植物生态学报, 2010, 34(8): 979-988 DOI: 10.3773/j.issn.1005-264x.2010.08.011

综述

植物与土壤微生物在调控生态系统养分循环中的作用

蒋婧, 宋明华,*

中国科学院地理科学与资源研究所中国生态系统研究网络综合研究中心, 生态系统网络观测与模拟重点实验室, 北京 100101

Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling

JIANG Jing, SONG Ming-Hua,*

Key Laboratory of Ecosystem Network Observation and Modeling, Chinese Ecosystem Research Network Synthesis Research Center, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

通讯作者: * E-mail:songmh@igsnrr.ac.cn

编委: 郭良栋

责任编辑: 王 葳

收稿日期: 2009-12-29   接受日期: 2010-04-13   网络出版日期: 2010-08-01

Received: 2009-12-29   Accepted: 2010-04-13   Online: 2010-08-01

摘要

陆地生态系统的地上、地下是相互联系的。植物与土壤微生物作为陆地生态系统中的重要组成部分, 它们之间的相互作用是生态系统地上、地下结合的重要纽带。该文首先介绍了植物在养分循环中对营养元素的吸收、积累和归还等作用, 阐述了土壤微生物对养分有效性及土壤质量具有重要的作用。其次, 重点综述了植物与土壤微生物之间相互依存、相互竞争的关系。植物通过其凋落物与分泌物为土壤微生物提供营养, 土壤微生物作为分解者提供植物可吸收的营养元素, 比如共生体菌根真菌即可使植物根与土壤真菌达到互惠。然而, 植物的养分吸收与微生物的养分固持同时存在, 因而两者之间存在对养分的竞争。通过植物多样性对土壤微生物多样性的影响分析, 以及土壤微生物直接或间接作用于植物多样性和生产力的分析, 探讨了植物物种多样性与土壤微生物多样性之间的内在联系。针对当前植物与土壤微生物对养分循环的调控机制的争论, 提出植物凋落物是调节植物与土壤微生物养分循环的良好媒介, 植物与土壤微生物的共同作用对维持整个生态系统的稳定性具有重要意义。也指出了目前在陆地生态系统地上、地下研究中存在的不足和亟待解决的问题。

关键词: 地上地下 ; 养分循环 ; 植物 ; 土壤微生物

Abstract

Above- and below-ground are important components of terrestrial ecosystems. Plants and microorganisms are dependent on each other, and they are important in the linkage between above- and below-ground processes. The relationship between plants and soil microorganisms and the fundamental role played by above- and below-ground feedbacks are important in controlling ecosystem processes and properties. Plant species play a fundamental role in nutrient absorption, nutrient accumulation, nutrient distribution and nutrient return. Soil microorganisms are important in controlling plant nutrient availability and soil quality. Our main objective is to summarize the relationships between plants and microbes, such as facilitation and competition. Plants, as producers, provide nutrients for soil microorganisms via leaf litter and root exudation. Soil microorganisms, as decomposers, break down organic matter and provide nutrients to plants. A wide range of soil microbes form intimate symbiotic associations with plants, and this can stimulate plant productivity by delivering limited nutrients to their host plants. However, both plants and microbes compete for nutrients because plant nutrient uptake and microbial immobilization occur simultaneously. We provide an integrated analysis of effects of plant diversity on soil microbial diversity, as well as direct and indirect effects of soil microbes on plant diversity and productivity. Previously, the mechanisms of plants and microorganisms in regulating ecosystem nutrient cycling have been controversial. Litter chemical composition and diversity should be considered important functional traits that explain the mechanisms. It is clear that interactions between plants and microbes play a fundamental role in maintaining the stability of natural ecosystems. This review elucidates the linkage between aboveground and belowground processes, which have been treated separately in the past.

Keywords: above- and below-ground ; nutrient cycling ; plant ; soil microorganisms

PDF (665KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

蒋婧, 宋明华. 植物与土壤微生物在调控生态系统养分循环中的作用. 植物生态学报[J], 2010, 34(8): 979-988 DOI:10.3773/j.issn.1005-264x.2010.08.011

JIANG Jing, SONG Ming-Hua. Review of the roles of plants and soil microorganisms in regulating ecosystem nutrient cycling. Chinese Journal of Plant Ecology[J], 2010, 34(8): 979-988 DOI:10.3773/j.issn.1005-264x.2010.08.011

陆地生态系统的地上、地下是相互联系的, 传统研究往往过多地关注地上生物群落, 而忽略了地下生物群落在陆地生态系统中的重要作用(Bardgett et al., 2005), 地下生物群落及其生态过程一直被认为是“黑匣子”(black box), 因而地下生物群落成为生态系统功能研究中最不确定的部分(Reynolds et al., 2003)。近20年来分子生物学方法和技术应用于土壤微生物群落调查与功能评价方面取得了很大进展(Torsvik, 1980; Torsvik et al., 1990; Muyzer et al., 1993; Schwieger & Tebbe, 1998; Ogram, 2000), 越来越多的研究关注于地上、地下生态过程之间的作用与反馈(Porazinska et al., 2003; Bardgett et al., 2005), 这使得通过地上和地下生态过程的结合从整体上探讨它们在调控生态系统结构和功能中的作用成为可能。植物与土壤微生物之间的作用与反馈是生态系统地上、地下结合的重要纽带, 因此, 揭示二者在养分循环中的调控机制可以使我们深入理解生态系统稳定性维持的内在机制。

1 植物在生态系统养分循环过程中的作用

养分元素的循环利用是陆地生态系统的主要功能过程之一, 养分循环与平衡直接影响着生态系统生产力的高低, 并关系到生态系统的稳定性。其中, 碳、氮作为陆地生态系统最关键的两大生源要素, 在植物体内的分配和代谢决定着植物的生长过程及其生产力(许振柱和周广胜, 2007), 在自然界的循环过程中对全球变化做出了重要贡献(彭琴等, 2008)。

森林和其他陆地植被可用来吸收部分温室气体, 缓解气候变化, 在碳、氮养分循环中发挥着重要作用, 这些作用主要体现在植物对碳、氮等营养元素的吸收、积累以及养分归还等方面。中国有将近14%的森林覆盖率, 1982-2000年中国森林生物量碳的贮存量显著增加(Piao et al., 2009), 草地生态系统碳素总储量更占到陆地生态碳素总储量的15.2% (董云社和齐玉春, 2006)。Högberg和Read (2006)研究表明, 释放到大气中的碳有一半来自于植物根系、菌根真菌, 以及其他与根相关的微生物。植物进行光合作用吸收CO2、贮存碳素的同时, 从土壤中吸收适量的可利用N构成生物有机体, 在有机体和土壤间维持一定的比例关系, 即C/N比。C/N比在很大程度上控制着植物碳生产以及植物向土壤归还有机物质等C、N循环的关键过程, 并影响着植物体内养分的积累与分配(Luo et al., 2004)。植物还能以凋落物形式参与分解过程, 将营养元素归还土壤, 之后再被植物循环利用, 维持生态系统的平衡。对美国墨西哥3个典型的山地森林的研究发现, 由于3种森林物种的地上生物量、凋落物量和C/N比差异很大, 促进或抑制着枯枝落叶的降解速率, 特别是氮沉降的影响, 不同C/N比的森林生态系统固碳能力差异更加显著(Waldrop et al., 2004)。

2 土壤微生物在生态系统养分循环中的作用

土壤微生物参与多种生化反应过程, 是有机物的主要分解者, 在陆地生态系统养分循环中扮演着重要角色。首先, 土壤微生物量的多少反映了土壤同化和矿化能力的大小, 是土壤活性大小的标志(何振立, 1997)。微生物对养分的利用状况是反映土壤质量的重要特性, 利用率越低, 微生物所需养分就越多, 一般来说, 恶劣的土壤环境不利于土壤微生物的生长。其次, 土壤有机质的分解速率受到土壤微生物种类、数量和活性的影响。比如, 土壤微生物活性的变化会影响温室气体的释放和整个陆地生态系统碳库(Compton et al., 2004), 因为微生物能够在其生命活动过程中不断同化环境中的有机碳, 同时又向外界释放碳素。有机质经过微生物的分解还可被植物再次利用, 提供植物生长所需的养分, 在C、N循环过程中具有重要意义(Porazinska et al., 2003)。而且, 土壤微生物对植物有效养分有着储备作用, 对土壤C、N等养分的有效性及其在地上、地下的循环特征方面起着调控作用(何振立, 1997; Spehn et al., 2000)。

3 植物与土壤微生物之间的关系

植物与土壤微生物之间是相互联系的, 作为生产者的植物为土壤微生物提供了碳源, 而土壤微生物作为分解者为植物生长提供养分(Wall & Moore, 1999; Berman & Holm-Hansen, 1974) (图1)。同时, 由于微生物在分解有机质的过程中只有当自身的营养需求被满足时才会提供植物体养分, 所以植物与土壤微生物之间也存在对养分的竞争(Hodge et al., 2000), 植物与土壤微生物间的这种相互依存梁与养分竞争关系在调控生态过程中起着重要作用(Hart & Kinzig, 1993; Kaye & Hart, 1997; Berman- Frank & Dubinsky, 1999; Wall & Moore, 1999)。

图1

图1   植物与土壤微生物在自然生态系统中的关系(改自Leake et al., 2004; van der Heijden et al., 2008)。

Fig. 1   Relationships between plant and soil microorganisms in natural ecosystem (Modified from Leake et al., 2004; van der Heijden et al., 2008).


3.1 植物与土壤微生物之间的相互依存关系

植物通过其凋落物和分泌物为土壤微生物提供营养, 导致植物和微生物之间的协同进化, 促进土壤微生物的多样性。比如, 细菌倾向于利用富含碳水化合物和糖类的凋落物, 真菌倾向于利用富含酚类的凋落物(Bardgett et al., 1993, 1996, 1997); 白三叶草(Trifolium repens)根际土壤中的微生物数量和活性与植物根系的长度和密度也高度相关(Schortemeyer et al., 1997); 草地植被生长的根系可增加土壤中原碳的衰变速率(Personeni et al., 2005)。 William Hamilton和Frank (2001)的研究表明, 短时间内, 被食草动物啃食的植物可提供更多的碳给根围, 对微生物活性有促进作用, 进而提高植物的氮利用率和植物生产力。寄生植物在自然和人为生态系统中都普遍存在, 在欧洲和南美草地生态系统广泛生长的根部半寄生植物小佛甲草(Rhinanthus minor)强烈地影响地上群落性质, 改变根的生长状况、根周转率以及碳供给, 从而影响分解者有机体活性, 氮矿化速率明显增加(Bardgett et al., 2006)。

土壤微生物可以分解可溶性和不溶性有机物, 将其转化为植物可以吸收利用的无机形态。微生物固定不可移动氮的季节性格局对植物吸收氮很重要, 在氮强烈受限的生态系统, 微生物秋季固定的不可移动氮最多, Jaeger等(1999)研究了美国科罗 拉多州高寒草甸中植物与微生物之间养分的季 节性划分, 结果表明, 优势植物种嵩草(Kobresia myosuroides)在积雪融化后吸收了大量的氮, 而土壤微生物在植物枯黄的秋季固持大量的氮素, 并在整个冬季维持这一水平。积雪融化后微生物量氮显著下降, 其固持的氮以可溶性氮和有机态氮的形式释放到土壤中, 为春季植物的生长提供了养分。与生长季晚期萌发的草本植物功能群相比, 生长季早期萌发的植物功能群具有较强的利用早春季节土壤中大量存在的特定形态养分的能力(如在高寒生态系统中生长季早期萌发的植物功能群具有较强的吸收大量存在于土壤中的有机态氮的能力), 植物与土壤微生物的生态位分异提高了资源利用的有效性。

此外, 植物与土壤微生物共生是自然界中普遍存在的生物学现象。自然群落中90%以上的陆生植物能与泡囊-丛枝菌根真菌(vesicular-arbuscular mycorrhizal fungi, VAMF)共生形成菌根(Reeves et al., 1979; 刘润进和李晓林, 2000; 张英等, 2003)。研究表明, 菌根菌在自然界养分循环中的作用, 除了能通过根外菌丝将土壤中的矿质元素、水分等输送给植物吸收利用, 提高植物成活率, 促进植物生长(韩桂云等, 2002), 还能提高植物的抗逆性和抗病性(弓明钦等, 1999)。林鹤鸣等(2001)研究表明, 在土壤贫瘠的山地条件下, 接种外生菌根真菌, 可以改善土壤中微生物的种群结构, 提高土壤中细菌、真菌、放线菌的数量, 其中真菌增加7.3倍, 林木的菌根侵染率由20%提高到75%, 进而促进油松(Pinus tabulaeformis)人工林的生长。当前, 国际上有关菌根方面的研究逐渐升温, 亦有数篇文章在《Science》、《Nature》等刊物上发表。植物与真菌之间的互利共生关系能提高植物的耐热性(Redman et al., 2002)。鉴于美国东北部森林生态系统Ca严重流失的情况, Blum等(2002)研究发现外生菌根的树种更能利用有磷灰石风化的Ca, 表明菌根可能直接风化磷灰石和吸收释放出的Ca2+, 为植物提供钙源。Hodge (2003)发现, 在植物种间存在竞争时, 接种丛枝菌根可促进植物对氮元素的吸收。Wolfe等(2005)的试验同样表明, 在柳兰(Chamerion angustifolium)根部植入丛枝菌根真菌, 将大大提高植物被授粉的几率。在养分缺乏的生态系统中, 植物共生体吸收限制性养分来调节植物生产力(van der Heijden et al., 2008)。植物共生体菌根真菌, 能增加限制性氮、磷的利用率, 对植物生产力有正反馈作用(Lambers et al., 2008)。因此, 菌根菌的多样性与丰度对维持植物的多样性及生态系统的稳定性和生产力具有重要意义(van der Heijden et al., 1998a, 1998b; 杨维平, 2002)。

3.2 植物与土壤微生物对养分的竞争

土壤微生物与植物间的负反馈作用是影响养分循环和群落结构的另一重要因素。植物氮吸收与微生物氮固定向来是研究的热点(Stark & Hart, 1997; Farley & Fitter, 1999)。在养分强烈受限的生态系统(如北极和高山苔原), 微生物与植物在土壤中争夺养分, 可能会给植物吸收养分和生长带来负面影响。Xu等(2004, 2006)观测了青藏高原高寒草甸生态系统植物与土壤微生物对外加氮源的利用情况, 结果表明, 由于土壤中有效氮匮乏(周兴民, 2001), 植物与土壤微生物间存在着对氮素利用的竞争。Song等(2007)进一步揭示了植物种间关系调节着植物与土壤微生物间氮素利用的竞争强度。许多研究认为土壤微生物在氮素竞争上具有优势, 因为微生物在矿化过程中起主要作用, 而且与植物相比, 土壤微生物具备特有的属性, 如表面积、体积比率大, 繁殖速率快等特点(Kaye & Hart, 1997; Hodge et al., 2000), 但是也有研究表明, 生长在养分受限的区域中的高寒植物具有较强的利用有机氮的能力(Callaway et al., 2002; Cheng & Bledsoe, 2004; Brooker, 2006)。

此外, 土壤微生物与植物根系的养分竞争以及微生物对养分流失的加速会导致植物生产力的降低。植物与微生物对无机氮(NH4+)的竞争利用可能导致氮硝化基质数量的降低, 进而减少了因反硝化和淋溶作用而流失的NO3-的量(Zak et al., 1990)。病原微生物对植物生产力也有影响, 特别是对物种丰富的植物群落。在根围集聚的寄生虫、病原体和根系植食者直接取食植物组织中的碳等营养成分, 削弱根部吸收养分的能力, 对植物生长产生负反馈作用(Bever et al., 1997)。研究发现, 土壤病原菌, 如疫霉属(Phytophthora)、镰刀菌属(Fusarium)、腐霉(Pythium spp.)等对一系列优势树种如橡树(Quercus palustris)、阿拉伯胶树(Acacia senegal)、桉树(Eucalyptus spp.)的生长具有抑制作用(Burdon et al., 2006)。

3.3 植物物种多样性与土壤微生物多样性之间的关系

定居在土壤中的异养微生物群落调节着一些关键的生态过程, 这些过程控制着生态系统的C、N循环, 它们潜在地体现了植物多样性与生态系统功能之间的一种机理性的联系。很少有研究揭示植物多样性与土壤微生物多样性之间的影响机制(Bardgett & Shine, 1999; Wardle, 1999; Stephan et al., 2000)。但是, 一直以来仍然有很多学者致力于这方面的探索, 并有了一定的研究积累。首先, 限制植物生长的资源的有效性塑造着生物群落的组成(Tilman, 1982, 1987); 其次, 土壤微生物群落资源的可获取性受到枯死叶和根(凋落物)的化学组分限制, 因为凋落物能够被用于产生能量(Smith & Paul, 1990); 最后, 植物在化学组分上存在差异, 植物多样性的改变能够引起植物产物的改变和凋落物有机组分的变化, 因此会影响异养微生物群落的组成和功能。Spehn等(2000)的研究表明, 土壤微生物数量与植物功能群数量呈线性相关。当功能群中豆科植物缺失时, 土壤微生物数量显著降低15%。土壤微生物C与土壤有机C的比值亦随着植物物种的丢失和植物功能群数目的降低而降低。Porazinska等(2003)通过对美国堪萨斯州Konza草原的研究发现, 不同组合的C3和C4植物, 根系土壤中一些细菌和线虫类对特有植物种反应强烈。有研究表明, 植物多样性影响微生物数量主要是通过植物生产力的提高; 而另一项研究表明, 植物多样性没有影响土壤微生物群落和凋落物的分解(Wardle, 1999)。

植物凋落物作为联系地上和地下的桥梁, 是研究植物多样性与土壤微生物多样性之间关系的良好媒介。植物凋落物的化学特性较地上植物群落组成、物种丰富度、物种均匀度能更好地解释土壤内部过程(Meier & Bowman, 2008)。凋落物的质量影响着凋落物中养分和土壤有机质的周转速率, 还会对土壤的生物学特征产生强烈影响(Grime, 1979)。有些植物凋落物中含有抑制细菌活动的酚、醛等成分, 可间接地影响凋落物的分解率(Gordon, 1998)。富含低分子酚类化合物的凋落物会增加所有微生物的生物量, 尤其是真菌; 而富含碳水化合物和糖类的凋落物会促进细菌的生长。例如, 一些生长缓慢的植物(如高寒草本植物Acomastylis rossi)产生的大量的富含酚类的凋落物, 进入土壤后控制着真菌占优势的微生物对氮的固持, 加剧了低养分的状况(Hobbie, 1992; Wilson & Agnew, 1992); 而其他快速生长的植物(如草本植物Deschampsia caespitosa)表现出较高的细根周转率, 生产大量高质量(富含N)的凋落物, 促进了细菌占优势的食物网, 提高了生境的养分状况(Wardle, 2002; Bardgett et al., 2005)。同样, 来自适应低养分生境的功能群产生的凋落物分解缓慢, 因为低浓度的N、P与高浓度的木质素、丹宁酸、蜡质, 以及其他难降解和有毒的化合物对土壤微生物的活性产生了抑制作用, 这种负反馈恶化了贫瘠生境中养分的可利用性(Hobbie, 1992; Wilson & Agnew, 1992), 反过来会降低植物功能群的生产力(Wardle et al., 2004)。相反, 高养分生境中的植物功能群产生易分解的凋落物, 从而增强了高养分生境中养分的周转率, 提高了植物群落的生产力(Wardle, 2002; Bardgett et al., 2005)。总之, 植物驱动的基质C、N含量的变化影响着土壤微生物多样性, 土壤微生物的活性和生物量以及对氮素的固持, 反过来影响着植物多样性(van der Heijden et al., 2008)。最近《美国国家科学院院刊》上的一项研究结果表明, 土壤微生物多样性与作为凋落物的植物化学组分的多样性存在正相关关系, 而土壤微生物多样性与植物物种多样性之间不存在直接的相关性(Meier & Bowman, 2008)。因此, 迫切需要通过植物凋落物来建立地上、地下生态过程的联系, 从机理上认识植物与微生物之间的作用与反馈。

4 植物与土壤微生物对养分循环的调控机制

不同物种组合的群落中存在着植物-土壤微生物特定的关系, 一方面植物物种的共存会受到微生物多样性及其种群动态变化的影响, 另一方面, 土壤微生物种类和数量也会受到作为碳源基质的植物凋落物和土壤有机质的质量和数量的影响。那么, 究竟是植物还是土壤微生物在调控生态系统养分循环过程中起关键作用?以往研究确认是土壤微生物而不是植物对土壤养分传输起着主要调控作用, 而植物对养分的供需主要采取被动适应, 例如Knops等(2002)提出的微生物占主导的“微生物瓶颈效应”认为: 植物产生的凋落物首先要经过土壤微生物分解, 分解的养分大部分被微生物固持, 剩余部分才供给植物吸收利用。难分解的凋落物和微生物固持的养分绝大部分形成土壤有机质, 因此植物由凋落物到形成有机质, 再到有机质分解释放养分供给植物利用存在时间上的滞后。因此土壤微生物的活性控制着养分循环, 养分在植物与土壤微生物系统间的循环会对植物产生负反馈效应。这种观点至今被广泛地应用到土壤有机质分解和生物地球化学循环的机理模型中。

Chapman等(2006)提出了植物在调控养分循环过程中起着不同作用的观点, 认为植物可以突破土壤微生物的养分瓶颈效应, 主动地调控生长所需的养分供求: (1)在养分供应受限的生境中植物采用“保守型”(conservative)策略, 即植物能通过有机氮的吸收、与微生物共生形成菌根、根瘤固氮等策略控制养分资源的循环利用, 从而削弱了土壤微生物的养分循环途径; (2)在养分状况较好的生境中, 植物采取“奢侈型”(extravagant)策略, 有效养分的供应主要来源于土壤微生物对凋落物等的分解产物。

某些植物和功能群通过影响分解者来提高自身对土壤养分的获取能力, 随着时间的推移提升了某种植物和功能群在群落中的地位。区域内优势树种的不同可能导致该领域内N动态的不同(Ste-Marie & Houle, 2006)。Lovett等(2004)在美国纽约州卡茨基尔山地区研究了单种森林植物对N循环的影响, 论述了在5种小型单类优势树种下N循环的关键特征明显不同, 研究进一步表明, 树种种类通过调节土壤有机质的性质对森林生态系统的N循环有很大的控制作用。另外, 植物本身的化学组成和特征制约着枯落物的分解和矿化过程, 从而影响着植物的养分归还(郭雪莲等, 2007)。Rothstein等(2004)曾研究了入侵种墨西哥白蜡树(Fraxinus uhdei)和本地种铁心木(Metrosideros polymorpha)凋落物对微生物分解速率的影响, 结果表明, 凋落物的化学组分是决定凋落物和有机质分解的主要因素。本地种铁心木凋落物含相对较多的木质素和更高浓度的单宁, 高浓度的单宁将抑制微生物对有机物的分解速率。但是, 作为入侵种的白蜡树, 其凋落物质量较好, 可分配更多的资源补给土壤酶的生产, 土壤微生物获得氮和磷所需的消耗相对较少。Freeman等(2004)曾研究发现, 较低的氧含量限制酚氧化酶活性, 导致枯落物产生的酚类物质堆积, 对水解酶产生很强的抑制作用, 而这种抑制作用又阻止了分解作用的进行, 只有当酚类物质浓度较低时, 水解酶才有较高的活性。

虽然不能完全确认究竟是植物还是土壤微生物在调控生态系统养分循环过程中起关键作用, 但可以肯定的是, 植物与土壤微生物在这个生态系统中共同调控着土壤养分的有效性与分配。从植物凋落物中释放的N常常被联系到C/N比或凋落物初始N浓度(C/N比为25-30, 初始N浓度为20 mg∙g-1作为净累积或净N释放的阈值) (Berg & Laskowski, 2006; Moore et al., 2006), 而C/N比就随着生态系统和所研究的物种的不同而变化。2007年《Science》报道了在全球6个主要生物群区开展的不同质量凋落物(氮含量由低到高, 0.39%-1.98%)分解的实验, 结果表明: 净N固持与释放的格局与物种叶片凋落物的初始N浓度有关(Parton et al., 2007)。2008年《Science》报道了另外一项凋落物分解研究结果, 该结果肯定了净N释放与固持依赖于分解者与基质中的C/N比这一结论, 但它指出, 分解者可通过降低自身的碳利用效率来利用具有低初始N浓度的凋落物(Manzoni et al., 2008)。这种格局表明分解者群落能通过降低自身的C利用效率而降低凋落物关键的C/N比来适应部分低氮基质。因此, 只有深入研究植物与土壤微生物之间的作用与反馈, 才能从机理上揭示植物与土壤微生物在调控生态过程中的作用机制。

5 展望

近年来有关植物与土壤微生物之间关系的研究越来越多地受到生态学家们的关注, 随着研究的不断深入, 认识到植物与土壤微生物在调控生态系统结构和功能中的重要作用。这些对于我们深入理解生态系统地上地下生态过程的作用与反馈关系具有重要意义。

但由于实验技术手段等的限制, 目前我们对土壤微生物种类和功能群的鉴定与分类仍然是很有限的, 制约着我们对土壤微生物多样性及其功能的认识。另外, 土壤微生物多样性与植物物种多样性之间的关系仍需深入研究, 植物物种多样性、植物物种化学组分的多样性, 以及生物量与土壤微生物多样性之间的关系仍需明确。再者, 植物与土壤微生物通过多种途径对生态系统养分循环进行调节, 使系统处于一种相对稳定的状态, 植物与土壤微生物以及二者的作用与反馈对养分的调节依赖于植物与土壤微生物的种类与数量、生态系统类型、环境条件以及外界干扰等, 探寻植物与微生物对特定环境的适应性反应, 以及二者对养分循环的调控作用, 对于深入理解生态过程的内在机制具有重要意义, 这方面的研究仍需深入展开。

致谢

国家自然科学基金(30600070)资助项目。

参考文献

Bardgett RD, Bowman WD, Kaufmann B, Schmidt SK (2005).

A temporal approach to linking aboveground and belowground ecology

Trends in Ecology and Evolution, 20, 634-641.

URL     PMID      [本文引用: 4]

Bardgett RD, Frankland JC, Whittaker JB (1993).

The effects of agricultural practices on the soil biota of some upland grasslands

Agriculture, Ecosystems and Environment, 45, 25-45.

[本文引用: 1]

Bardgett RD, Hobbs PJ, Frostegård Å (1996).

Changes in soil fungal: bacterial biomass ratios following reductions in the intensity of management of an upland grassland

Biology and Fertility of Soils, 22, 261-264.

[本文引用: 1]

Bardgett RD, Leemans DK, Cook R, Hobbs PJ (1997).

Seasonality of the soil biota of grazed and ungrazed hill grasslands

Soil Biology and Biochemistry, 29, 1285-1294.

Bardgett RD, Shine A (1999).

Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands

Soil Biology and Biochemistry, 31, 317-321.

[本文引用: 1]

Bardgett RD, Smith RS, Shiel RS, Peacock S, Simkin JM, Qurik H, Hobbs PJ (2006).

Parasitic plants indirectly regulate below-ground properties in grassland ecosystems

Nature, 439, 969-972.

URL     PMID      [本文引用: 1]

Berg B, Laskowski R (2006).

Litter decomposition: a guide to carbon and nutrient turnover

Advances in Ecological Research, 38, 421.

[本文引用: 1]

Berman T, Holm-Hansen O (1974).

Release of photoassimilated carbon as dissolved organic matter by marine phytoplankton

Marine Biology, 28, 305-310.

[本文引用: 1]

Berman-Frank I, Dubinsky Z (1999).

Balanced growth in aquatic plants: myth or reality? Phytoplankton use the imbalance between carbon assimilation and biomass production to their strategic advantage

BioScience, 49, 29-37.

[本文引用: 1]

Bever JD, Westover KM, Antonovics J (1997).

Incorporating the soil community into plant population dynamics: the utility of the feedback approach

Journal of Ecology, 85, 561-573.

[本文引用: 1]

Blum JD, Klaue A, Nezat CA, Driscoll CT, Johnson CE, Siccama TG, Eagar C, Fahey TJ, Likens GE (2002).

Mycorrhizal weathering of apatite as important calcium source in base-poor forest ecosystems

Nature, 417, 729-731.

URL     PMID      [本文引用: 1]

Brooker RW (2006).

Plant-plant interactions and environmental change

New Phytologist, 171, 271-284.

[本文引用: 1]

Burdon JJ, Thrall PH, Ericson L (2006).

The current and future dynamics of disease in plant communities

Annual Review of Phytopathology, 44, 19-39.

URL     PMID      [本文引用: 1]

Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikvidze D, Cook BJ (2002).

Positive interactions among alpine plants increase with stress

Nature, 417, 844-848.

DOI      URL     PMID      [本文引用: 1]

Plants can have positive effects on each other. For example, the accumulation of nutrients, provision of shade, amelioration of disturbance, or protection from herbivores by some species can enhance the performance of neighbouring species. Thus the notion that the distributions and abundances of plant species are independent of other species may be inadequate as a theoretical underpinning for understanding species coexistence and diversity. But there have been no large-scale experiments designed to examine the generality of positive interactions in plant communities and their importance relative to competition. Here we show that the biomass, growth and reproduction of alpine plant species are higher when other plants are nearby. In an experiment conducted in subalpine and alpine plant communities with 115 species in 11 different mountain ranges, we find that competition generally, but not exclusively, dominates interactions at lower elevations where conditions are less physically stressful. In contrast, at high elevations where abiotic stress is high the interactions among plants are predominantly positive. Furthermore, across all high and low sites positive interactions are more important at sites with low temperatures in the early summer, but competition prevails at warmer sites.

Chapman SK, Langley JA, Hart SC, Koch GW (2006).

Plants actively control nitrogen cycling: uncorking the microbial bottleneck

New Phytologist, 169, 27-34.

[本文引用: 1]

Cheng XM, Bledsoe CS (2004).

Competition for inorganic and organic N by blue oak (Quercus douglasii) seedlings, an annual grass, and soil microorganisms in a pot study

Soil Biology and Biochemistry, 36, 135-144.

[本文引用: 1]

Compton JE, Watrud LS, Arlene Porteous L, DeGrood S (2004).

Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest

Forest Ecology and Management, 196, 143-158.

[本文引用: 1]

Dong YS (董云社), Qi YC (齐玉春) (2006).

Progress of carbon cycle research in grassland ecosystem

Geographical Research (地理研究), 25, 183. (in Chinese)

[本文引用: 1]

Farley RA, Fitter AH (1999).

Temporal and spatial variation in soil resources in a deciduous woodland

Journal of Ecology, 87, 688-696.

[本文引用: 1]

Freeman C, Ostle NJ, Fenner N, Kang H (2004).

A regulatory role for phenol oxidase during decomposition in peatlands

Soil Biology and Biochemistry, 36, 1663-1667.

[本文引用: 1]

Gong MQ (弓明钦), Chen Y (陈羽), Wang FZ (王凤珍), Chen YL (陈应龙) (1999).

Inhibitory effect of ectomycorrhizal fungi on bacteria wilt of Eucalyptus

Forest Research (林业科学研究), 12, 339-345. (in Chinese with English abstract)

[本文引用: 1]

Gordon DR (1998).

Effects of invasive, non-indigenous plant species on ecosystem processes: lessons from Florida

Ecological Applications, 8, 975-989.

[本文引用: 1]

Guo XL (郭雪莲), XG (吕宪国), Xi M (郗敏) (2007).

Roles of plant in nutrient cycling in wetland

Chinese Journal of Ecology (生态学杂志), 26, 1628-1633. (in Chinese with English abstract)

[本文引用: 1]

Grime JP (1979).

Plant Strategies and Vegetation Processes

John Wiley & Sons, Chichester.

[本文引用: 1]

Han GY (韩桂云), Sun TH (孙铁珩), Li PJ (李培军), Zhang CG (张春桂), Zhang HR (张海荣), Yao DM (姚德明) (2002).

Ecological reconstruction of large opencut coal mine through ectomycorrhizal biotechnology

Chinese Journal of Applied Ecology (应用生态学报), 13, 1150-1152. (in Chinese with English abstract)

[本文引用: 1]

Harte J, Kinzig AP (1993).

Mutualism and competition between plants and decomposers: implications for nutrient allocation in ecosystems

The American Naturalist, 141, 839-846.

[本文引用: 1]

He ZL (何振立) (1997).

Soil microbial biomass and its signification in nutrients cycle and environmental quality evaluation

Soils (土壤), (2), 61-69. (in Chinese)

[本文引用: 2]

Hobbie SE (1992).

Effects of plant species on nutrient cycling

Trends in Ecology and Evolution, 7, 336-339.

URL     PMID      [本文引用: 2]

Hodge A (2003).

Plant nitrogen capture from organic matter as affected by spatial dispersion, interspecific competition and mycorrhizal colonization

New Phytologist, 157, 303-314.

[本文引用: 1]

Hodge A, Robinson D, Fitter A (2000).

Are microorganisms more effective than plants at competing for nitrogen?

Trends in Plant Sciences, 5, 304-308.

[本文引用: 2]

Högberg P, Read DJ (2006).

Towards a more plant physiological perspective on soil ecology

Trends in Ecology and Evolution, 21, 548-554.

URL     PMID      [本文引用: 1]

Jaeger CH III, Monson RK, Fisk MC, Schmidt SK (1999).

Seasonal partitioning of nitrogen by plants and soil microorganisms in an alpine ecosystem

Ecology, 80, 1883-1891.

[本文引用: 1]

Kaye JP, Hart SC (1997).

Competition for nitrogen between plants and soil microorganisms

Trends in Ecology and Evolution, 12, 139-143.

URL     PMID      [本文引用: 2]

Knops AMH, Bradley KL, Wedin DA (2002).

Mechanisms of plant species impacts on ecosystem nitrogen cycling

Ecology Letters, 5, 454-466.

[本文引用: 1]

Lambers H, Raven JA, Shaver GR, Smith SE (2008).

Plant nutrient-acquisition strategies change with soil age

Trends in Ecology and Evolution, 23, 95-103.

DOI      URL     PMID      [本文引用: 1]

Nitrogen (N) tends to limit plant productivity on young soils; phosphorus (P) becomes increasingly limiting in ancient soils because it gradually disappears through leaching and erosion. Plant traits that are regarded as adaptations to N- and P-limited conditions include mycorrhizas and cluster roots. Mycorrhizas 'scavenge' P from solution or 'mine' insoluble organic N. Cluster roots function in severely P-impoverished landscapes, 'mining' P fixed as insoluble inorganic phosphates. The 'scavenging' and 'mining' strategies of mycorrhizal species without and non-mycorrhizal species with cluster roots, respectively, allow functioning on soils that differ markedly in P availability. Based on recent advances in our understanding of these contrasting strategies of nutrient acquisition, we provide an explanation for the distribution of mycorrhizal species on less P-impoverished soils, and for why, globally, cluster-bearing species dominate on severely P-impoverished, ancient soils, where P sensitivity is relatively common.

Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read D (2004).

Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning

Canadian Journal of Botany, 82, 1016-1045.

[本文引用: 2]

Lin HM (林鹤鸣), Zhou YZ (周玉芝), Jiang FQ (姜凤岐), Song X (宋轩), Guo H (郭浩), Qang SZ (王世中) (2001).

Application of ectomycorrhiza fungi in young Pinus tabulaeformis Carr. forest

Journal of Shenyang Agricultural University (沈阳农业大学学报), 32, 274-277. (in Chinese with English abstract)

[本文引用: 1]

Liu RJ (刘润进), Li XL (李晓林) (2000). Arbuscular Mycorrhizal and Application (丛枝菌根及其应用). Science Press, Beijing. (in Chinese)

[本文引用: 1]

Lovett GM, Weathers KC, Arthur MA, Schultz JC (2004).

Nitrogen cycling in a northern hardwood forest: Do species matter?

Biogeochemistry, 67, 289-308.

[本文引用: 1]

Luo YQ, Su B, Currie WS, Ducks JS, Finzi A, Hartwing U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004).

Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide

BioScience, 54, 731-739.

[本文引用: 1]

Manzoni S, Jackson RB, Trofymow JA, Porporato A (2008).

The global stoichiometry of litter nitrogen mineralization

Science, 321, 684-686.

URL     PMID      [本文引用: 1]

Meier CL, Bowman WD (2008).

Links between plant litter chemistry, species diversity, and below-ground ecosystem function

Proceedings of the National Academy of Sciences of the United States of America, 105, 19780-19785.

URL     PMID      [本文引用: 2]

Moore TR, Trofymow JA, Prescott CE, Fyles J, Titus BD (2006).

Patterns of carbon, nitrogen and phosphorus dynamics in decomposing foliar litter in Canadian forests

Ecosystems, 9, 46-62.

[本文引用: 1]

Muyzer G, Dewaal EC, Uitterlinden AG (1993).

Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA

Applied and Environmental Microbiology, 59, 695-700.

[本文引用: 1]

Ogram A (2000).

Soil molecular microbial ecology at age 20: methodological challenges for the future

Soil Biology and Biochemistry, 32, 1499-1504.

[本文引用: 1]

Parton W, Silver WL, Burke IC, Grassens L, Harmon ME, Currie WS, King JY, Carol Adair E, Brandt LA, Hart SC, Fasth B (2007).

Global-scale similarities in nitrogen release patterns during long-term decomposition

Science, 315, 361-364.

DOI      URL     PMID      [本文引用: 1]

Litter decomposition provides the primary source of mineral nitrogen (N) for biological activity in most terrestrial ecosystems. A 10-year decomposition experiment in 21 sites from seven biomes found that net N release from leaf litter is dominantly driven by the initial tissue N concentration and mass remaining regardless of climate, edaphic conditions, or biota. Arid grasslands exposed to high ultraviolet radiation were an exception, where net N release was insensitive to initial N. Roots released N linearly with decomposition and exhibited little net N immobilization. We suggest that fundamental constraints on decomposer physiologies lead to predictable global-scale patterns in net N release during decomposition.

Peng Q (彭琴), Dong YS (董云社), Qi YC (齐玉春) (2008).

Influence of external nitrogen input on key processses of carbon cycle in terrestrial ecosystem

Advances in Earth Science (地球科学进展), 23, 874-883. (in Chinese with English abstract)

[本文引用: 1]

Personeni E, Lüscher A, Loiseau P (2005).

Rhizosphere activity, grass species and N availability effects on the soil C and N cycles

Soil Biology and Biochemistry, 37, 819-827.

[本文引用: 1]

Piao SL, Fang JY, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009).

The carbon balance of terrestrial ecosystems in China

Nature, 458, 1009-1014.

URL     PMID      [本文引用: 1]

Porazinska DL, Bardgett RD, Blaauw MB, Hunt HW, Parson AN, Seastedt TR, Wall DR (2003).

Relationship at the aboveground-belowground interface: plants, soil biota, and soil processes

Ecological Monographs, 73, 377-395.

[本文引用: 3]

Redman RS, Sheehan KB, Stout RG, Rodriguez RJ, Henson JM (2002).

Thermotolerance generated by plant/fungal symbiosis

Science, 298, 1581.

DOI      URL     PMID      [本文引用: 1]

Reeves FB, Wagner D, Moorman T, Kiel J (1979).

The role of endomycorrhizae in revegetation practices in the semi-arid West. I. A comparison of incidence of mycorrhizae in severely disturbed vs. natural environments

American Journal of Botany, 66, 6-13.

[本文引用: 1]

Reynolds HL, Packer A, Bever JD, Clay K (2003).

Grassroots ecology: plant-microbe-soil interactions as drivers of plant community structure and dynamics

Ecology, 84, 2281-2291.

[本文引用: 1]

Rothstein DE, Vitousek PM, Simmons BL (2004).

An exotic tree alters decomposition and nutrient cycling in a Hawaiian montane forest

Ecosystem, 7, 805-814.

[本文引用: 1]

Schortemeyer M, Santruckova H, Sadowsky MJ (1997).

Relationship between root length density and soil microorganisms in the rhizospheres of white clover and perennial ryegrass

Communications in Soil Science and Plant Analysis, 28, 1675-1682.

[本文引用: 1]

Schwieger F, Tebbe CC (1998).

A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis

Applied and Environmental Microbiology, 64, 4870-4876.

DOI      URL     PMID      [本文引用: 1]

Single-strand-conformation polymorphism (SSCP) of DNA, a method widely used in mutation analysis, was adapted to the analysis and differentiation of cultivated pure-culture soil microorganisms and noncultivated rhizosphere microbial communities. A fragment (approximately 400 bp) of the bacterial 16S rRNA gene (V-4 and V-5 regions) was amplified by PCR with universal primers, with one primer phosphorylated at the 5' end. The phosphorylated strands of the PCR products were selectively digested with lambda exonuclease, and the remaining strands were separated by electrophoresis with an MDE polyacrylamide gel, a matrix specifically optimized for SSCP purposes. By this means, reannealing and heteroduplex formation of DNA strands during electrophoresis could be excluded, and the number of bands per organism was reduced. PCR products from 10 of 11 different bacterial type strains tested could be differentiated from each other. With template mixtures consisting of pure-culture DNAs from 5 and 10 bacterial strains, most of the single strains could be detected from such model communities after PCR and SSCP analyses. Purified bands amplified from pure cultures and model communities extracted from gels could be reamplified by PCR, but by this process, additional products were also generated, as detected by further SSCP analysis. Profiles generated with DNAs of rhizosphere bacterial communities, directly extracted from two different plant species grown in the same field site, could be clearly distinguished. This study demonstrates the potential of the selected PCR-single-stranded DNA approach for microbial community analysis.

Smith JL, Paul EA (1990).

The significance of soil microbial biomass estimations

Soil Biochemistry, 6, 357-395.

[本文引用: 1]

Song MH, Xu XL, Hu QW, Tian YQ, Ouyang H, Zhou CP (2007).

Interactions of plant species mediated plant competition for inorganic nitrogen with soil microorganisms in an alpine meadow

Plant and Soil, 297, 127-137.

[本文引用: 1]

Spehn EM, Joshi J, Schmid B, Alphei J, Körnor C (2000).

Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems

Plant and Soil, 224, 217-230.

[本文引用: 2]

Stark JM, Hart SC (1997).

High rates of nitrification and nitrate turnover in undisturbed coniferous forests

Nature, 385, 61-64.

[本文引用: 1]

Ste-Marie C, Houle D (2006).

Forest floor gross and net nitrogen mineralization in three forest types in Quebec, Canada

Soil Biology and Biochemistry, 38, 2135-2143.

[本文引用: 1]

Stephan A, Meyer AH, Schmid B (2000).

Plant diversity affects culturable soil bacteria in experimental grassland communities

Journal of Ecology, 88, 988-998.

[本文引用: 1]

Tilman D (1982). Resource Competition and Community Structure. Princeton University Press, Princeton.

[本文引用: 1]

Tilman D (1987).

Secondary succession and the pattern of plant dominance along experimental nitrogen gradients

Ecological Monographs, 57, 189-214.

[本文引用: 1]

Torsvik VL (1980).

Isolation of bacterial DNA from soil

Soil Biology and Biochemistry, 12, 15-21.

[本文引用: 1]

Torsvik VL, Goksøyr J, Daae FL (1990).

High diversity in DNA of soil bacteria

Applied and Environmental Microbiology, 56, 782-787.

DOI      URL     PMID      [本文引用: 1]

Soil bacterium DNA was isolated by minor modifications of previously described methods. After purification on hydroxyapatite and precipitation with cetylpyridinium bromide, the DNA was sheared in a French press to give fragments with an average molecular mass of 420,000 daltons. After repeated hydroxyapatite purification and precipitation with cetylpyridinium bromide, high-pressure liquid chromatography analysis showed the presence of 2.1% RNA or less, whereas 5-methylcytosine made up 2.9% of the total deoxycytidine content. No other unusual bases could be detected. The hyperchromicity was 31 to 36%, and the melting curve in 1 X SSC (0.15 M NaCl plus 0.015 M sodium citrate) corresponded to 58.3 mol% G+C. High-pressure liquid chromatography analysis of two DNA samples gave 58.6 and 60.8 mol% G+C. The heterogeneity of the DNA was determined by reassociation of single-stranded DNA, measured spectrophotometrically. Owing to the high complexity of the DNA, the reassociation had to be carried out in 6 X SSC with 30% dimethyl sulfoxide added. Cuvettes with a 1-mm light path were used, and the A275 was read. DNA concentrations as high as 950 micrograms ml-1 could be used, and the reassociation rate of Escherichia coli DNA was increased about 4.3-fold compared with standard conditions. C0t1/2 values were determined relative to that for E. coli DNA, whereas calf thymus DNA was reassociated for comparison. Our results show that the major part of DNA isolated from the bacterial fraction of soil is very heterogeneous, with a C0t1/2 about 4,600, corresponding to about 4,000 completely different genomes of standard soil bacteria.(ABSTRACT TRUNCATED AT 250 WORDS)

van der Heijden MGA, Bardgett RD, van Straalen NM (2008).

The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems

Ecology Letters, 11, 296-310.

DOI      URL     PMID      [本文引用: 4]

Microbes are the unseen majority in soil and comprise a large portion of life's genetic diversity. Despite their abundance, the impact of soil microbes on ecosystem processes is still poorly understood. Here we explore the various roles that soil microbes play in terrestrial ecosystems with special emphasis on their contribution to plant productivity and diversity. Soil microbes are important regulators of plant productivity, especially in nutrient poor ecosystems where plant symbionts are responsible for the acquisition of limiting nutrients. Mycorrhizal fungi and nitrogen-fixing bacteria are responsible for c. 5-20% (grassland and savannah) to 80% (temperate and boreal forests) of all nitrogen, and up to 75% of phosphorus, that is acquired by plants annually. Free-living microbes also strongly regulate plant productivity, through the mineralization of, and competition for, nutrients that sustain plant productivity. Soil microbes, including microbial pathogens, are also important regulators of plant community dynamics and plant diversity, determining plant abundance and, in some cases, facilitating invasion by exotic plants. Conservative estimates suggest that c. 20 000 plant species are completely dependent on microbial symbionts for growth and survival pointing to the importance of soil microbes as regulators of plant species richness on Earth. Overall, this review shows that soil microbes must be considered as important drivers of plant diversity and productivity in terrestrial ecosystems.

van der Heijden MGA, Boller T, Wiemken A, Sanders IR (1998a).

Different arbuseular mycorrhizal fungi species are potential determinants of plant community structure

Ecology, 79, 2082-2091.

[本文引用: 1]

van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998b).

Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity

Nature, 396, 69-72.

[本文引用: 1]

Waldrop MP, Zak DR, Sinsabaugh RL, Gallo M, Lauber C (2004).

Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity

Ecological Application, 14, 1172-1177.

[本文引用: 1]

Wall DH, Moore JC (1999).

Interactions underground: soil biodiversity, mutualism, and ecosystem process

BioScience, 49, 109-117.

[本文引用: 2]

Wardle DA (1999).

Biodiversity, ecosystem and interactions that transcend the interface

Trends in Ecology and Evolution, 14, 125-127.

[本文引用: 2]

Wardle DA (2002). Communities and Ecosystems: Linking the Aboveground and Belowground Components. Princeton University Press, Princeton.

[本文引用: 2]

Wardle DA, Bardgett RD, Klironomos JN, Setälä H, van der Putten WH, Wall DH (2004).

Ecological linkages between aboveground and belowground biota

Science, 304, 1629-1633.

URL     PMID      [本文引用: 1]

William Hamilton E III, Frank DA (2001).

Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass

Ecology, 82, 2397-2402.

[本文引用: 1]

Wilson JB, Agnew ADQ (1992).

Positive-feedback switches in plant communities

Advances in Ecological Research, 23, 263-336.

[本文引用: 2]

Wolfe BE, Husband BC, Klironomos JN (2005).

Effects of a belowground mutualism on an aboveground mutualism

Ecology Letters, 8, 218-223.

[本文引用: 1]

Xu ZZ (许振柱), Zhou GS (周广胜) (2007).

Relationship between carbon and nitrogen and environmental regulation in plants under global change―from molecule to ecosystem

Journal of Plant Ecology (Chinese Version) (植物生态学报), 31, 738-747. (in Chinese with English abstract)

[本文引用: 1]

Xu XL, Ouyang H, Pei ZY, Zhou CP (2004).

Long-term partitioning of 15N labeled ammonium and nitrate among different components in an alpine meadow ecosystem

Acta Botanica Sinica, 46, 279-283.

[本文引用: 1]

Xu XL, Ouyang H, Kuzyakov Y, Richter A, Wanek W (2006).

Significance of organic nitrogen acquisition for dominant species in an alpine meadow on the Tibet Plateau, China

Plant and Soil, 285, 221-231.

[本文引用: 1]

Yang WP (杨维平) (2002).

Mycorrhizal fungi―an important factor affecting plant community structure

Biology Teaching (生物学教学), 27(4), 22-24. (in Chinese)

[本文引用: 1]

Zak DR, Groffman PM, Pregitzer KS, Christensen S, Tiedje JM (1990).

The vernal dam: plant-microbe competition for nitrogen in northern hardwood forests

Ecology, 71, 651-656.

[本文引用: 1]

Zhang Y (张英), Guo LD (郭良栋), Liu RJ (刘润进) (2003).

Diversity and ecology of arbuscular mycorrhizal fungi in Dujiangyan

Acta Phytoecologica Sinica (植物生态学报), 27, 537-544. (in Chinese with English abstract)

[本文引用: 1]

Zhou XM (周兴民) (2001). Kobresia Meadow in China (中国嵩草草甸). Science Press, Beijing. 839-846. (in Chinese)

[本文引用: 1]

/