeding system, compatibility, shade tolerance, and life form were related to life span. Annual and biennial weeds (whether native, exotic, or exotic invasives) were more likely to be wetland adapted, armed, and toxic than annual or biennial non-weeds. Perennial weeds (whether native, exotic, or exotic invasives) were less likely to be forbs or subshrubs, and more likely to be wetland adapted, toxic, shade intolerant, grasses, vines and trees than perennial non-weeds. Exotic annual and perennial weeds were less likely to be wetland species than native weeds, but more likely to be wetland species than non-weeds. Invasive exotic weeds, in contrast, were less likely to be forbs and more likely to be perennial, monoecious, self-incompatible, and trees and than non-invasive exotics.

Tapias R, Climent J, Pardos JA, Gil L (2004).

Life histories of Mediterranean pines

Plant Ecology, 171,53-68.

[本文引用: 1]

Teughels H, Nijs I, van Hecke P, Impens I (1995).

Competition in a global change environment: the importance of different plant traits for competitive success

Journal of Biogeography, 1,297-305.

[本文引用: 2]

Thuiller W, Lavorel S, Midgley G, Lavergne S, Rebelo T (2004).

Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron taxa

Ecology, 85,1688-1699.

[本文引用: 1]

Totland Ø (1999).

Effects of temperature on performance and phenotypic selection on plant traits in alpine Ranunculus acris

Oecologia, 120,242-251.

DOI      URL     PMID      [本文引用: 1]

Discovering temperature effects on the performance of tundra plants is important in the light of expected climate change. In this 4-year study on alpine Ranunculus acris, I test the hypothesis that temperature influences flowering phenology, reproductive success, growth, population dynamics, and phenotypic selection on quantitative traits, by experimental warming using open-top chambers (OTCs). Warming significantly advanced flowering phenology in only one season. Seed number and weight were significantly increased by warming during the first three seasons, but not in the fourth. Plants inside OTCs produced bigger leaves than control plants in the fourth season, but leaf number was unaffected by the OTC treatment. Despite increased seed number and weight, the density of flowering plants decreased inside OTCs compared to control plots, possibly because of a higher graminoid cover inside OTCs. Phenotypic-selection regression showed a significant selection differential and gradient in the direction of larger leaf sizes in control plants, whereas no selection on leaf size was detected on warmed plants. The direction and strength of selection on flowering time, flower number, and leaf number did not differ between control and warmed plants. The results suggest that increased reproductive output of R. acris may not be sufficient to maintain current population density under a denser vegetation cover.

Turner IM (1994).

A quantitative analysis of leaf form in woody plants from the world's major broadleaved forest types

Journal of Biogeography, 21,413-419.

[本文引用: 1]

Vendramini F, Díaz S, Gurvich DE, Wilson PJ, Thompson K, Hodgson JG (2002).

Leaf traits as indicators of resource-use strategy in floras with succulent species

New Phytologist, 154,147-157.

[本文引用: 2]

Verheyen K, Honnay O, Motzkin G, Hermy M, David R (2003).

Response of forest plant species to land-use change: a life-history trait-based approach

Journal of Ecology, 91,563-577.

[本文引用: 2]

Vesk PA, Leishman MR, Westoby M (2004a).

Simple traits do not predict grazing response in Australian dry shrublands and woodlands

Journal of Applied Ecology, 41,22-31.

[本文引用: 2]

Vesk PA, Warton DI, Westoby M (2004b).

Sprouting by semi-arid plants: testing the dichotomy and predictive traits

Oikos, 107,72-89.

[本文引用: 1]

Villar R, Merino J (2001).

Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems

New Phytologist, 151,213-226.

[本文引用: 2]

Walck JL, Baskin JM, Baskin CC (2001).

Why is Solidago shortii narrowly endemic and S. altissimo geographically widespread?A comprehensive comparative study of biological traits

Journal of Biogeography, 28,1221-1237.

[本文引用: 1]

Wang GH (2002a).

Plant functional types of zonal woody plant communities in relation to hydrothermic factors

Scientia Silvae Sinicae (林业科学), 38(1),15-23.

[本文引用: 1]

Wang GH (2002b).

Plant traits and soil chemical variables during a secondary vegetation succession in abandoned fields on the Loess Plateau

Acta Botanica Sinica (植物学报), 44,990-998.

[本文引用: 1]

Wang GH, Ni J (2005a).

Plant traits and environmental condition along the Northeast China Transect (NECT)

Ekologia-Bratislava, 24,207-222.

[本文引用: 1]

Wang GH, Ni J (2005b).

Responses of plant functional types to an environmental gradient on the Northeast China Transect

Ecological Research, 20,563-572.

[本文引用: 1]

Wang GH (王国宏), Zhou GS(周广胜) (2001).

Correlation analysis on the relationship between plant life form, fruit type and hydrothermic factors in Gansu woody plant flora

Bulletin of Botanical Research(植物研究), 21,448-455. (in Chinese with English abstract)

[本文引用: 1]

Wang RZ (2002c).

Photosynthetic pathways and life forms in different grassland types from North China

Photosynthetica, 40,243-250.

[本文引用: 1]

Wang RZ (2002d).

Photosynthetic pathway types of forage species along grazing gradient from the Songnen grassland, Northeastern China

Photosynthetica, 40,56-61.

[本文引用: 1]

Wang RZ, Gao Q (2003).

Climate-driven changes in shoot density and shoot biomass in Leymus chinensis (Poaceae)on the Northeast China Transect (NECT)

Global Ecology and Biogeography, 12,249-259.

[本文引用: 1]

Wardle DA, Barker GM, Bonner KI, Nicholson KS (1998).

Can comparative approaches based on plant ecophysiological traits predict the nature of biotic interactions and individual plant species effects in ecosystems?

Journal of Ecology, 86,405-420.

[本文引用: 1]

Westoby M (1998).

A leaf-height-seed (LHS)plant ecology strategy scheme

Plant and Soil, 199,213-227.

[本文引用: 1]

Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ (2002).

Plant ecological strategies: some leading dimensions of variation between species

Annual Review of Ecology and Systematics, 33,125-159.

[本文引用: 2]

Wiemann MC, Dilcher DL, Manchester SR (2001).

Estimation of mean annual temperature from leaf and wood physiognomy

Forest Science, 47,141-149.

[本文引用: 1]

Wilcox C, Possingham H (2002).

Do life history traits affect the accuracy of diffusion approximations for mean time to extinction?

Ecological Applications, 12,1163-1179.

[本文引用: 1]

Wilson PJ, Thompson K, Hodgson JG (1999).

Specific leaf area and leaf dry matter content as alternative predictors of plant strategies

New Phytologist, 143,155-162.

[本文引用: 1]

Wright J, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulías J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets ü, Oleksyn J, Osada N, Poorter H, Poo P, Prior L, Pyankov VI, Roumet C, Thomas SC, Tjoelker MG, Veneklaas EJ, Villar R (2004a).

The worldwide leaf economics spectrum

Nature, 428,821-827.

DOI      URL     PMID      [本文引用: 2]

Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently of growth form, plant functional type or biome. Categories along the spectrum would, in general, describe leaf economic variation at the global scale better than plant functional types, because functional types overlap substantially in their leaf traits. Overall, modulation of leaf traits and trait relationships by climate is surprisingly modest, although some striking and significant patterns can be seen. Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.

Wright IJ, Groom PK, Lamont BB, Poot P, Prior LD, Reich PB, Schulze E-D, Veneklaas EJ, Westoby M (2004b).

Leaf traits relationships in Australian plant species

Functional Plant Biology, 31,551-558.

DOI      URL     PMID      [本文引用: 1]

Leaf trait data were compiled for 258 Australian plant species from several habitat types dominated by woody perennials. Specific leaf area (SLA), photosynthetic capacity, dark respiration rate and leaf nitrogen (N) and phosphorus (P) concentrations were positively correlated with one another and negatively correlated with average leaf lifespan. These trait relationships were consistent with previous results from global datasets. Together, these traits form a spectrum of variation running from species with cheap but frequently replaced leaves to those with strategies more attuned to a nutrient-conserving lifestyle. Australian species tended to have SLAs at the lower end of the spectrum, as expected in a dataset dominated by sclerophyllous species from low fertility or low rainfall sites. The existence of broad-scale, 'global' relationships does not imply that the same trait relationships will always be observed in small datasets. In particular, the probability of observing concordant patterns depends on the range of trait variation in a dataset, which, itself, may vary with sample size or species-sampling properties such as the range of growth forms, plant functional 'types', or taxa included in a particular study. The considerable scatter seen in these broad-scale trait relationships may be associated with climate, physiology and phylogeny.

Wright IJ, Westoby M (1999).

Differences in seedling growth behaviour among species: trait correlations across species, and trait shifts along nutrient compared to rainfall gradients

Journal of Ecology, 87,85-97.

[本文引用: 1]

Wright IJ, Westoby M (2003).

Nutrient concentration, resorption and lifespan: leaf traits of Australian sclerophyll species

Functional Ecology, 17,10-19.

[本文引用: 1]

Wright IJ, Westoby M, Reich PB (2002).

Convergence towards higher leaf mass per area in dry and nutrient-poor habitats has different consequences for leaf life span

Journal of Ecology, 90,534-543.

[本文引用: 1]

Xiao CW (肖春旺), Zhang XS (张新时), Zhao JZ (赵景柱), Wu G (吴钢) (2001a).

Response of seedlings of three dominant shrubs to climate warming in Ordos Plateau

Acta Botanica Sinica (植物学报), 43,736-741. (in Chinese with English abstract)

[本文引用: 1]

Xiao CW (肖春旺), Zhou GS (周广胜), Zhao JZ (赵景柱) (2001b).

Effect of different water conditions on growth and morphology of Artemisia ordosica Krasch

seedling in Maowusu sandland. Acta Ecologica Sinica (生态学报), 21,2136-2140. (in Chinese with English abstract)

[本文引用: 1]

Yamada H, Miyaura T (2005).

Geographic variation in nut size of Castanopsis species in Japan

Ecological Research, 20,3-9.

[本文引用: 1]

Zeng XP (曾小平), Zhao P (赵平), Cai XA (蔡锡安), Sun GC (孙谷畴), Peng SL (彭少麟) (2004).

Physioecological characteristics of Woonyoungia septentrionalis seedling under various soil water conditions

Chinese Journal of Ecology(生态学杂志), 23(2),26-31. (in Chinese with English abstract)

[本文引用: 1]

Zhang L (张林), Luo TX (罗天祥) (2004).

Advances in ecological studies on leaf lifespan and associated leaf traits

Acta Phytoecologica Sinica (植物生态学报), 28,844-852. (in Chinese with English abstract)

[本文引用: 1]

Zhang TH (张铜会), Yang JD (杨甲定), Zhao HL (赵哈林) (2004).

Responses to continual grazing of major functional types of Gramineae in Horqin sandy grassland, Inner Mongolia

Acta Prataculturae Sinica (草业学报), 13(1),89-93. (in Chinese with English abstract)

[本文引用: 1]

/