植物生态学报, 2010, 34(1): 100-111 DOI: 10.3773/j.issn.1005-264x.2010.01.013

综述

植物光合产物分配及其影响因子研究进展

平晓燕1,3, 周广胜,2,1,*, 孙敬松1,3

1中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093

2中国气象科学研究院, 北京 100081

3中国科学院研究生院, 北京 100049

Advances in the study of photosynthate allocation and its controls

PING Xiao-Yan1,3, ZHOU Guang-Sheng,2,1,*, SUN Jing-Song1,3

1State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China

2Chinese Academy of Meteorological Sciences, Beijing 100081, China

3Graduate University of Chinese Academy of Sciences, Beijing 100049, China

通讯作者: * E-mail:gszhou@ibcas.ac.cn

编委: 王仁卿

责任编辑: 黄祥忠(实习)

收稿日期: 2009-04-28   接受日期: 2009-07-14   网络出版日期: 2010-01-01

Received: 2009-04-28   Accepted: 2009-07-14   Online: 2010-01-01

摘要

植物光合产物分配受环境因子和生物因子的共同影响。为增进对植物对全球变化响应的理解, 从植物个体水平与群落/生态系统水平综述了植物光合产物分配的影响因子与影响机理的最新研究进展。植物个体在光照增强及受水分和养分胁迫时, 会将光合产物更多地分配到根系; CO2浓度升高对植物光合产物分配的影响受土壤氮素的制约, 植物受氮素胁迫时, CO2浓度升高会促进光合产物更多地分配到根系; 反之, 对植物光合产物分配没有影响。植物群落/生态系统的光合产物分配对环境因子的响应不敏感; 光合产物向根系的分配比例随其生长阶段逐渐降低。功能平衡假说、源汇关系假说和相关生长关系假说分别从环境因子、个体发育和环境因子与个体发育协同作用方面阐述了植物光合产物分配的影响机理。在此基础上,指出了未来拟重点加强的研究方向: 1)生态系统尺度的光合产物向呼吸部分的分配研究; 2)地下净初级生产力(belowground net primary productivity, BNPP)研究; 3)温室和野外条件下及幼苗和成熟林光合产物分配对环境因子响应的比较研究; 4)生态系统尺度的多因子控制试验; 5)整合环境因子和个体发育对植物光合产物分配格局的影响研究。

关键词: 分配模型 ; 相关生长关系假说 ; 影响因子 ; 功能平衡假说 ; 植物光合产物分配 ; 源汇关系假说

Abstract

Photosynthate allocation is influenced by both environmental and biological factors. This paper reviews recent advances in the mechanism of photosynthate allocation and its controls at individual and community/ecosystem levels in order to improve understanding of plant responses to global change. At the individual level, more photosynthate will be allocated to roots under conditions of high light, low water and low nutrient availabilities. The effect of increased atmospheric carbon dioxide concentration on photosynthate allocation depends on soil nitrogen availability. The root mass fraction (RMF) will increase under low nitrogen and is unchanged under high nitrogen. At the community/ecosystem levels, photosynthate allocation is insensitive to environmental change. The RMF decreases with increasing stand age. The functional equilibrium hypothesis (optimal partitioning) can explain the regulation of photosynthate allocation in response to environmental change, the source-sink relationship can reflect the effect of ontogeny on photosynthate allocation and the allometric relationship provides an important theoretical baseline prediction to disentangle the effects of plant size and environmental variation on photosynthate allocation. Research is needed on 1) the fraction of photosynthate allocated to respiration at the ecosystem level, 2) accurate estimation of belowground biomass and belowground net primary productivity (BNPP), 3) comparative study of photosynthate allocations between young and mature forests and between field and greenhouse experiments, 4) effects of multiple factors and their interactions on photosynthate allocation at the ecosystem level and 5) cooperative effects of ontogeny and environmental factors on the regulation of photosynthate allocation.

Keywords: allocation model ; allometric relationship ; controlling factors ; functional equilibrium hypothesis (optimal partitioning) ; photosynthate allocation ; source-sink relationship hypothesis

PDF (389KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

平晓燕, 周广胜, 孙敬松. 植物光合产物分配及其影响因子研究进展. 植物生态学报[J], 2010, 34(1): 100-111 DOI:10.3773/j.issn.1005-264x.2010.01.013

PING Xiao-Yan, ZHOU Guang-Sheng, SUN Jing-Song. Advances in the study of photosynthate allocation and its controls. Chinese Journal of Plant Ecology[J], 2010, 34(1): 100-111 DOI:10.3773/j.issn.1005-264x.2010.01.013

植物光合产物分配是陆地生态系统模型中一个重要的中间变量, 其分配过程不仅受环境因子如光照、水分、养分、温度和CO2浓度等的影响(Müller et al., 2000; Zak et al., 2000; Domisch et al., 2001; Hale et al., 2005; Rachmilevitch et al., 2006; Sigee et al., 2007), 还受到生物因子如遗传特性、生长阶段和密度竞争等因素的制约(Litton et al., 2004, 2007; Day et al., 2005; Vanninen & Makela, 2005; Feng et al., 2007)。光合产物向植物器官分配比例的变化及其对植物生长的反馈作用会对植物的生活史对策、群落结构和进化策略产生重要影响(Niklas & Enquist, 2002)。短时间尺度上, 光合产物向各个器官的分配比例发生变化将影响各个器官的相对生长速率(Lacointe, 2000); 长时间尺度上, 光合产物分配格局的变化将改变植物的叶面积指数、根系吸收养分和水分的速率、根系碳周转及群落的物种组成等, 进而对植物的生长产生深远影响(Jackson et al., 2000; Malhi et al., 2004)。正因如此, 植物光合产物分配已成为植物生态学和遗传学研究中的热点问题(Lacointe, 2000)。然而, 植物光合产物分配机理的研究远落后于光合、呼吸及叶片生长等方面的研究(Cannell & Dewar, 1994; Grechi et al., 2007), 目前仍未形成统一的结论, 限制了对光合产物分配的准确模拟, 影响了陆地生态系统生产力与碳收支的准确评估(Friedlingstein et al., 1999; Litton et al., 2007)。为此, 本文试图对近年来国内外有关植物光合产物分配的最新研究进展进行综述, 着重从个体和生态系统水平分析植物光合产物分配的影响因子, 并探讨植物光合产物分配的影响机制和定量模拟, 为陆地生态系统生产力和碳收支的准确评估提供依据。

1 植物光合产物分配常用术语

植物的光合产物分配(photosynthate allocation)也称同化物分配(assimilate allocation), 包括两个时间尺度的分配过程: 1)在秒或小时尺度上, 光合作用生成的碳水化合物(包括蔗糖、淀粉和非结构性碳水化合物)在植物体内的分配(carbohydrate allocation), 通常用稳定同位素法研究叶片中固定的14C向植物体内不同库的分配(Cairney & Alexander, 1992; Domisch et al., 2001); 2)在月或年尺度上, 短时间分配对各个器官光合产物积累量的影响(Tilman, 1988; Dewar, 1993), 包括碳分配和生物量分配两种形式。碳分配(carbon allocation)指植被总第一性生产力(gross primary production, GPP)以碳(C)的形式向呼吸、根、茎和叶等部分的分配, 通常采用碳平衡法(carbon balance approach)估算GPP向地下部分的分配(Litton et al., 2007)。生物量分配(biomass allocation), 也称干物质分配(dry matter allocation), 指一定时间内积累的干物质向植物体各个器官的分配, 干物质分配多用于繁殖器官占重要作用的植物的研究, 如农作物及果树等(Marcelis et al., 1998; Andrews et al., 2001), 通常采用测定一段时期内植物体各器官生物量的增量来计算生物量向各部分的分配比例(Domisch et al., 2001; Glynn et al., 2003; Ngugi et al., 2003)。

在研究中通常采用根冠比表征光合产物分配格局的变化, 但由于根冠比忽视了茎和叶在生态系统中的功能区分(草原生态系统除外), 并且夸大了环境因子对光合产物分配的影响(光合产物向根系分配比例的减少必然伴随着地上部分分配比例的增加), 所以不提倡使用。为此, 提倡使用根分配比例(root mass fraction, RMF)、茎分配比例(stem mass fraction, SMF)和叶分配比例(leaf mass ratio, LMF), 分别表示光合产物向根、茎和叶的分配量占总分配量的比例(VanderWerf & Nagel, 1996; Poorter & Nagel, 2000)。

2 植物光合产物分配的影响因子

影响植物光合产物分配格局改变的原因主要包括: 1)表面上的分配可塑性。由于植物不同器官的相对生长速率随生长阶段的不同发生变化, 导致光合产物分配格局发生改变, 这种变化与环境因子的改变没有关系, 主要受植物个体发育的影响(Müller et al., 2000)。2)真正的分配可塑性。当植物各个器官都处于平衡状态时, 环境因子的变化才会真正改变植物的光合产物分配格局, 这种改变是真正的分配可塑性(McConnaughay & Coleman, 1999)。因此, 植物光合产物分配格局受个体发育和环境因子的共同影响(Gedroc et al., 1996; McConnaughay & Coleman, 1999; Harmens et al., 2000; Poorter & Nagel, 2000; Cahill Jr, 2003)。

2.1 环境因子

2.1.1 光照

高光强下, 植物会增加光合产物向根系的分配比例, 减少向叶片的分配比例(Poorter & Nagel, 2000; Kotowski et al., 2001; Ammer, 2003; Grechi et al., 2007; 陈亚军等, 2008; 孙晓方等, 2008)。遮阴时, 植物光合产物向叶片的分配比例增加, 向根系的分配比例降低, 向茎的分配比例则没有明显的变化(Welander & Ottosson, 1998; Day et al., 2005; Feng et al., 2007; Lockhart et al., 2008); 但也有研究表明, 光照减弱时光合产物向茎的分配比例增加, 向叶的分配比例不变甚至降低, 但比叶面积增加, 表明植物通过改变其形态学特征来最大程度地获取光照(de Groot et al., 2002; 陈亚军等, 2008)。

描述光照对植物光合产物分配的影响机理主要有两个假说: 1)通过影响植物体内的N含量对光合产物分配进行调节。研究表明, 遮阴增加了植物体的N含量, 降低了淀粉含量, 而植物体的淀粉含量和光合产物向根系的分配比例呈正比, 导致植物光合产物向根系的分配比例降低(de Pinheiro Henriques & Marcelis, 2000; de Groot et al., 2002)。2)在高光强下, 温度升高, 相对湿度降低, 叶片受到的水分胁迫增加, 导致气孔关闭和光合作用减弱, 进而引起植物的反馈调节, 使光合产物向根系的分配比例增加, 促进根系吸水(Lockhart et al., 2008)。研究表明, 光照通过影响植物体内的C、N平衡来调节光合产物的分配(Cronin & Lodge, 2003; Grechi et al., 2007)。

2.1.2 养分

个体水平上, 土壤养分(主要是N)的减少会促使光合产物向根系的分配比例增加, 而养分充足时, 光合产物将更多地向叶片分配, 这种分配格局的改变对不同的植被类型(灌木、草本或木本植物)和植物生活型(一年生或多年生)都是一致的(Balachandran et al., 1997; Müller et al., 2000; Warembourg & Estelrich, 2001; Cronin & Lodge, 2003; Glynn et al., 2003; Vanninen & Makela, 2005; Grechi et al., 2007)。但不同的元素对植物光合产物分配的影响差异很大。土壤中N、P和S含量的降低会导致光合产物向根系的分配比例增加, K、Mg和Mn的缺失却会降低光合产物向根系的分配比例(Ericsson et al., 1996; Balachandran et al., 1997; Nielsen et al., 2001), 而植物在受Ca、Fe或Zn胁迫时光合产物分配格局不变(Ericsson et al., 1996)。植物受N素胁迫时, 根系向茎部输送的细胞分裂素含量减少, 茎部细胞分裂速度变慢, 导致从韧皮部向茎部输送的蔗糖减少, 使韧皮部周围的蔗糖含量增加, 引起叶片膨压的升高; 而根系细胞分裂继续进行, 细胞膨压没有发生变化, 从而使源(叶片)和汇(根部)之间产生膨压梯度, 促使光合产物相对较多地向根系分配。植物受P胁迫时, 各个器官对光合产物的需求减弱, 光合产物更多地积累到叶片, 植物通过增加光合产物向根系的分配来吸收养分(Dingkuhn et al., 2007)。K作为调节气孔开闭的重要因子, Mg参与光能的获取, K和Mg影响光合作用酶的活性, 因此这些元素的缺失会导致光合作用的降低, 从而减少光合产物向根系的分配(Ericsson et al., 1996)。

群落或生态系统水平上, 有关植物光合产物分配对土壤养分变化的响应研究还较少。研究指出, 养分胁迫促使森林和草原生态系统光合产物向根系的分配比例增加(Dukes et al., 2005; Litton et al., 2007)。也有研究表明, 根冠比对土壤N素含量的变化不敏感(Yang et al., 2009)。LeBauer和Treseder (2008)指出, 全球绝大多数生态系统都受到N素胁迫。在全球变化背景下, 未来人为N沉降将会覆盖北美、欧洲以及东南亚等温带和热带地区, 研究这些地区植物的光合产物分配对N素添加的响应会对理解陆地生态系统碳循环产生重要的影响(Dentener et al., 2006)。

2.1.3 水分

个体水平上, 水分和养分对植物光合产物分配的影响是相同的。植物受水分胁迫时, 光合产物会更多地分配到根系来促进根系吸水(McConnaughay & Coleman, 1999; Huang & Fu, 2000; Ngugi et al., 2003; 肖冬梅等, 2004; Coyle & Coleman, 2005; Xu & Zhou, 2005; 贺海波和李彦, 2008)。水分胁迫对植物光合产物分配的影响要小于养分胁迫(Balachandran et al., 1997; Hale et al., 2005)。水分胁迫会导致植物体内蛋白质合成的减弱, 降低了植物体内的N含量, 但并不增加淀粉含量, 促使光合产物较多地分配到根系(Poorter & Nagel, 2000; Andrews et al., 2001)。

生态系统水平上, Mokany等(2006)研究表明森林、灌木和草原生态系统的根冠比均随年降水量的增加而降低。Wang等(2003)研究发现羊草草原生态系统光合产物分配格局受东北样带水分梯度的影响。随经度由东向西, 降水逐渐减少, 光合产物向地上的分配比例逐渐降低, 向地下的分配比例增加。这与中国北方林和全球尺度森林生态系统上得出的结果相似(Litton et al., 2007; Wang et al., 2008)。同时, 也有研究表明草原生态系统光合产物分配对年降水量或土壤含水量的增加响应不敏感(Fan et al., 2009; Yang et al., 2009)。

2.1.4 温度

个体水平上, 温度升高对植物光合产物分配的影响还没有得到一致的结论。空气温度升高会降低叶片同化产物的积累, 增加光合产物向叶片的分配比例, 降低根冠比(Farrar & Williams, 1991; Andrews et al., 2001), 但也有研究发现在一定的阈值内土壤温度升高会降低光合产物向根系的分配比例, 当温度高于或低于这一阈值时光合产物向根系的分配比例都会增加(Lambers et al., 1995; Peng & Dang, 2003)。温度对植物光合产物分配的影响机理有两种假说: 1)温度通过影响植物的生长来改变光合产物分配格局, 当植物处于极端高温或低温情况下, 植物的生长尤其是地上部分受到抑制, 导致根冠比增加。当植物处于适宜的生长温度时, 温度升高促使植物的生长速度增加, 尤其是地上部分的增加更快, 导致根冠比降低(Farrar & Williams, 1991; Peng & Dang, 2003)。2)温度升高后, 植物体内的N含量增加, 同时土壤养分的供应能力提高, 导致植物根冠比降低(Andrews et al., 2001; Vogel et al., 2008), 未来的研究热点将集中于区分光合产物分配格局的改变是由植物各部分生长速率不同引起的表型可塑性还是真正的分配可塑性。

生态系统水平上, 温度对植物光合产物分配的影响也不确定。温度升高会降低草原生态系统光合产物向根系的分配比例(Mokany et al., 2006; Fan et al., 2009)。Litton和Giardina (2008)研究了全球尺度下植物光合产物分配对温度的响应, 结果表明在温带和热带地区, 光合产物向地下的分配比例随年平均温度的升高而增加。在北方林中, 地下部分分配比例随年平均温度的升高而降低, 这可能是由于年平均温度升高使土壤养分的供应能力提高, 导致光合产物向地下的分配变少(Vogel et al., 2008)。也有研究表明, 温度对植物光合产物分配的影响不显著(Gorissen et al., 2004; Dukes et al., 2005; Hawkes et al., 2008)。

2.1.5 CO2

个体水平上, 植物光合产物分配对CO2浓度升高的响应的研究已经很多(Farrar & Williams, 1991; Poorter, 1993; Ceulemans & Mousseau, 1994; Norby et al., 1995; Rogers et al., 1996)。总体而言, 植物光合产物向根系的分配比例随CO2浓度升高而增加(Ceulemans & Mousseau, 1994; Johnson & Lincoln, 2000; Niklaus et al., 2001; Xu et al., 2007), 也有研究表明植物光合产物分配格局对CO2浓度升高不敏感(Farrar & Williams, 1991; Poorter, 1993; Rogers et al., 1996)。Rogers等(1996)综述了农作物光合产物分配对CO2浓度升高的响应, 结果发现59.5%的结论支持根冠比增加, 37.5%的结果表明根冠比下降, 另有3%的研究表明根冠比对CO2浓度升高没有反应。CO2浓度升高对光合产物分配的影响受植物体内N素和非结构性碳水化合物含量的共同控制(Poorter & Nagel, 2000; Andrews et al., 2001)。CO2浓度升高会降低植物各个器官的N含量, 植物为确保养分的供应将增加光合产物向根系的分配比例。同时, CO2浓度升高会增加植物叶片的淀粉含量, 使叶片和根系之间产生膨压梯度, 导致相对较多的光合产物向根系分配(Farrar & Williams, 1991; Zak et al., 2000; Liu et al., 2002; Suter et al., 2002; Xu et al., 2007)。这种影响在养分匮乏下较为明显, 在养分充足的环境中, CO2浓度升高不会改变植物的光合产物分配格局(Liu et al., 2002)。

生态系统水平上, 当受到养分和水分胁迫时, CO2浓度升高会促使大多数生态系统的光合产物更多地分配到根系(Bazzaz, 1990; Hyvonen et al., 2007)。资源充足时, CO2浓度升高对生态系统光合产物分配没有显著的影响(Norby & Jackson, 2000; Dukes et al., 2005; Milchunas et al., 2005)。

2.1.6 因子交互作用

群落或生态系统水平上, 植物光合产物分配对环境因子的响应不如个体水平上明显, 原因是个体水平上, 环境因子对植物光合产物分配的影响是通过控制试验得到的。在群落或生态系统水平上, 对环境因子的控制较为困难, 环境因子间的交互作用导致植物光合产物分配规律不明显(Hyvonen et al., 2007)。

降水及养分胁迫对植物光合产物分配的影响受CO2浓度升高的制约, CO2浓度升高提高了植物的水分利用效率(water use efficiency, WUE), 降低了植物体N素水平, 从而制约了降水及N沉降对植物光合产物分配的影响(Poorter & Nagel, 2000; Coviella et al., 2002; Shaw et al., 2002)。光照与N素之间、水分与光照之间的交互作用也显著影响植物光合产物分配格局(Kotowskil et al., 2001; de Groot et al., 2002)。生态系统水平上, 光合产物分配对土壤温度变化不敏感, 但土壤温度与降水增加的协同作用显著增加了黑云杉(Picea mariana)林生态系统光合产物向地上部分的分配比例(Vogel et al., 2008)。

2.2 生物因子

2.2.1 生长阶段

植物光合产物向根系的分配比例会随生长阶段逐渐降低, 光合产物向茎的分配比例随林龄的增加而增加(McConnaughay & Coleman, 1999; Suter et al., 2002; Mokany et al., 2006; Litton et al., 2007; Wang et al., 2008)。多年生黑麦草(Lolium perenn)的根冠比从生长初期的0.94下降到收获前的0.46 (Suter et al., 2002)。相比幼林, 美国黄松(Pinus ponderosa)和湿地松(P. elliottii)成熟林的SMF分别增长了48%和58%, RMF分别降低了17%和21% (Litton et al., 2007)。植物在生长初期更多地将光合产物向根系和菌根分配来保证水分和养分的充足供应, 随着植物的生长, 光合产物向叶片的分配比例增加来最大程度地增加光合作用, 同时木本植物增加光合产物向茎的分配来获取光照和提供支持(Litton et al., 2004; Weiner, 2004)。

2.2.2 竞争

竞争对植物光合产物分配的影响受环境因子的制约。在土壤养分和水分匮乏的环境中, 植物的竞争主要集中在根系(Schenk, 2006), 竞争导致光合产物向根系的分配比例增加(Cronin & Lodge, 2003; Weigelt et al., 2005; Wang et al., 2008; Berendse & Möller, 2009)。当土壤养分和水分充足时, 整株竞争使植物对光照和养分的需求同时增加, 不会引起植物的光合产物分配格局发生变化(Berendse & Möller, 2009)。当只有地上竞争时, 植物通过增加光合产物向叶片的分配以获得更多的光照(Bloor et al., 2008)。在考虑竞争对植物光合产物分配的影响时, 要特别分清分配格局的改变是竞争直接引起的, 还是由竞争导致的植株体积的减小所引起的(Weigelt et al., 2005)。

3 植物光合产物分配机理

植物光合产物分配受光合作用、同化物传输、呼吸作用和同化物的存储等一系列时间尺度不同的生理过程的共同影响, 而环境因子和植物个体发育对光合产物分配的调控作用, 进一步增加了过程的复杂性, 使得植物光合产物的分配机制存在很大争议, 没有一个合理的解释(Atkinson & Farrar, 1983; Vander Werf & Nagel, 1996; Vivin et al., 2002; Grechi et al., 2007)。目前, 植物光合产物的分配机制主要有以下3个假说: 功能平衡假说、源汇关系假说和相关生长关系假说。

3.1 功能平衡假说

功能平衡假说(functional equilibrium hypothesis)由Brouwer于1962年提出。该假说将植物分为根和冠两部分, 根的生长受冠部光合作用碳供应速率的限制, 而冠的生长受根系对养分和水分吸收速率的限制。因此, 植物受到水分和养分胁迫时将增加光合产物向根系的分配以保证水分和养分的供应; 当植物受到光照胁迫时通过增加光合产物向冠部的分配来促进光合作用(Marcelis et al., 1998)。

在此基础上, 一些研究者对功能平衡假说进行了改进, 提出了最优分配理论(optimal partitioning theory)和协调理论(coordination theory)。最优分配理论认为, 植物通过对光合产物的分配来获取光照、养分、水分和CO2等资源以达到最大的生长速率(Bloom et al., 1985)。协调理论认为, 叶片对C的供应及根系对养分和水分的吸收二者之间的协调和平衡决定了植物光合产物的分配, 环境因子发生变化后, 植物会通过改变光合产物的分配来调整体内C和N的供应以达到平衡(Reynolds & Chen, 1996; Chen & Reynolds, 1997)。

许多研究表明, 功能平衡假说与最优分配理论能较好地反映环境因子(光照、CO2、水分、N和P等)对植物光合产物分配的影响(Poorter & Nagel, 2000; de Groot et al., 2002; Grechi et al., 2007; McCarthy & Enquist, 2007)。因此, 很多研究者基于功能平衡假说构建植物光合产物分配模型, 如普遍用于植物生长模型中的目的模型(teleonomic model)和传输阻力模型(transport resistance model)等(Thornley, 1972; Johnson & Thornley, 1987; Hunt et al., 1998; Agren & Franklin, 2003; Makela et al., 2008)。Arora和Boer (2005)基于功能平衡假说建立了区域尺度的光合产物分配模型。Friedlingstein等(1999)构建了全球尺度光合产物分配模型, 目前该模型已被耦合到很多陆地生态系统模型中(Fung et al., 2005; Krinner et al., 2005)。

3.2 源汇关系假说

源汇关系假说(source-sink relationship hypothe-sis)认为, 植株是由相互作用的源(主要是叶片)和汇(茎、根和果实)组成的系统, 源通过韧皮部运输提供同化物, 汇通过相互之间的竞争获得同化物(Wardlaw, 1990; Dewar, 1993)。植物光合产物分配由源的供应能力、汇的竞争能力及韧皮部对光合产物的传输能力等三方面所决定。同化物的供应遵循就近供给原则, Palit (1985)利用14C同位素技术研究发现, 顶部叶片会将光合产物分配给顶芽和幼叶, 中部叶片将光合产物分配给茎, 基部叶片将光合产物分配给基茎和根系, 繁殖器官会从就近的叶片获取光合产物。各个汇的竞争强度可以量化为没有资源限制条件下的潜在生长速率。各个器官的潜在生长速率随生长阶段和温度的变化而改变(Marcelis & Heuvelink, 2007)。

源汇关系假说可以通过测定各个器官在没有资源限制条件下的潜在生长速率来描述植物的个体发育特征(Génard et al., 2008)。环境因子与竞争都通过影响汇的竞争能力来改变植物的光合产物分配格局。植物在面临CO2浓度升高及水分和养分胁迫时, 汇的强度都会减弱, 导致光合产物向根系的分配比例增加(Poorter, 1993; Rogers et al., 1996; Grechi et al., 2007)。

源汇关系假说能从机理上解释植物光合产物向各个器官的分配, 同时可以模拟光合产物向繁殖器官的分配, 因此常被用于果树和农作物光合产物分配的模拟(Wermelinger et al., 1991; Vivin et al., 2002; Marcelis & Heuvelink, 2007; Génard et al., 2008)。近年来源汇关系假说主要用于构建功能结构模型(functional-structural models), 如GREENLAB和GRAAL模型已在果树和农田生态系统中得到了应用(Drouet & Pagès, 2003, 2007; Yan et al., 2004; Cournede et al., 2008)。

3.3 相关生长关系假说

相关生长关系假说(allometric relationship)由Kleiber于1932年提出, 认为植物体内生长速率和个体大小之间符合相关生长方程:

B = B0 M3/4

式中, B代表相对生长速率, M为个体大小, B0为系数(West et al., 1997; Farrell-Gray & Gotelli, 2005)。相关生长关系假说反映了生物个体大小对其身体结构和生理过程的影响, 进而反映种群、群落甚至更大尺度上的许多生态特征(韩文轩和方精云, 2003)。

Enquist和Niklas (2002)基于该假说提出了相关生长关系模型, 该模型是建立在代谢理论基础上的(Niklas & Enquist, 2002)。它认为植物体内存在一个“普遍”的生物量分配模式, 并假定植物是由根、茎和叶3个功能部分组成, 同时满足以下3个假设: 1)茎和根的容重在个体发育过程中保持不变; 2)茎和根的有效截水面积相同; 3)根的长度和茎的长度成正比。由此推出植物的根、茎和叶之间的生物量分配模式:

MstemMroot; MleafMstem3/4Mroot3/4Mtot3/4; Mleaf + MstemMtot

式中, MrootMstemMleafMtot分别代表根、茎、叶的生物量和总生物量。

相关生长关系体现了生物量在植物体各器官之间的分配关系, 并且相关指数与群落组成或环境条件等关系不大。这表明, 尽管在进化中出现了物种和生活型等方面的多样性分化, 但由于植物个体都遵循相似的最优化设计原则, 使得生物量的基本分配模式并没有发生根本变化(Niklas, 2006)。程栋梁(2007)对我国西北5个干旱、半干旱区域的天然植被群落地上和地下生物量进行了研究, 其结论支持存在一个“标准”的地上-地下生物量分配模式, 并且证明地上-地下生物量关系可以从个体水平上推到群落水平上(Cheng & Niklas, 2007; 程栋梁, 2007), Yang等(2009)在高寒草原生态系统上得到的结论也支持相关生长关系假说。

基于相关生长关系假说建立的模型由于模式简单, 参数较少, 并且模型模拟的效果也较好, 因此成为近年来植物光合产物分配的研究热点。但同时有很多研究结果不支持这一假说(Li et al., 2005; Grechi et al., 2007), 如Li等(2005)搜集了中国17个森林类型的生物量数据, 发现并不存在统一的相关生长关系, 同时在热带森林中也没有发现这一规律(Muller-Landau et al., 2006)。

3.4 3个假说的相关性及优缺点分析

功能平衡假说认为, 植物通过调整光合产物向茎部和根系的分配来保证资源的最优化利用(Bloom et al., 1985), 这种策略被应用于植物生长的不同阶段并被逐渐保留, 从而体现出植物的相关生长关系(Niklas & Enquist, 2002; Cheng & Niklas, 2007)。功能平衡假说认为, 植物光合产物向茎和根系这两个汇的分配由各自功能之间的相互平衡达到, 而相关生长关系中的分配指数代表了该器官汇的强度, 体现了源汇关系假说(Génard et al., 2008)。虽然功能平衡假说、源汇关系假说和相关生长关系假说都包含了环境因子和个体发育对植物光合产物分配的影响, 但3种假说各有其优缺点: 1)功能平衡假说能较好地解释环境因子变化对植物光合产物分配的影响, 但没有考虑植物个体大小对光合产物分配的影响, 环境因子可能通过影响器官的生长来改变植物光合产物分配格局(McCarthy & Enquist, 2007)。同时, 该假说只能对营养生长阶段进行模拟, 难以模拟植物光合产物向繁殖器官的分配(Thornley, 1972; 刘颖慧等, 2006); 并且植物体各个器官之间功能平衡过程的机理非常复杂, 目前对其缺乏深入的认识(Marcelis & Heuvelink, 2007)。2)源汇关系假说能很好地解释个体发育或遗传特性对植物光合产物分配的影响, 在植物萌发阶段根系是主要的汇, 植物接受光照后叶片成为主要的碳源, 之后根系的主导作用丧失, 茎部成为主要的汇。在植物生长的不同阶段各个汇的强度也不同, 从而导致植物光合产物的分配格局发生变化(Marcelis & Heuvelink, 2007)。源汇关系假说作为一个半机理假说, 能较好地模拟植物繁殖器官的分配, 因此已被用于很多研究中。但是不同种类植物各个器官的汇的强度是不同的, 建立统一的光合产物分配模型较为困难(Génard et al., 2008)。3)相关生长关系假说的优点在于能很好地区分环境因子及个体发育对植物光合产物分配的影响, 通过观测生长关系系数和指数的改变就能给出光合产物分配是环境因子引起的还是植物个体发育或个体大小的改变引起的(Cheng & Niklas, 2007; McCarthy & Enquist, 2007)。同时, 相关生长关系假说可以进行尺度扩展, 这有助于建立各个层次上的生物量分配模型。因此, 将相关生长关系模型扩展到其他植被类型从而建立全球植被生物量分配模型将是未来的研究方向(程栋梁, 2007)。但该假说不能定量地描述环境因子对植物光合产物分配的影响, 并且不能从机理上解释光合产物向不同器官的分配规律(李妍等, 2007; Génard et al., 2008), 另外, 不同的生态系统类型是否具有统一的生物量分配模式目前还存在很大的争议(韩文轩和方精云, 2008), 这些因素限制了相关生长关系模型的发展。

4 结论和展望

植物光合产物分配在全球陆地生态系统碳循环中具有重要的作用, 对光合产物分配的影响机制和过程模拟等方面已经开展了大量的研究, 但是植物光合产物分配的影响机制仍存在着很大争议, 对光合产物分配的定量模拟还存在着很多不足, 未来应加强以下方面的研究:

1)生态系统尺度的光合产物向呼吸部分的分配研究: 生态系统水平上, 光合产物的分配包括向根、茎、叶生长的分配和呼吸作用的分配, 目前的研究大多只针对生长的分配, 关于光合产物向呼吸部分分配的影响因子及其控制机理的研究还较少(Poorter, 1993; VanderWerf & Nagel, 1996; Nadelhoffer et al., 1998; Vivin et al., 2002; Agren & Franklin, 2003; Litton et al., 2007)。未来在研究环境因子对光合产物分配的影响时应该考虑呼吸部分所占比例的变化, 这将是光合产物分配影响机制研究中的一个关键问题。

2)地下净初级生产力(belowground net primary productivity, BNPP)研究: 由于根系生物量测量的不准确性, 死根和活根区分的困难性, 以及BNPP估算方法的多样性, 导致不同研究者得到的BNPP结果之间没有可比性(Woodward & Osborne, 2000; Tierney & Fahey, 2007)。准确估算BNPP对于更好地理解植物光合产物分配具有重要意义。

3)温室和野外条件下及幼苗和成熟林光合产物分配对环境因子响应的比较研究: 个体水平上, 由于幼苗试验的环境条件比较容易控制且操作简单, 因此被普遍用于研究植物光合产物分配对环境因子的响应。但温室试验往往处理时间较短且植物生长受到样地的限制, 同时幼苗对环境因子的响应能否推广到成熟林还存在着很大的争议(Ceulemans & Mousseau, 1994; Kolb & Matyssek, 2001)。因此, 未来要关注温室和野外条件下环境因子对植物光合产物分配影响的比较研究。

4)生态系统尺度的多因子控制试验: 群落或生态系统尺度上植物光合产物分配对环境因子的响应规律还不明确, 并且目前全球变化对光合产物分配的影响大都是进行单因子控制试验, 关于长期的、多因子控制的光合产物分配试验研究还较少, 环境因子之间交互作用的研究更少(Shaw et al., 2002), 这限制了生态系统水平上植物光合产物分配对全球变化的准确评估, 进而影响陆地生态系统碳收支的准确估算。因此在群落或生态系统水平上进行长期的多因子控制试验来研究植物光合产物分配对环境因子的响应必将成为以后的研究热点。

5)整合环境因子和个体发育对植物光合产物分配格局的影响研究: 目前还没有假说能解释植物的个体发育与环境因子的协同作用对光合产物分配的影响。功能平衡假说或最优理论能很好地解释环境因子对植物光合产物分配的影响, 源汇关系假说和相关生长关系假说可以解释个体发育对植物光合产物分配的影响。因此未来的研究需要整合现有的假说, 进一步从机理上探讨环境因子和个体发育对植物光合产物分配格局的影响(McCarthy & Enquist, 2007)。

致谢

国家自然科学基金(90711001和30770413)和国家高技术研究发展计划(“863”计划) (2006AA10Z225)共同资助。中国科学院植物研究所王凤玉、张强和宋健对文章写作提供了支持与帮助, 特此致谢。

参考文献

Agren GI, Franklin O (2003).

Root: shoot ratios, optimization and nitrogen productivity

Annals of Botany, 92, 795-800.

DOI      URL     PMID      [本文引用: 2]

Plants respond to nitrogen availability by changing their root : shoot ratios. One hypothesis used to explain this allocation is that plants optimize their behaviour by maximizing their relative growth rate. The consequences of this hypothesis were investigated by formulating two models for root : shoot allocation, with and without explicit inclusion of maintenance respiration. The models also took into account that relative growth rate is a linear function of plant nitrogen concentration. The model without respiration gave qualitatively reasonable results when predictions were compared with observed results from growth experiments with birch and tomato. The explicit inclusion of maintenance respiration improved considerably the agreement between prediction and observation, and for birch was within the experimental accuracy. Further improvements will require additional details in the description of respiratory processes and the nitrogen uptake function. Plants growing under extreme nutrient stress may also optimize their behaviour with respect to other variables in addition to relative growth rate.

Ammer C (2003).

Growth and biomass partitioning of Fagus sylvatica L. and Quercus robur L. seedlings in response to shading and small changes in the R/FR-ratio of radiation

Annals of Forest Science, 60, 163-171.

DOI      URL     [本文引用: 1]

Andrews M, Raven JA, Sprent JI (2001).

Environmental effects on dry matter partitioning between shoot and root of crop plants: relations with growth and shoot protein concentration

Annals of Applied Biology, 138, 57-68.

[本文引用: 5]

Arora VK, Boer GJ (2005).

A parameterization of leaf phenology for the terrestrial ecosystem component of climate models

Global Change Biology, 11, 39-59.

DOI      URL     [本文引用: 1]

Atkinson CJ, Farrar JF (1983).

Allocation of photosynthetically-fixed carbon in Festuca-Ovina L. and Nardus-Stricta L

New Phytologist, 95, 519-531.

[本文引用: 1]

Balachandran S, Hull RJ, Martins RA, Vaadia Y, Lucas WJ (1997).

Influence of environmental stress on biomass partitioning in transgenic tobacco plants expressing the movement protein of tobacco mosaic virus

Plant Physiology, 114, 475-481.

URL     PMID      [本文引用: 3]

Bazzaz FA (1990).

The response of natural ecosystems to the rising global CO2 levels

Annual Review of Ecology and Systematics, 21, 167-196.

[本文引用: 1]

Berendse F, Möller F (2009).

Effects of competition on root-shoot allocation in Plantago lanceolata L.: adaptive plasticity or ontogenetic drift?

Plant Ecology, 201, 567-573.

[本文引用: 2]

Bloom AJ, Chapin FS III, Mooney HA (1985).

Resource limitation in plants—an economic analogy

Annual Review of Ecology and Systematics, 16, 363-392.

[本文引用: 2]

Bloor JMG, Leadley PW, Barthes L (2008).

Responses of Fraxinus excelsior seedlings to grass-induced above- and below-ground competition

Plant Ecology, 194, 293-304.

[本文引用: 1]

Brouwer R (1962).

Nutritive influences on the distribution of dry matter in the plant

Netherlands Journal of Agricultural Science, 10, 399-408.

Cahill JF Jr (2003).

Lack of relationship between below-ground competition and allocation to roots in 10 grassland species

Journal of Ecology, 91, 532-540.

[本文引用: 1]

Cairney JWG, Alexander IJ (1992).

A study of ageing of spruce [Picea sitchensis (Bong.) Carr.] ectomycorrhizas. II. Carbohydrate allocation in ageing Picea sitchensis/Tylospora fibrillosa (Burt.) Donk ectomycorrhizas

New Phytologist, 122, 153-158.

[本文引用: 1]

Cannell MGR, Dewar RC (1994).

Carbon allocation in trees: a review of concepts for modeling

Advances in Ecological Research, 25, 59-104.

[本文引用: 1]

Ceulemans R, Mousseau M (1994).

Effects of elevated atmospheric CO2 on woody plants

New Phytologist, 127, 425-446.

DOI      URL     [本文引用: 3]

Chen YJ (陈亚军), Zhang JL (张教林), Cao KF (曹坤芳) (2008).

Morphological, growth and photosynthetic traits of two Liana species in response to different light and soil nutrients

Chinese Bulletin of Botany (植物学通报), 25, 185-194. (in Chinese with English abstract)

[本文引用: 2]

Chen JL, Reynolds JF (1997).

A coordination model of whole-plant carbon allocation in relation to water stress

Annals of Botany, 80, 45-55.

DOI      URL     [本文引用: 1]

Cheng DL (程栋梁) (2007).

Plant Allometric Study of Biomass Allocation Pattern and Biomass Production Rates

(植物生物量分配模式与生长速率的相关规律研究)

PhD dissertation, Lanzhou University, Lanzhou. (in Chinese with English abstact)

[本文引用: 3]

Cheng DL, Niklas KJ (2007).

Above- and below-ground biomass relationships across 1534 forested communities

Annals of Botany, 99, 95-102.

URL     PMID      [本文引用: 3]

Cournede PH, Mathieu A, Houllier F, Barthelemy D, de Reffye P (2008).

Computing competition for light in the GREENLAB model of plant growth: a contribution to the study of the effects of density on resource acquisition and architectural development

Annals of Botany, 101, 1207-1219.

DOI      URL     PMID      [本文引用: 1]

BACKGROUND AND AIMS: The dynamical system of plant growth GREENLAB was originally developed for individual plants, without explicitly taking into account interplant competition for light. Inspired by the competition models developed in the context of forest science for mono-specific stands, we propose to adapt the method of crown projection onto the x-y plane to GREENLAB, in order to study the effects of density on resource acquisition and on architectural development. METHODS: The empirical production equation of GREENLAB is extrapolated to stands by computing the exposed photosynthetic foliage area of each plant. The computation is based on the combination of Poisson models of leaf distribution for all the neighbouring plants whose crown projection surfaces overlap. To study the effects of density on architectural development, we link the proposed competition model to the model of interaction between functional growth and structural development introduced by Mathieu (2006, PhD Thesis, Ecole Centrale de Paris, France). KEY RESULTS AND CONCLUSIONS: The model is applied to mono-specific field crops and forest stands. For high-density crops at full cover, the model is shown to be equivalent to the classical equation of field crop production (Howell and Musick, 1985, in Les besoins en eau des cultures; Paris: INRA Editions). However, our method is more accurate at the early stages of growth (before cover) or in the case of intermediate densities. It may potentially account for local effects, such as uneven spacing, variation in the time of plant emergence or variation in seed biomass. The application of the model to trees illustrates the expression of plant plasticity in response to competition for light. Density strongly impacts on tree architectural development through interactions with the source-sink balances during growth. The effects of density on tree height and radial growth that are commonly observed in real stands appear as emerging properties of the model.

Coviella CE, Stipanovic RD, Trumble JT (2002).

Plant allocation to defensive compounds: interactions between elevated CO2 and nitrogen in transgenic cotton plants

Journal of Experimental Botany, 53, 323-331.

URL     PMID      [本文引用: 1]

Coyle DR, Coleman MD (2005).

Forest production responses to irrigation and fertilization are not explained by shifts in allocation

Forest Ecology and Management, 208, 137-152.

DOI      URL     [本文引用: 1]

Cronin G, Lodge DM (2003).

Effects of light and nutrient availability on the growth, allocation, carbon/nitrogen balance, phenolic chemistry, and resistance to herbivory of two freshwater macrophytes

Oecologia, 137, 32-41.

URL     PMID      [本文引用: 3]

Day ME, Schedlbauer JL, Livingston WH, Greenwood MS, White AS, Brissette JC (2005).

Influence of seedbed, light environment, and elevated night temperature on growth and carbon allocation in pitch pine ( Pinus rigida) and jack pine (Pinus banksiana) seedlings

Forest Ecology and Management, 205, 59-71.

DOI      URL     [本文引用: 2]

de Groot CC, Marcelis LFM, van den Boogaard R, Lambers H (2002).

Interactive effects of nitrogen and irradiance on growth and partitioning of dry mass and nitrogen in young tomato plants

Functional Plant Biology, 29, 1319-1328.

URL     PMID      [本文引用: 4]

Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, Hauglustaine D, Horowitz LW, Krol M, Kulshrestha UC (2006).

Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation

Global Biogeoche- mical Cycles, 20, GB4003. doi: 4010.1029/2005GB002672.

[本文引用: 1]

de Pinheiro Henriques AR, Marcelis LFM (2000).

Regulation of growth at steady-state nitrogen nutrition in lettuce ( Lactuca sativa L.): interactive effects of nitrogen and irradiance

Annals of Botany, 86, 1073-1080.

[本文引用: 1]

Dewar RC (1993).

A root-shoot partitioning model based on carbon-nitrogen-water interactions and Munch phloem flow

Functional Ecology, 7, 356-368.

[本文引用: 2]

Dingkuhn M, Luquet D, Clément-Vidal A, Tambour L, Kim HK, Song YH (2007).

Is plant growth driven by sink regulation? Implications for crop models, phenotyping approaches and ideotypes

In: Spiertz JHJ, Struik PC, Van Laar HH eds. Scale and Complexity in Plant Systems Research: Gene-Plant-Crop Relations. Springer, Wageningen. 157-170.

[本文引用: 1]

Domisch T, Finer L, Lehto T (2001).

Effects of soil temperature on biomass and carbohydrate allocation in Scots pine ( Pinus sylvestris) seedlings at the beginning of the growing season

Tree Physiology, 21, 465-472.

DOI      URL     PMID      [本文引用: 3]

We studied effects of soil temperature on shoot and root extension growth and biomass and carbohydrate allocation in Scots pine (Pinus sylvestris L.) seedlings at the beginning of the growing season. One-year-old Scots pine seedlings were grown for 9 weeks at soil temperatures of 5, 9, 13 and 17 degrees C and an air temperature of 17 degrees C. Date of bud burst, and the elongation of shoots and roots were monitored. Biomass of current and previous season roots, stem and needles was determined at 3-week intervals. Starch, sucrose, glucose, fructose, sorbitol and inositol concentrations were determined in all plant parts except new roots. The timing of both bud burst and the onset of root elongation were unaffected by soil temperature. At Week 9, height growth was reduced and root extension growth was much less at a soil temperature of 5 degrees C than at higher soil temperatures. Total seedling biomass was lowest in the 5 degrees C soil temperature treatment and highest in the 13 degrees C treatment, but there was no statistically significant difference in total biomass between seedlings grown at 13 and 17 degrees C. In response to increasing soil temperature, below-ground biomass increased markedly, resulting in a slightly higher allocation of biomass to below-ground parts. Among treatments, root length was greatest at a soil temperature of 17 degrees C. The sugar content of old roots was unaffected by soil temperature, but the sugar content of new needles increased with increasing soil temperature. The starch content of all seedling parts was lowest in seedlings grown at 17 degrees C. Otherwise, soil temperature had no effect on seedling starch content.

Drouet JL, Pagès L (2003).

GRAAL: a model of growth, architecture and carbon allocation during the vegetative phase of the whole maize plant model description and parameterisation

Ecological Modelling, 165, 147-173.

[本文引用: 1]

Drouet JL, Pagès L (2007).

GRAAL-CN: a model of growth, architecture and allocation for carbon and nitrogen dynamics within whole plants formalised at the organ level

Ecological Modelling, 206, 231-249.

[本文引用: 1]

Dukes JS, Chiariello NR, Cleland EE, Moore LA, Shaw MR, Thayer S, Tobeck T, Mooney HA, Field CB (2005).

Responses of grassland production to single and multiple global environmental changes

PLoS Biology, 3, 1829-1837.

[本文引用: 3]

Enquist BJ, Niklas KJ (2002).

Global allocation rules for patterns of biomass partitioning in seed plants

Science, 295, 1517-1520.

DOI      URL     PMID      [本文引用: 1]

A general allometric model has been derived to predict intraspecific and interspecific scaling relationships among seed plant leaf, stem, and root biomass. Analysis of a large compendium of standing organ biomass sampled across a broad sampling of taxa inhabiting diverse ecological habitats supports the relations predicted by the model and defines the boundary conditions for above- and below-ground biomass partitioning. These canonical biomass relations are insensitive to phyletic affiliation (conifers versus angiosperms) and variation in averaged local environmental conditions. The model thus identifies and defines the limits that have guided the diversification of seed plant biomass allocation strategies.

Ericsson T, Rytter L, Vapaavuori E (1996).

Physiology of carbon allocation in trees

Biomass and Bioenergy, 11, 115-127.

[本文引用: 3]

Fan JW, Wang K, Harris W, Zhong HP, Hu ZM, Han B, Zhang WY, Wang JB (2009).

Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia

Journal of Arid Environments, 73, 521-528.

[本文引用: 2]

Farrar JF, Williams ML (1991).

The effects of increased atmospheric carbon dioxide and temperature on carbon partitioning, source-sink relations and respiration

Plant, Cell and Environment, 14, 819-830.

[本文引用: 5]

Farrell-Gray CC, Gotelli NJ (2005).

Allometric exponents support a 3/4-power scaling law

Ecology, 86, 2083-2087.

[本文引用: 1]

Feng YL, Wang JF, Sang WG (2007).

Biomass allocation, morphology and photosynthesis of invasive and noninvasive exotic species grown at four irradiance levels

Acta Oecologica, 31, 40-47.

[本文引用: 2]

Friedlingstein P, Joel G, Field CB, Fung IY (1999).

Toward an allocation scheme for global terrestrial carbon models

Global Change Biology, 5, 755-770.

[本文引用: 2]

Fung IY, Doney SC, Lindsay K, John J (2005).

Evolution of carbon sinks in a changing climate

Proceedings of the National Academy of Sciences of the United States of America, 102, 11201-11206.

DOI      URL     PMID      [本文引用: 1]

Climate change is expected to influence the capacities of the land and oceans to act as repositories for anthropogenic CO2 and hence provide a feedback to climate change. A series of experiments with the National Center for Atmospheric Research-Climate System Model 1 coupled carbon-climate model shows that carbon sink strengths vary with the rate of fossil fuel emissions, so that carbon storage capacities of the land and oceans decrease and climate warming accelerates with faster CO2 emissions. Furthermore, there is a positive feedback between the carbon and climate systems, so that climate warming acts to increase the airborne fraction of anthropogenic CO2 and amplify the climate change itself. Globally, the amplification is small at the end of the 21st century in this model because of its low transient climate response and the near-cancellation between large regional changes in the hydrologic and ecosystem responses. Analysis of our results in the context of comparable models suggests that destabilization of the tropical land sink is qualitatively robust, although its degree is uncertain.

Génard M, Dauzat J, Franck N, Lescourret F, Moitrier N, Vaast P, Vercambre G (2008).

Carbon allocation in fruit trees: from theory to modelling

Trees, 22, 269-282.

[本文引用: 5]

Gedroc JJ, McConnaughay KDM, Coleman JS (1996).

Plasticity in root/shoot partitioning: optimal, ontogenetic, or both?

Functional Ecology, 10, 44-50.

[本文引用: 1]

Glynn C, Herms DA, Egawa M, Hansen R, Mattson WJ (2003).

Effects of nutrient availability on biomass allocation as well as constitutive and rapid induced herbivore resistance in poplar

Oikos, 101, 385-397.

[本文引用: 2]

Gorissen A, Tietema A, Joosten NN, Estiarte M, Penuelas J, Sowerby A, Emmett BA, Beier C (2004).

Climate change affects carbon allocation to the soil in shrublands

Ecosystems, 7, 650-661.

[本文引用: 1]

Grechi I, Vivin P, Hilbert G, Milin S, Robert T, Gaudillère JP (2007).

Effect of light and nitrogen supply on internal C: N balance and control of root-to-shoot biomass allocation in grapevine

Environmental and Experimental Botany, 59, 139-149.

[本文引用: 8]

Hale BK, Herms DA, Hansen RC, Clausen TP, Arnold D (2005).

Effects of drought stress and nutrient availability on dry matter allocation, phenolic glycosides, and rapid induced resistance of poplar to two Lymantriid defoliators

Journal of Chemical Ecology, 31, 2601-2620.

DOI      URL     PMID      [本文引用: 2]

The growth-differentiation balance hypothesis (GDBH) postulates that variation in resource availability can increase or decrease allocation to secondary metabolism, depending on how growth is affected relative to carbon assimilation. Growth and leaf area of black poplar (Populus nigra) increased substantially in response to increased nutrient availability, while net assimilation rate and photosynthesis were less strongly affected. In response, total phenolic glycoside concentrations declined, which is consistent with GDBH. Drought stress decreased net assimilation rate and photosynthesis as well as growth, while increasing total phenolic glycoside concentrations. This pattern does not follow GDBH, which predicts lower secondary metabolism when resource limitation decreases both growth and carbon assimilation. However, there was a strong negative correlation between growth and total phenolic glycoside concentration consistent with a trade-off between primary and secondary metabolism, a key premise of GDBH. Drought decreased the growth of gypsy moth (Lymantria dispar) larvae but had no effect on whitemarked tussock moth (Orgyia leucostigma). Increased nutrient availability had a positive linear effect on growth of whitemarked tussock moth, but no effect on gypsy moth. Treatment effects on gypsy moth corresponded closely with effects on total phenolic glycosides, whereas effects on whitemarked tussock moth more closely tracked changes in nutritional quality. Localized gypsy moth herbivory elicited rapid induced resistance to gypsy moth, with the effect being independent of water and nutrient availability, but did not affect whitemarked tussock moth, indicating that the effects of biotic and abiotic stress on insect resistance of trees can be species-specific.

Han WX (韩文轩), Fang JY (方精云) (2003).

Allometry and its application in ecological scaling

Acta Scientiarum Naturalum Universitatis Pekinensis (北京大学学报(自然科学版)), 39, 583-593. (in Chinese with English abstract)

[本文引用: 1]

Han WX (韩文轩), Fang JY (方精云) (2008).

Review on the mechanism models of allometric scaling laws: 3/4 vs. 2/3 power

Journal of Plant Ecology (Chinese Version) (植物生态学报), 32, 951-960. (in Chinese with English abstract)

[本文引用: 1]

Harmens H, Stirling CM, Marshall C, Farrar JF (2000).

Is partitioning of dry weight and leaf area within Dactylis glomerata affected by N and CO2 enrichment?

Annals of Botany, 86, 833-839.

[本文引用: 1]

Hawkes CV, Hartley IP, Ineson P, Fitter AH (2008).

Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus

Global Change Biology, 14, 1181-1190.

[本文引用: 1]

He HB (贺海波), Li Y (李彦) (2008).

Study on measures of biomass allocation of two desert Halophyte species under drought and salt stress

Arid Zone Research (干旱区研究), 25, 242-247. (in Chinese with English abstract)

[本文引用: 1]

Huang BR, Fu JM (2000).

Photosynthesis, respiration, and carbon allocation of two cool-season perennial grasses in response to surface soil drying

Plant and Soil, 227, 17-26.

DOI      URL     [本文引用: 1]

Hunt HW, Morgan JA, Read JJ (1998).

Simulating growth and root-shoot partitioning in prairie grasses under elevated atmospheric CO2 and water stress

Annals of Botany, 81, 489-501.

DOI      URL     [本文引用: 1]

Hyvonen R, Agren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomaki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Stromgren M, Van Oijen M, Wallin G (2007).

The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review

New Phytologist, 173, 463-480.

DOI      URL     [本文引用: 2]

Jackson RB, Schenk HJ, Jobbágy EG, Canadell J, Colello GD, Dickinson RE, Field CB, Friedlingstein P, Heimann M, Hibbard K, Kicklighter DW, Kleidon A, Neilson RP, Parton WJ, Sala OE, Sykes MT (2000).

Belowground consequences of vegetation change and their treatment in models

Ecological Applications, 10, 470-483.

[本文引用: 1]

Johnson IR, Thornley JHM (1987).

A model of shoot : root partitioning with optimal growth

Annals of Botany, 60, 133-142.

[本文引用: 1]

Johnson SL, Lincoln DE (2000).

Allocation responses to CO2 enrichment and defoliation by a native annual plant He- terotheca subaxillaris

Global Change Biology, 6, 767-778.

[本文引用: 1]

Kleiber M (1932).

Body size and metabolism

Hilgardia, 6, 315-353.

DOI      URL    

Kolb TE, Matyssek R (2001).

Limitations and perspectives about scaling ozone impacts in trees

Environmental Pollution, 115, 373-393.

DOI      URL     PMID      [本文引用: 1]

We review the need for scaling effects of ozone (O3) from juvenile to mature forest trees, identify the knowledge presently available, and discuss limitations in scaling efforts. Recent findings on O3/soil nutrient and O3/CO2 interactions from controlled experiments suggest consistent scaling patterns for physiological responses of individual leaves to whole-plant growth, carbon allocation, and water use efficiency of juvenile trees. These findings on juvenile trees are used to develop hypotheses that are relevant to scaling O3 effects to mature trees, and these hypotheses are examined with respect to existing research on differences in response to O3 between juvenile and mature trees. Scaling patterns of leaf-level physiological response to O3 have not been consistent in previous comparisons between juvenile and mature trees. We review and synthesize current understanding of factors that may cause such inconsistent scaling patterns, including tree-size related changes in environment, stomatal conductance, O3 uptake and exposure. carbon allocation to defense, repair, and compensation mechanisms, and leaf production phenology. These factors should be considered in efforts to scale O3 responses during tree ontogeny. Free-air O3 fumigation experiments of forest canopies allow direct assessments of O3 impacts on physiological processes of mature trees, and provide the opportunity to test current hypotheses about ontogenetic variation in O3 sensitivity by comparing O3 responses across tree-internal scales and ontogeny.

Kotowski W, van Andel J, van Diggelen R, Hogendorf J (2001).

Responses of fen plant species to groundwater level and light intensity

Plant Ecology, 155, 147-156.

[本文引用: 2]

Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005).

A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system

Global Biogeochemical Cycles, 19, GB1015. doi: 10.1029/2003GB002199.

[本文引用: 1]

Lacointe A (2000).

Carbon allocation among tree organs: a review of basic processes and representation in functional-structural tree models

Annals of Forest Science, 57, 521-533.

[本文引用: 2]

Lambers H, van den Boogaard R, Veneklaas EJ, Villar R (1995).

Effects of global environmental change on carbon partitioning in vegetative plants of Triticum aestivum and closely related Aegilops species

Global Change Biology, 1, 397-406.

DOI      URL     [本文引用: 1]

LeBauer DS, Treseder KK (2008).

Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed

Ecology, 89, 371-379.

DOI      URL     PMID      [本文引用: 1]

Our meta-analysis of 126 nitrogen addition experiments evaluated nitrogen (N) limitation of net primary production (NPP) in terrestrial ecosystems. We tested the hypothesis that N limitation is widespread among biomes and influenced by geography and climate. We used the response ratio (R approximately equal ANPP(N)/ANPP(ctrl)) of aboveground plant growth in fertilized to control plots and found that most ecosystems are nitrogen limited with an average 29% growth response to nitrogen (i.e., R = 1.29). The response ratio was significant within temperate forests (R = 1.19), tropical forests (R = 1.60), temperate grasslands (R = 1.53), tropical grasslands (R = 1.26), wetlands (R = 1.16), and tundra (R = 1.35), but not deserts. Eight tropical forest studies had been conducted on very young volcanic soils in Hawaii, and this subgroup was strongly N limited (R = 2.13), which resulted in a negative correlation between forest R and latitude. The degree of N limitation in the remainder of the tropical forest studies (R = 1.20) was comparable to that of temperate forests, and when the young Hawaiian subgroup was excluded, forest R did not vary with latitude. Grassland response increased with latitude, but was independent of temperature and precipitation. These results suggest that the global N and C cycles interact strongly and that geography can mediate ecosystem response to N within certain biome types.

Li HT, Han XG, Wu JG (2005).

Lack of evidence for 3/4 scaling of metabolism in terrestrial plants

Journal of Integrative Plant Biology, 47, 1173-1183.

DOI      URL     [本文引用: 2]

Scaling, as the translation of information across spatial, temporal, and organizational scales, is essential to predictions and understanding in all sciences and has become a central issue in ecology. A large body of theoretical and empirical evidence concerning allometric scaling in terrestrial individual plants and plant communities has been constructed around the fractal volume-filling theory of West, Brown, and Enquist (the WBE model). One of the most thought-provoking findings has been that the metabolic rates of plants, like those of animals, scale with their size as a 3/4 power law. The earliest, single most-important study cited in support of the application of the WBE model to terrestrial plants claims that whole-plant resource use in terrestrial plants scales as the 3/4 power of total mass, as predicted by the WBE model. However, in the present study we show that empirical data actually do not support such a claim. More recent studies cited as evidence for 3/4 scaling also suffer from several statistical and data-related problems. Using a forest biomass dataset including 1 266 plots of 17 main forest types across China, we explored the scaling exponents between tree productivity and tree mass and found no universal value across forest stands. We conclude that there is not sufficient evidence to support the existence of a single constant scaling exponent for the metabolism-biomass relationship for terrestrial plants.

Li Y (李妍), Li HT (李海涛), Jin DM (金冬梅), Sun SC (孙书存) (2007).

Application of WBE model to ecology: a review

Acta Ecologica Sinica (生态学报), 27, 3018-3031. (in Chinese with English abstract)

[本文引用: 1]

Litton CM, Giardina CP (2008).

Below-ground carbon flux and partitioning: global patterns and response to temperature

Functional Ecology, 22, 941-954.

DOI      URL     [本文引用: 1]

Litton CM, Raich JW, Ryan MG (2007).

Carbon allocation in forest ecosystems

Global Change Biology, 13, 2089-2109.

[本文引用: 8]

Litton CM, Ryan MG, Knight DH (2004).

Effects of tree density and stand age on carbon allocation patterns in postfire lodgepole pine

Ecological Applications, 14, 460-475.

[本文引用: 2]

Liu SR, Barton C, Lee H, Jarvis PG, Durrant D (2002).

Long-term response of Sitka spruce ( Picea sitchensis (Bong.) Carr.) to CO2 enrichment and nitrogen supply. I. Growth, biomass allocation and physiology

Plant Biosystems, 136, 189-198.

[本文引用: 2]

Liu YH (刘颖慧), Jia HK (贾海坤), Gao Q (高琼) (2006).

Review on researches of photoassimilates partitioning and its models

Acta Ecologica Sinica (生态学报), 26, 1981-1992. (in Chinese with English abstract)

[本文引用: 1]

Lockhart BR, Gardiner ES, Hodges JD, Ezell AW (2008).

Carbon allocation and morphology of cherrybark oak seedlings and sprouts under three light regimes

Annals of Forest Science, 65, 801p1-801p8.

[本文引用: 2]

Müller I, Schmid B, Weiner J (2000).

The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants

Perspectives in Plant Ecology, Evolution and Systematics, 3, 115-127.

[本文引用: 3]

Makela A, Valentine HT, Helmisaari HS (2008).

Optimal co-allocation of carbon and nitrogen in a forest stand at steady state

New Phytologist, 180, 114-123.

[本文引用: 1]

Malhi Y, Baker TR, Phillips OL, Almeida S, Alvarez E, Arroyo L, Chave J, Czimczik CI, Fiore AD, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Montoya LM, Monteagudo A, Neill DA, Vargas PN, Patino S, Pitman NC, Quesada CA, Salomao R, Silva JN, Lezama AT, Martinez RV, Terborgh J, Vinceti B, Lloyd J (2004).

The above-ground coarse wood productivity of 104 Neotropical forest plots

Global Change Biology, 10, 563-591.

[本文引用: 1]

Marcelis LFM, Heuvelink E (2007).

Concepts of modelling carbon allocation among plant organs

In: Vos J, Marcelis LFM, de Visser PHB, Struik PC, Evers JB eds. Functional-Structural Plant Modelling in Crop Production. Springer, The Netherlands 103-111.

[本文引用: 4]

Marcelis LFM, Heuvelink E, Goudriaan J (1998).

Modelling biomass production and yield of horticultural crops: a review

Scientia Horticulturae, 74, 83-111.

DOI      URL     [本文引用: 2]

McCarthy MC, Enquist BJ (2007).

Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation

Functional Ecology, 21, 713-720.

DOI      URL     [本文引用: 4]

McConnaughay KDM, Coleman JS (1999).

Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients

Ecology, 80, 2581-2593.

[本文引用: 4]

Milchunas DG, Mosier AR, Morgan JA, LeCain DR, King JY, Nelson JA (2005).

Root production and tissue quality in a shortgrass steppe exposed to elevated CO2: using a new ingrowth method

Plant and Soil, 268, 111-122.

[本文引用: 1]

Mokany K, Raison RJ, Prokushkin AS (2006).

Critical analysis of root: shoot ratios in terrestrial biomes

Global Change Biology, 12, 84-96.

DOI      URL     [本文引用: 3]

Muller-Landau HC, Condit RS, Chave J, Thomas SC, Bohlman SA, Bunyavejchewin S, Davies S, Foster R, Gunatilleke S, Gunatilleke N, Harms KE, Hart T, Hubbell SP, Itoh A, Kassim AR, LaFrankie JV, Lee HS, Losos E, Makana JR, Ohkubo T, Sukumar R, Sun IF, Supardi MN, Tan S, Thompson J, Valencia R, Muñoz GV, Wills C, Yamakura T, Chuyong G, Dattaraja HS, Esufali S, Hall P, Hernandez C, Kenfack D, Kiratiprayoon S, Suresh HS, Thomas D, Vallejo MI, Ashton P (2006).

Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests

Ecology Letters, 9, 575-588.

DOI      URL     PMID      [本文引用: 1]

The theory of metabolic ecology predicts specific relationships among tree stem diameter, biomass, height, growth and mortality. As demographic rates are important to estimates of carbon fluxes in forests, this theory might offer important insights into the global carbon budget, and deserves careful assessment. We assembled data from 10 old-growth tropical forests encompassing censuses of 367 ha and > 1.7 million trees to test the theory's predictions. We also developed a set of alternative predictions that retained some assumptions of metabolic ecology while also considering how availability of a key limiting resource, light, changes with tree size. Our results show that there are no universal scaling relationships of growth or mortality with size among trees in tropical forests. Observed patterns were consistent with our alternative model in the one site where we had the data necessary to evaluate it, and were inconsistent with the predictions of metabolic ecology in all forests.

Nadelhoffer KJ, Raich JW, Aber JD (1998).

A global trend in belowground carbon allocation: comment

Ecology, 79, 1822-1825.

[本文引用: 1]

Ngugi MR, Hunt MA, Doley D, Ryan P, Dart P (2003).

Dry matter production and allocation in Eucalyptus cloeziana and Eucalyptus argophloia seedlings in response to soil water deficits

New Forests, 26, 187-200.

[本文引用: 2]

Nielsen KL, Eshel A, Lynch JP (2001).

The effect of phosphorus availability on the carbon economy of contrasting common bean ( Phaseolus vulgaris L.) genotypes

Journal of Experimental Botany, 52, 329-339.

URL     PMID      [本文引用: 1]

A common response to low phosphorus availability is increased relative biomass allocation to roots. The resulting increase in root:shoot ratio presumably enhances phosphorus acquisition, but may also reduce growth rates by diverting carbon to the production of heterotrophic rather than photosynthetic tissues. To assess the importance of increased carbon allocation to roots for the adaptation of plants to low P availability, carbon budgets were constructed for four common bean genotypes with contrasting adaptation to low phosphorus availability in the field (

Niklas KJ (2006).

A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories

New Phytologist, 171, 27-40.

[本文引用: 1]

Niklas KJ, Enquist BJ (2002).

Canonical rules for plant organ biomass partitioning and annual allocation

American Journal of Botany, 89, 812-819.

DOI      URL     PMID      [本文引用: 3]

Here we review a general allometric model for the allometric relationships among standing leaf, stem, and root biomass (M(L), M(S), and M(R), respectively) and the exponents for the relationships among annual leaf, stem, and root biomass production or

Niklaus PA, Glockler E, Siegwolf R, Korner C (2001).

Carbon allocation in calcareous grassland under elevated CO2: a combined C-13 pulse-labelling/soil physical fractionation study

Functional Ecology, 15, 43-50.

[本文引用: 1]

Norby RJ, Jackson RB (2000).

Root dynamics and global change: seeking an ecosystem perspective

New Phytologist, 147, 3-12.

[本文引用: 1]

Norby RJ, O’Neill EG, Wullschleger SD, McFee WW, Kelly JM (1995).

Belowground responses to atmospheric carbon dioxide in forests

In: McFee WW, Kelly JM eds. Soil Science Society of America. Madison, WI, USA. 397-418.

[本文引用: 1]

Palit P (1985).

Translocation and distribution of 14C-labelled assimilate associated with growth of jute (Corchorus olitorius L.)

Australian Journal of Plant Physiology, 12, 527-534.

[本文引用: 1]

Peng YY, Dang QL (2003).

Effects of soil temperature on biomass production and allocation in seedlings of four boreal tree species

Forest Ecology and Management, 180, 1-9.

[本文引用: 2]

Poorter H (1993).

Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration

Plant Ecology, 104, 77-97.

[本文引用: 4]

Poorter H, Nagel O (2000).

The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review

Australian Journal of Plant Physiology, 27, 595-607.

[本文引用: 7]

Rachmilevitch S, Huang B, Lambers H (2006).

Assimilation and allocation of carbon and nitrogen of thermal and nonthermal Agrostis species in response to high soil temperature

New Phytologist, 170, 479-490.

[本文引用: 1]

Reynolds JF, Chen JL (1996).

Modelling whole-plant allocation in relation to carbon and nitrogen supply: coordination versus optimization: opinion

Plant and Soil, 185, 65-74.

[本文引用: 1]

Rogers HH, Prior SA, Runion GB, Mitchell RJ (1996).

Root to shoot ratio of crops as influenced by CO2

Plant and Soil, 187, 229-248.

DOI      URL     [本文引用: 4]

Schenk HJ (2006).

Root competition: beyond resource depletion

Journal of Ecology, 94, 725-739.

DOI      URL     [本文引用: 1]

Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB (2002).

Grassland responses to global environmental changes suppressed by elevated CO2

Science, 298, 1987-1990.

DOI      URL     PMID      [本文引用: 2]

Simulated global changes, including warming, increased precipitation, and nitrogen deposition, alone and in concert, increased net primary production (NPP) in the third year of ecosystem-scale manipulations in a California annual grassland. Elevated carbon dioxide also increased NPP, but only as a single-factor treatment. Across all multifactor manipulations, elevated carbon dioxide suppressed root allocation, decreasing the positive effects of increased temperature, precipitation, and nitrogen deposition on NPP. The NPP responses to interacting global changes differed greatly from simple combinations of single-factor responses. These findings indicate the importance of a multifactor experimental approach to understanding ecosystem responses to global change.

Sigee DC, Bahram F, Estrada B, Webster RE, Dean AP (2007).

The influence of phosphorus availability on carbon allocation and P quota in Scenedesmus subspicatus: a synchrotron-based FTIR analysis

Phycologia, 46, 583-592.

[本文引用: 1]

Sun XF (孙晓方), He JQ (何家庆), Huang XD (黄训端), Ping J (平江), Ge JL (葛结林) (2008).

Growth characters and chlorophyll fluorescence of goldenrod (Solidago canadensis) in different light intensities

Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 28, 752-758. (in Chinese with English abstract)

[本文引用: 1]

Suter D, Frehner M, Fischer BU, Nosberger J, Luscher A (2002).

Elevated CO2 increases carbon allocation to the roots of Lolium perenne under free-air CO2 enrichment but not in a controlled environment

New Phytologist, 154, 65-75.

[本文引用: 3]

Thornley JHM (1972).

A balanced quantitative model for root: shoot ratios in vegetative plants

Annals of Botany, 36, 431-441.

[本文引用: 2]

Tierney GL, Fahey TJ (2007).

Estimating belowground primary productivity

In: Fahey TJ, Knapp AK eds. Principles and Standards for Measuring Primary Production. Oxford University Press, New York 120-142.

[本文引用: 1]

Tilman D (1988). Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, Princeton.

[本文引用: 1]

VanderWerf A, Nagel OW (1996).

Carbon allocation to shoots and roots in relation to nitrogen supply is mediated by cytokinins and sucrose: opinion

Plant and Soil, 185, 21-32.

[本文引用: 3]

Vanninen P, Makela A (2005).

Carbon budget for Scots pine trees: effects of size, competition and site fertility on growth allocation and production

Tree Physiology, 25, 17-30.

DOI      URL     PMID      [本文引用: 2]

Time series of carbon fluxes in individual Scots pine (Pinus sylvestris L.) trees were constructed based on biomass measurements and information about component-specific turnover and respiration rates. Foliage, branch, stem sapwood, heartwood and bark components of aboveground biomass were measured in 117 trees sampled from 17 stands varying in age, density and site fertility. A subsample of 32 trees was measured for belowground biomass excluding fine roots. Biomass of fine roots was estimated from the results of an earlier study. Statistical models were constructed to predict dry mass (DW) of components from tree height and basal area, and time derivatives of these models were used to estimate biomass increments from height growth and basal area growth. Biomass growth (G) was estimated by adding estimated biomass turnover rates to increments, and gross photosynthetic production (P) was estimated by adding estimated component respiration rates to growth. The method, which predicts the time course of G, P and biomass increment in individual trees as functions of height growth and basal area growth, was applied to eight example trees representing different dominance positions and site fertilities. Estimated G and P of the example trees varied with competition, site fertility and tree height, reaching maximum values of 22 and 43 kg(DW) year(-1), respectively. The site types did not show marked differences in productivity of trees of the same height, although height growth was greater on the fertile site. The G:P ratio decreased with tree height from 65 to 45%. Growth allocation to needles and branches increased with increasing dominance, whereas growth allocation to the stem decreased. Growth allocation to branches decreased and growth allocation to coarse roots increased with increasing tree size. Trees at the poor site allocated 49% more to fine roots than trees at the fertile site. The belowground parts accounted for 25 to 55% of annual G, increasing with tree size and decreasing with site fertility. Annual G and P per unit needle mass varied over the ranges 1.9-2.4 and 3.5-4.0 kg(DW) kg(-1), respectively. The relationship between P and needle mass in the example trees was linear and relatively independent of competition, site fertility and age.

Vivin PH, Castelan M, Gaudillère JP (2002).

A source/sink model to simulate seasonal allocation of carbon in grapevine

Acta Horticulturae, 584, 43-56.

[本文引用: 3]

Vogel JG, Bond-Lamberty BP, Schuur EAG, Gower ST, Mack MC, O’Connell KEB, Valentine DW, Ruess RW (2008).

Carbon allocation in boreal black spruce forests across regions varying in soil temperature and precipitation

Global Change Biology, 14, 1503-1516.

[本文引用: 3]

Wang RZ, Gao Q, Chen QS (2003).

Effects of climatic change on biomass and biomass allocation in Leymus chinensis (Poaceae) along the North-east China Transect (NECT)

Journal of Arid Environments, 54, 653-665.

[本文引用: 1]

Wang XP, Fang JY, Zhu B (2008).

Forest biomass and root-shoot allocation in northeast China

Forest Ecology and Management, 255, 4007-4020.

[本文引用: 3]

Wardlaw IF (1990).

The control of carbon partitioning in plants

New Phytologist, 116, 341-381.

[本文引用: 1]

Warembourg FR, Estelrich HD (2001).

Plant phenology and soil fertility effects on below-ground carbon allocation for an annual ( Bromus madritensis) and a perennial (Bromus erectus) grass species

Soil Biology and Biochemistry, 33, 1291-1303.

[本文引用: 1]

Weigelt A, Steinlein T, Beyschlag W (2005).

Competition among three dune species: the impact of water availability on below-ground processes

Plant Ecology, 176, 57-68.

[本文引用: 2]

Weiner J (2004).

Allocation, plasticity and allometry in plants

Perspective in Plant Ecology, Evolution and Systematics, 6, 207-215.

[本文引用: 1]

Welander NT, Ottosson B (1998).

The influence of shading on growth and morphology in seedlings of Quercus robur L. and Fagus sylvatica L

Forest Ecology and Management, 107, 117-126.

[本文引用: 1]

Wermelinger B, Baumgartner J, Gutierrez AP (1991).

A demographic-model of assimilation and allocation of carbon and nitrogen in grapevines

Ecological Modelling, 53, 1-26.

[本文引用: 1]

West GB, Brown JH, Enquist BJ (1997).

A general model for the origin of allometric scaling laws in biology

Science, 276, 122-126.

DOI      URL     PMID      [本文引用: 1]

Allometric scaling relations, including the 3/4 power law for metabolic rates, are characteristic of all organisms and are here derived from a general model that describes how essential materials are transported through space-filling fractal networks of branching tubes. The model assumes that the energy dissipated is minimized and that the terminal tubes do not vary with body size. It provides a complete analysis of scaling relations for mammalian circulatory systems that are in agreement with data. More generally, the model predicts structural and functional properties of vertebrate cardiovascular and respiratory systems, plant vascular systems, insect tracheal tubes, and other distribution networks.

Woodward FI, Osborne CP (2000).

The representation of root processes in models addressing the responses of vegetation to global change

New Phytologist, 147, 223-232.

[本文引用: 1]

Xiao DM (肖冬梅), Wang M (王淼), Ji LZ (姬兰柱) (2004).

Influence of water stress on growth and biomass allocation of dominant tree species in mixed forest of broad-leaved and Korean pine at Changbai Mountain

Chinese Journal of Ecology (生态学杂志), 23, 93-97. (in Chinese with English abstract)

[本文引用: 1]

Xu ZZ, Zhou GS (2005).

Effects of water stress and nocturnal temperature on carbon allocation in the perennial grass, Leymus chinensis

Physiologia Plantarum, 123, 272-280.

[本文引用: 1]

Xu ZZ, Zhou GS, Wang YH (2007).

Combined effects of elevated CO2 and soil drought on carbon and nitrogen allocation of the desert shrub Caragana intermedia

Plant and Soil, 301, 87-97.

[本文引用: 2]

Yan HP, Kang MZ, de Reffye P, Dingkuhn M (2004).

A dynamic, architectural plant model simulating resource-dependent growth

Annals of Botany, 93, 591-602.

DOI      URL     PMID      [本文引用: 1]

BACKGROUND AND AIMS: Physiological and architectural plant models have originally been developed for different purposes and therefore have little in common, thus making combined applications difficult. There is, however, an increasing demand for crop models that simulate the genetic and resource-dependent variability of plant geometry and architecture, because man is increasingly able to transform plant production systems through combined genetic and environmental engineering. MODEL: GREENLAB is presented, a mathematical plant model that simulates interactions between plant structure and function. Dual-scale automaton is used to simulate plant organogenesis from germination to maturity on the basis of organogenetic growth cycles that have constant thermal time. Plant fresh biomass production is computed from transpiration, assuming transpiration efficiency to be constant and atmospheric demand to be the driving force, under non-limiting water supply. The fresh biomass is then distributed among expanding organs according to their relative demand. Demand for organ growth is estimated from allometric relationships (e.g. leaf surface to weight ratios) and kinetics of potential growth rate for each organ type. These are obtained through parameter optimization against empirical, morphological data sets by running the model in inverted mode. Potential growth rates are then used as estimates of relative sink strength in the model. These and other 'hidden' plant parameters are calibrated using the non-linear, least-square method. KEY RESULTS AND CONCLUSIONS: The model reproduced accurately the dynamics of plant growth, architecture and geometry of various annual and woody plants, enabling 3D visualization. It was also able to simulate the variability of leaf size on the plant and compensatory growth following pruning, as a result of internal competition for resources. The potential of the model's underlying concepts to predict the plant's phenotypic plasticity is discussed.

Yang YH, Fang JY, Ji CJ, Han WX (2009).

Above- and below- ground biomass allocation in Tibetan grasslands

Journal of Vegetation Science, 20, 177-184.

[本文引用: 3]

Zak DR, Pregitzer KS, Curtis PS, Vogel CS, Holmes WE, Lussenhop J (2000).

Atmospheric CO2, soil-N availability, and allocation of biomass and nitrogen by Populus tremuloides

Ecological Applications, 10, 34-46.

[本文引用: 2]

/