植物生态学报 ›› 2010, Vol. 34 ›› Issue (1): 100-111.DOI: 10.3773/j.issn.1005-264x.2010.01.013
收稿日期:
2009-04-28
接受日期:
2009-07-14
出版日期:
2010-04-28
发布日期:
2010-01-01
通讯作者:
周广胜
作者简介:
* E-mail: gszhou@ibcas.ac.cn
PING Xiao-Yan1,3, ZHOU Guang-Sheng2,1,*(), SUN Jing-Song1,3
Received:
2009-04-28
Accepted:
2009-07-14
Online:
2010-04-28
Published:
2010-01-01
Contact:
ZHOU Guang-Sheng
摘要:
植物光合产物分配受环境因子和生物因子的共同影响。为增进对植物对全球变化响应的理解, 从植物个体水平与群落/生态系统水平综述了植物光合产物分配的影响因子与影响机理的最新研究进展。植物个体在光照增强及受水分和养分胁迫时, 会将光合产物更多地分配到根系; CO2浓度升高对植物光合产物分配的影响受土壤氮素的制约, 植物受氮素胁迫时, CO2浓度升高会促进光合产物更多地分配到根系; 反之, 对植物光合产物分配没有影响。植物群落/生态系统的光合产物分配对环境因子的响应不敏感; 光合产物向根系的分配比例随其生长阶段逐渐降低。功能平衡假说、源汇关系假说和相关生长关系假说分别从环境因子、个体发育和环境因子与个体发育协同作用方面阐述了植物光合产物分配的影响机理。在此基础上,指出了未来拟重点加强的研究方向: 1)生态系统尺度的光合产物向呼吸部分的分配研究; 2)地下净初级生产力(belowground net primary productivity, BNPP)研究; 3)温室和野外条件下及幼苗和成熟林光合产物分配对环境因子响应的比较研究; 4)生态系统尺度的多因子控制试验; 5)整合环境因子和个体发育对植物光合产物分配格局的影响研究。
平晓燕, 周广胜, 孙敬松. 植物光合产物分配及其影响因子研究进展. 植物生态学报, 2010, 34(1): 100-111. DOI: 10.3773/j.issn.1005-264x.2010.01.013
PING Xiao-Yan, ZHOU Guang-Sheng, SUN Jing-Song. Advances in the study of photosynthate allocation and its controls. Chinese Journal of Plant Ecology, 2010, 34(1): 100-111. DOI: 10.3773/j.issn.1005-264x.2010.01.013
[1] |
Agren GI, Franklin O (2003). Root: shoot ratios, optimization and nitrogen productivity. Annals of Botany, 92, 795-800.
DOI URL PMID |
[2] |
Ammer C (2003). Growth and biomass partitioning of Fagus sylvatica L. and Quercus robur L. seedlings in response to shading and small changes in the R/FR-ratio of radiation. Annals of Forest Science, 60, 163-171.
DOI URL |
[3] | Andrews M, Raven JA, Sprent JI (2001). Environmental effects on dry matter partitioning between shoot and root of crop plants: relations with growth and shoot protein concentration. Annals of Applied Biology, 138, 57-68. |
[4] |
Arora VK, Boer GJ (2005). A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Global Change Biology, 11, 39-59.
DOI URL |
[5] | Atkinson CJ, Farrar JF (1983). Allocation of photosynthetically-fixed carbon in Festuca-Ovina L. and Nardus-Stricta L. New Phytologist, 95, 519-531. |
[6] |
Balachandran S, Hull RJ, Martins RA, Vaadia Y, Lucas WJ (1997). Influence of environmental stress on biomass partitioning in transgenic tobacco plants expressing the movement protein of tobacco mosaic virus. Plant Physiology, 114, 475-481.
URL PMID |
[7] | Bazzaz FA (1990). The response of natural ecosystems to the rising global CO2 levels. Annual Review of Ecology and Systematics, 21, 167-196. |
[8] | Berendse F, Möller F (2009). Effects of competition on root-shoot allocation in Plantago lanceolata L.: adaptive plasticity or ontogenetic drift? Plant Ecology, 201, 567-573. |
[9] | Bloom AJ, Chapin FS III, Mooney HA (1985). Resource limitation in plants—an economic analogy. Annual Review of Ecology and Systematics, 16, 363-392. |
[10] | Bloor JMG, Leadley PW, Barthes L (2008). Responses of Fraxinus excelsior seedlings to grass-induced above- and below-ground competition. Plant Ecology, 194, 293-304. |
[11] | Brouwer R (1962). Nutritive influences on the distribution of dry matter in the plant. Netherlands Journal of Agricultural Science, 10, 399-408. |
[12] | Cahill JF Jr (2003). Lack of relationship between below-ground competition and allocation to roots in 10 grassland species. Journal of Ecology, 91, 532-540. |
[13] | Cairney JWG, Alexander IJ (1992). A study of ageing of spruce [Picea sitchensis (Bong.) Carr.] ectomycorrhizas. II. Carbohydrate allocation in ageing Picea sitchensis/Tylospora fibrillosa (Burt.) Donk ectomycorrhizas. New Phytologist, 122, 153-158. |
[14] | Cannell MGR, Dewar RC (1994). Carbon allocation in trees: a review of concepts for modeling. Advances in Ecological Research, 25, 59-104. |
[15] |
Ceulemans R, Mousseau M (1994). Effects of elevated atmospheric CO2 on woody plants. New Phytologist, 127, 425-446.
DOI URL |
[16] | Chen YJ (陈亚军), Zhang JL (张教林), Cao KF (曹坤芳) (2008). Morphological, growth and photosynthetic traits of two Liana species in response to different light and soil nutrients. Chinese Bulletin of Botany (植物学通报), 25, 185-194. (in Chinese with English abstract) |
[17] |
Chen JL, Reynolds JF (1997). A coordination model of whole-plant carbon allocation in relation to water stress. Annals of Botany, 80, 45-55.
DOI URL |
[18] | Cheng DL (程栋梁) (2007). Plant Allometric Study of Biomass Allocation Pattern and Biomass Production Rates (植物生物量分配模式与生长速率的相关规律研究). PhD dissertation, Lanzhou University, Lanzhou. (in Chinese with English abstact) |
[19] |
Cheng DL, Niklas KJ (2007). Above- and below-ground biomass relationships across 1534 forested communities. Annals of Botany, 99, 95-102.
URL PMID |
[20] |
Cournede PH, Mathieu A, Houllier F, Barthelemy D, de Reffye P (2008). Computing competition for light in the GREENLAB model of plant growth: a contribution to the study of the effects of density on resource acquisition and architectural development. Annals of Botany, 101, 1207-1219.
DOI URL PMID |
[21] |
Coviella CE, Stipanovic RD, Trumble JT (2002). Plant allocation to defensive compounds: interactions between elevated CO2 and nitrogen in transgenic cotton plants. Journal of Experimental Botany, 53, 323-331.
URL PMID |
[22] |
Coyle DR, Coleman MD (2005). Forest production responses to irrigation and fertilization are not explained by shifts in allocation. Forest Ecology and Management, 208, 137-152.
DOI URL |
[23] |
Cronin G, Lodge DM (2003). Effects of light and nutrient availability on the growth, allocation, carbon/nitrogen balance, phenolic chemistry, and resistance to herbivory of two freshwater macrophytes. Oecologia, 137, 32-41.
URL PMID |
[24] |
Day ME, Schedlbauer JL, Livingston WH, Greenwood MS, White AS, Brissette JC (2005). Influence of seedbed, light environment, and elevated night temperature on growth and carbon allocation in pitch pine ( Pinus rigida) and jack pine (Pinus banksiana) seedlings. Forest Ecology and Management, 205, 59-71.
DOI URL |
[25] |
de Groot CC, Marcelis LFM, van den Boogaard R, Lambers H (2002). Interactive effects of nitrogen and irradiance on growth and partitioning of dry mass and nitrogen in young tomato plants. Functional Plant Biology, 29, 1319-1328.
URL PMID |
[26] | Dentener F, Drevet J, Lamarque JF, Bey I, Eickhout B, Fiore AM, Hauglustaine D, Horowitz LW, Krol M, Kulshrestha UC (2006). Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Global Biogeoche- mical Cycles, 20, GB4003. doi: 4010.1029/2005GB002672. |
[27] | de Pinheiro Henriques AR, Marcelis LFM (2000). Regulation of growth at steady-state nitrogen nutrition in lettuce ( Lactuca sativa L.): interactive effects of nitrogen and irradiance. Annals of Botany, 86, 1073-1080. |
[28] | Dewar RC (1993). A root-shoot partitioning model based on carbon-nitrogen-water interactions and Munch phloem flow. Functional Ecology, 7, 356-368. |
[29] | Dingkuhn M, Luquet D, Clément-Vidal A, Tambour L, Kim HK, Song YH (2007). Is plant growth driven by sink regulation? Implications for crop models, phenotyping approaches and ideotypes. In: Spiertz JHJ, Struik PC, Van Laar HH eds. Scale and Complexity in Plant Systems Research: Gene-Plant-Crop Relations. Springer, Wageningen. 157-170. |
[30] |
Domisch T, Finer L, Lehto T (2001). Effects of soil temperature on biomass and carbohydrate allocation in Scots pine ( Pinus sylvestris) seedlings at the beginning of the growing season. Tree Physiology, 21, 465-472.
DOI URL PMID |
[31] | Drouet JL, Pagès L (2003). GRAAL: a model of growth, architecture and carbon allocation during the vegetative phase of the whole maize plant model description and parameterisation. Ecological Modelling, 165, 147-173. |
[32] | Drouet JL, Pagès L (2007). GRAAL-CN: a model of growth, architecture and allocation for carbon and nitrogen dynamics within whole plants formalised at the organ level. Ecological Modelling, 206, 231-249. |
[33] | Dukes JS, Chiariello NR, Cleland EE, Moore LA, Shaw MR, Thayer S, Tobeck T, Mooney HA, Field CB (2005). Responses of grassland production to single and multiple global environmental changes. PLoS Biology, 3, 1829-1837. |
[34] |
Enquist BJ, Niklas KJ (2002). Global allocation rules for patterns of biomass partitioning in seed plants. Science, 295, 1517-1520.
DOI URL PMID |
[35] | Ericsson T, Rytter L, Vapaavuori E (1996). Physiology of carbon allocation in trees. Biomass and Bioenergy, 11, 115-127. |
[36] | Fan JW, Wang K, Harris W, Zhong HP, Hu ZM, Han B, Zhang WY, Wang JB (2009). Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia. Journal of Arid Environments, 73, 521-528. |
[37] | Farrar JF, Williams ML (1991). The effects of increased atmospheric carbon dioxide and temperature on carbon partitioning, source-sink relations and respiration. Plant, Cell and Environment, 14, 819-830. |
[38] | Farrell-Gray CC, Gotelli NJ (2005). Allometric exponents support a 3/4-power scaling law. Ecology, 86, 2083-2087. |
[39] | Feng YL, Wang JF, Sang WG (2007). Biomass allocation, morphology and photosynthesis of invasive and noninvasive exotic species grown at four irradiance levels. Acta Oecologica, 31, 40-47. |
[40] | Friedlingstein P, Joel G, Field CB, Fung IY (1999). Toward an allocation scheme for global terrestrial carbon models. Global Change Biology, 5, 755-770. |
[41] |
Fung IY, Doney SC, Lindsay K, John J (2005). Evolution of carbon sinks in a changing climate. Proceedings of the National Academy of Sciences of the United States of America, 102, 11201-11206.
DOI URL PMID |
[42] | Génard M, Dauzat J, Franck N, Lescourret F, Moitrier N, Vaast P, Vercambre G (2008). Carbon allocation in fruit trees: from theory to modelling. Trees, 22, 269-282. |
[43] | Gedroc JJ, McConnaughay KDM, Coleman JS (1996). Plasticity in root/shoot partitioning: optimal, ontogenetic, or both? Functional Ecology, 10, 44-50. |
[44] | Glynn C, Herms DA, Egawa M, Hansen R, Mattson WJ (2003). Effects of nutrient availability on biomass allocation as well as constitutive and rapid induced herbivore resistance in poplar. Oikos, 101, 385-397. |
[45] | Gorissen A, Tietema A, Joosten NN, Estiarte M, Penuelas J, Sowerby A, Emmett BA, Beier C (2004). Climate change affects carbon allocation to the soil in shrublands. Ecosystems, 7, 650-661. |
[46] | Grechi I, Vivin P, Hilbert G, Milin S, Robert T, Gaudillère JP (2007). Effect of light and nitrogen supply on internal C: N balance and control of root-to-shoot biomass allocation in grapevine. Environmental and Experimental Botany, 59, 139-149. |
[47] |
Hale BK, Herms DA, Hansen RC, Clausen TP, Arnold D (2005). Effects of drought stress and nutrient availability on dry matter allocation, phenolic glycosides, and rapid induced resistance of poplar to two Lymantriid defoliators. Journal of Chemical Ecology, 31, 2601-2620.
DOI URL PMID |
[48] | Han WX (韩文轩), Fang JY (方精云) (2003). Allometry and its application in ecological scaling. Acta Scientiarum Naturalum Universitatis Pekinensis (北京大学学报(自然科学版)), 39, 583-593. (in Chinese with English abstract) |
[49] | Han WX (韩文轩), Fang JY (方精云) (2008). Review on the mechanism models of allometric scaling laws: 3/4 vs. 2/3 power. Journal of Plant Ecology (Chinese Version) (植物生态学报), 32, 951-960. (in Chinese with English abstract) |
[50] | Harmens H, Stirling CM, Marshall C, Farrar JF (2000). Is partitioning of dry weight and leaf area within Dactylis glomerata affected by N and CO2 enrichment? Annals of Botany, 86, 833-839. |
[51] | Hawkes CV, Hartley IP, Ineson P, Fitter AH (2008). Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Global Change Biology, 14, 1181-1190. |
[52] | He HB (贺海波), Li Y (李彦) (2008). Study on measures of biomass allocation of two desert Halophyte species under drought and salt stress. Arid Zone Research (干旱区研究), 25, 242-247. (in Chinese with English abstract) |
[53] |
Huang BR, Fu JM (2000). Photosynthesis, respiration, and carbon allocation of two cool-season perennial grasses in response to surface soil drying. Plant and Soil, 227, 17-26.
DOI URL |
[54] |
Hunt HW, Morgan JA, Read JJ (1998). Simulating growth and root-shoot partitioning in prairie grasses under elevated atmospheric CO2 and water stress. Annals of Botany, 81, 489-501.
DOI URL |
[55] |
Hyvonen R, Agren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomaki S, Lindroth A, Loustau D, Lundmark T, Norby RJ, Oren R, Pilegaard K, Ryan MG, Sigurdsson BD, Stromgren M, Van Oijen M, Wallin G (2007). The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytologist, 173, 463-480.
DOI URL |
[56] | Jackson RB, Schenk HJ, Jobbágy EG, Canadell J, Colello GD, Dickinson RE, Field CB, Friedlingstein P, Heimann M, Hibbard K, Kicklighter DW, Kleidon A, Neilson RP, Parton WJ, Sala OE, Sykes MT (2000). Belowground consequences of vegetation change and their treatment in models. Ecological Applications, 10, 470-483. |
[57] | Johnson IR, Thornley JHM (1987). A model of shoot : root partitioning with optimal growth. Annals of Botany, 60, 133-142. |
[58] | Johnson SL, Lincoln DE (2000). Allocation responses to CO2 enrichment and defoliation by a native annual plant He- terotheca subaxillaris. Global Change Biology, 6, 767-778. |
[59] |
Kleiber M (1932). Body size and metabolism. Hilgardia, 6, 315-353.
DOI URL |
[60] |
Kolb TE, Matyssek R (2001). Limitations and perspectives about scaling ozone impacts in trees. Environmental Pollution, 115, 373-393.
DOI URL PMID |
[61] | Kotowski W, van Andel J, van Diggelen R, Hogendorf J (2001). Responses of fen plant species to groundwater level and light intensity. Plant Ecology, 155, 147-156. |
[62] | Krinner G, Viovy N, de Noblet-Ducoudré N, Ogée J, Polcher J, Friedlingstein P, Ciais P, Sitch S, Prentice IC (2005). A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles, 19, GB1015. doi: 10.1029/2003GB002199. |
[63] | Lacointe A (2000). Carbon allocation among tree organs: a review of basic processes and representation in functional-structural tree models. Annals of Forest Science, 57, 521-533. |
[64] |
Lambers H, van den Boogaard R, Veneklaas EJ, Villar R (1995). Effects of global environmental change on carbon partitioning in vegetative plants of Triticum aestivum and closely related Aegilops species. Global Change Biology, 1, 397-406.
DOI URL |
[65] |
LeBauer DS, Treseder KK (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89, 371-379.
DOI URL PMID |
[66] |
Li HT, Han XG, Wu JG (2005). Lack of evidence for 3/4 scaling of metabolism in terrestrial plants. Journal of Integrative Plant Biology, 47, 1173-1183.
DOI URL |
[67] | Li Y (李妍), Li HT (李海涛), Jin DM (金冬梅), Sun SC (孙书存) (2007). Application of WBE model to ecology: a review. Acta Ecologica Sinica (生态学报), 27, 3018-3031. (in Chinese with English abstract) |
[68] |
Litton CM, Giardina CP (2008). Below-ground carbon flux and partitioning: global patterns and response to temperature. Functional Ecology, 22, 941-954.
DOI URL |
[69] | Litton CM, Raich JW, Ryan MG (2007). Carbon allocation in forest ecosystems. Global Change Biology, 13, 2089-2109. |
[70] | Litton CM, Ryan MG, Knight DH (2004). Effects of tree density and stand age on carbon allocation patterns in postfire lodgepole pine. Ecological Applications, 14, 460-475. |
[71] | Liu SR, Barton C, Lee H, Jarvis PG, Durrant D (2002). Long-term response of Sitka spruce ( Picea sitchensis (Bong.) Carr.) to CO2 enrichment and nitrogen supply. I. Growth, biomass allocation and physiology. Plant Biosystems, 136, 189-198. |
[72] | Liu YH (刘颖慧), Jia HK (贾海坤), Gao Q (高琼) (2006). Review on researches of photoassimilates partitioning and its models. Acta Ecologica Sinica (生态学报), 26, 1981-1992. (in Chinese with English abstract) |
[73] | Lockhart BR, Gardiner ES, Hodges JD, Ezell AW (2008). Carbon allocation and morphology of cherrybark oak seedlings and sprouts under three light regimes. Annals of Forest Science, 65, 801p1-801p8. |
[74] | Müller I, Schmid B, Weiner J (2000). The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspectives in Plant Ecology, Evolution and Systematics, 3, 115-127. |
[75] | Makela A, Valentine HT, Helmisaari HS (2008). Optimal co-allocation of carbon and nitrogen in a forest stand at steady state. New Phytologist, 180, 114-123. |
[76] | Malhi Y, Baker TR, Phillips OL, Almeida S, Alvarez E, Arroyo L, Chave J, Czimczik CI, Fiore AD, Higuchi N, Killeen TJ, Laurance SG, Laurance WF, Lewis SL, Montoya LM, Monteagudo A, Neill DA, Vargas PN, Patino S, Pitman NC, Quesada CA, Salomao R, Silva JN, Lezama AT, Martinez RV, Terborgh J, Vinceti B, Lloyd J (2004). The above-ground coarse wood productivity of 104 Neotropical forest plots. Global Change Biology, 10, 563-591. |
[77] | Marcelis LFM, Heuvelink E (2007). Concepts of modelling carbon allocation among plant organs. In: Vos J, Marcelis LFM, de Visser PHB, Struik PC, Evers JB eds. Functional-Structural Plant Modelling in Crop Production. Springer, The Netherlands 103-111. |
[78] |
Marcelis LFM, Heuvelink E, Goudriaan J (1998). Modelling biomass production and yield of horticultural crops: a review. Scientia Horticulturae, 74, 83-111.
DOI URL |
[79] |
McCarthy MC, Enquist BJ (2007). Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Functional Ecology, 21, 713-720.
DOI URL |
[80] | McConnaughay KDM, Coleman JS (1999). Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecology, 80, 2581-2593. |
[81] | Milchunas DG, Mosier AR, Morgan JA, LeCain DR, King JY, Nelson JA (2005). Root production and tissue quality in a shortgrass steppe exposed to elevated CO2: using a new ingrowth method. Plant and Soil, 268, 111-122. |
[82] |
Mokany K, Raison RJ, Prokushkin AS (2006). Critical analysis of root: shoot ratios in terrestrial biomes. Global Change Biology, 12, 84-96.
DOI URL |
[83] |
Muller-Landau HC, Condit RS, Chave J, Thomas SC, Bohlman SA, Bunyavejchewin S, Davies S, Foster R, Gunatilleke S, Gunatilleke N, Harms KE, Hart T, Hubbell SP, Itoh A, Kassim AR, LaFrankie JV, Lee HS, Losos E, Makana JR, Ohkubo T, Sukumar R, Sun IF, Supardi MN, Tan S, Thompson J, Valencia R, Muñoz GV, Wills C, Yamakura T, Chuyong G, Dattaraja HS, Esufali S, Hall P, Hernandez C, Kenfack D, Kiratiprayoon S, Suresh HS, Thomas D, Vallejo MI, Ashton P (2006). Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecology Letters, 9, 575-588.
DOI URL PMID |
[84] | Nadelhoffer KJ, Raich JW, Aber JD (1998). A global trend in belowground carbon allocation: comment. Ecology, 79, 1822-1825. |
[85] | Ngugi MR, Hunt MA, Doley D, Ryan P, Dart P (2003). Dry matter production and allocation in Eucalyptus cloeziana and Eucalyptus argophloia seedlings in response to soil water deficits. New Forests, 26, 187-200. |
[86] |
Nielsen KL, Eshel A, Lynch JP (2001). The effect of phosphorus availability on the carbon economy of contrasting common bean ( Phaseolus vulgaris L.) genotypes. Journal of Experimental Botany, 52, 329-339.
URL PMID |
[87] | Niklas KJ (2006). A phyletic perspective on the allometry of plant biomass-partitioning patterns and functionally equivalent organ-categories. New Phytologist, 171, 27-40. |
[88] |
Niklas KJ, Enquist BJ (2002). Canonical rules for plant organ biomass partitioning and annual allocation. American Journal of Botany, 89, 812-819.
DOI URL PMID |
[89] | Niklaus PA, Glockler E, Siegwolf R, Korner C (2001). Carbon allocation in calcareous grassland under elevated CO2: a combined C-13 pulse-labelling/soil physical fractionation study. Functional Ecology, 15, 43-50. |
[90] | Norby RJ, Jackson RB (2000). Root dynamics and global change: seeking an ecosystem perspective. New Phytologist, 147, 3-12. |
[91] | Norby RJ, O’Neill EG, Wullschleger SD, McFee WW, Kelly JM (1995). Belowground responses to atmospheric carbon dioxide in forests. In: McFee WW, Kelly JM eds. Soil Science Society of America. Madison, WI, USA. 397-418. |
[92] | Palit P (1985). Translocation and distribution of 14C-labelled assimilate associated with growth of jute (Corchorus olitorius L.). Australian Journal of Plant Physiology, 12, 527-534. |
[93] | Peng YY, Dang QL (2003). Effects of soil temperature on biomass production and allocation in seedlings of four boreal tree species. Forest Ecology and Management, 180, 1-9. |
[94] | Poorter H (1993). Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Plant Ecology, 104, 77-97. |
[95] | Poorter H, Nagel O (2000). The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Australian Journal of Plant Physiology, 27, 595-607. |
[96] | Rachmilevitch S, Huang B, Lambers H (2006). Assimilation and allocation of carbon and nitrogen of thermal and nonthermal Agrostis species in response to high soil temperature. New Phytologist, 170, 479-490. |
[97] | Reynolds JF, Chen JL (1996). Modelling whole-plant allocation in relation to carbon and nitrogen supply: coordination versus optimization: opinion. Plant and Soil, 185, 65-74. |
[98] |
Rogers HH, Prior SA, Runion GB, Mitchell RJ (1996). Root to shoot ratio of crops as influenced by CO2. Plant and Soil, 187, 229-248.
DOI URL |
[99] |
Schenk HJ (2006). Root competition: beyond resource depletion. Journal of Ecology, 94, 725-739.
DOI URL |
[100] |
Shaw MR, Zavaleta ES, Chiariello NR, Cleland EE, Mooney HA, Field CB (2002). Grassland responses to global environmental changes suppressed by elevated CO2. Science, 298, 1987-1990.
DOI URL PMID |
[101] | Sigee DC, Bahram F, Estrada B, Webster RE, Dean AP (2007). The influence of phosphorus availability on carbon allocation and P quota in Scenedesmus subspicatus: a synchrotron-based FTIR analysis. Phycologia, 46, 583-592. |
[102] | Sun XF (孙晓方), He JQ (何家庆), Huang XD (黄训端), Ping J (平江), Ge JL (葛结林) (2008). Growth characters and chlorophyll fluorescence of goldenrod (Solidago canadensis) in different light intensities. Acta Botanica Boreali-Occidentalia Sinica (西北植物学报), 28, 752-758. (in Chinese with English abstract) |
[103] | Suter D, Frehner M, Fischer BU, Nosberger J, Luscher A (2002). Elevated CO2 increases carbon allocation to the roots of Lolium perenne under free-air CO2 enrichment but not in a controlled environment. New Phytologist, 154, 65-75. |
[104] | Thornley JHM (1972). A balanced quantitative model for root: shoot ratios in vegetative plants. Annals of Botany, 36, 431-441. |
[105] | Tierney GL, Fahey TJ (2007). Estimating belowground primary productivity. In: Fahey TJ, Knapp AK eds. Principles and Standards for Measuring Primary Production. Oxford University Press, New York 120-142. |
[106] | Tilman D (1988). Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, Princeton. |
[107] | VanderWerf A, Nagel OW (1996). Carbon allocation to shoots and roots in relation to nitrogen supply is mediated by cytokinins and sucrose: opinion. Plant and Soil, 185, 21-32. |
[108] |
Vanninen P, Makela A (2005). Carbon budget for Scots pine trees: effects of size, competition and site fertility on growth allocation and production. Tree Physiology, 25, 17-30.
DOI URL PMID |
[109] | Vivin PH, Castelan M, Gaudillère JP (2002). A source/sink model to simulate seasonal allocation of carbon in grapevine. Acta Horticulturae, 584, 43-56. |
[110] | Vogel JG, Bond-Lamberty BP, Schuur EAG, Gower ST, Mack MC, O’Connell KEB, Valentine DW, Ruess RW (2008). Carbon allocation in boreal black spruce forests across regions varying in soil temperature and precipitation. Global Change Biology, 14, 1503-1516. |
[111] | Wang RZ, Gao Q, Chen QS (2003). Effects of climatic change on biomass and biomass allocation in Leymus chinensis (Poaceae) along the North-east China Transect (NECT). Journal of Arid Environments, 54, 653-665. |
[112] | Wang XP, Fang JY, Zhu B (2008). Forest biomass and root-shoot allocation in northeast China. Forest Ecology and Management, 255, 4007-4020. |
[113] | Wardlaw IF (1990). The control of carbon partitioning in plants. New Phytologist, 116, 341-381. |
[114] | Warembourg FR, Estelrich HD (2001). Plant phenology and soil fertility effects on below-ground carbon allocation for an annual ( Bromus madritensis) and a perennial (Bromus erectus) grass species. Soil Biology and Biochemistry, 33, 1291-1303. |
[115] | Weigelt A, Steinlein T, Beyschlag W (2005). Competition among three dune species: the impact of water availability on below-ground processes. Plant Ecology, 176, 57-68. |
[116] | Weiner J (2004). Allocation, plasticity and allometry in plants. Perspective in Plant Ecology, Evolution and Systematics, 6, 207-215. |
[117] | Welander NT, Ottosson B (1998). The influence of shading on growth and morphology in seedlings of Quercus robur L. and Fagus sylvatica L. Forest Ecology and Management, 107, 117-126. |
[118] | Wermelinger B, Baumgartner J, Gutierrez AP (1991). A demographic-model of assimilation and allocation of carbon and nitrogen in grapevines. Ecological Modelling, 53, 1-26. |
[119] |
West GB, Brown JH, Enquist BJ (1997). A general model for the origin of allometric scaling laws in biology. Science, 276, 122-126.
DOI URL PMID |
[120] | Woodward FI, Osborne CP (2000). The representation of root processes in models addressing the responses of vegetation to global change. New Phytologist, 147, 223-232. |
[121] | Xiao DM (肖冬梅), Wang M (王淼), Ji LZ (姬兰柱) (2004). Influence of water stress on growth and biomass allocation of dominant tree species in mixed forest of broad-leaved and Korean pine at Changbai Mountain. Chinese Journal of Ecology (生态学杂志), 23, 93-97. (in Chinese with English abstract) |
[122] | Xu ZZ, Zhou GS (2005). Effects of water stress and nocturnal temperature on carbon allocation in the perennial grass, Leymus chinensis. Physiologia Plantarum, 123, 272-280. |
[123] | Xu ZZ, Zhou GS, Wang YH (2007). Combined effects of elevated CO2 and soil drought on carbon and nitrogen allocation of the desert shrub Caragana intermedia. Plant and Soil, 301, 87-97. |
[124] |
Yan HP, Kang MZ, de Reffye P, Dingkuhn M (2004). A dynamic, architectural plant model simulating resource-dependent growth. Annals of Botany, 93, 591-602.
DOI URL PMID |
[125] | Yang YH, Fang JY, Ji CJ, Han WX (2009). Above- and below- ground biomass allocation in Tibetan grasslands. Journal of Vegetation Science, 20, 177-184. |
[126] | Zak DR, Pregitzer KS, Curtis PS, Vogel CS, Holmes WE, Lussenhop J (2000). Atmospheric CO2, soil-N availability, and allocation of biomass and nitrogen by Populus tremuloides. Ecological Applications, 10, 34-46. |
[1] | 郑周涛, 张扬建. 1982-2018年青藏高原水分利用效率变化及归因分析[J]. 植物生态学报, 2022, 46(12): 1486-1496. |
[2] | 罗亲普, 龚吉蕊, 徐沙, 宝音陶格涛, 王忆慧, 翟占伟, 潘琰, 刘敏, 杨丽丽. 氮磷添加对内蒙古温带典型草原净氮矿化的影响[J]. 植物生态学报, 2016, 40(5): 480-492. |
[3] | 杜虎, 曾馥平, 宋同清, 温远光, 李春干, 彭晚霞, 张浩, 曾昭霞. 广西主要森林土壤有机碳空间分布及其影响因素[J]. 植物生态学报, 2016, 40(4): 282-291. |
[4] | 马姜明, 刘世荣, 史作民, 张远东, 缪宁. 川西亚高山暗针叶林恢复过程中岷江冷杉天然更新状况及其影响因子[J]. 植物生态学报, 2009, 33(4): 646-657. |
[5] | 张淑敏, 于飞海, 董鸣. 土壤养分水平影响绢毛匍匐委陵菜匍匐茎生物量投资[J]. 植物生态学报, 2007, 31(4): 652-657. |
[6] | 马玉娥, 项文化, 雷丕锋. 林木树干呼吸变化及其影响因素研究进展[J]. 植物生态学报, 2007, 31(3): 403-412. |
[7] | 牛健植, 余新晓, 赵玉涛, 张东升, 陈丽华, 张志强. 贡嘎山暗针叶林土壤优先流形成因素的初步研究[J]. 植物生态学报, 2006, 30(5): 732-742. |
[8] | 蒋延玲, 周广胜, 赵敏, 王旭, 曹铭昌. 长白山阔叶红松林生态系统土壤呼吸作用研究[J]. 植物生态学报, 2005, 29(3): 411-414. |
[9] | 吕超群, 孙书存. 陆地生态系统碳密度格局研究概述[J]. 植物生态学报, 2004, 28(5): 692-703. |
[10] | 张淑萍, 王仁卿, 张治国, 郭卫华, 刘建, 宋百敏. 黄河下游湿地芦苇形态变异研究[J]. 植物生态学报, 2003, 27(1): 78-85. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19