甲烷(CH4 )是一种重要的温室气体, 它比CO2 活跃, 其单分子的增温效应为CO2 的28倍(IPCC, 2013 )。由于人类活动的影响, 大气中的CH4 含量已从1750年的0.722 µmol·mol-1 上升到2011年的1.803 µmol·mol-1 , 升高了约2.5倍(IPCC, 2013 )。虽然在1999-2006年大气中的CH4 含量趋于稳定, 但从2007年开始, 大气CH4 含量再次升高(Rigby et al ., 2008 ; Kirschke et al ., 2013 ), 这主要是由于湿地、稻田和生物质燃烧排放的CH4 增加(Chen & Prinn, 2006 ; Kirschke et al ., 2013 )。因此, CH4 的源/汇问题仍是目前研究的热点, 加强CH4 源/汇问题的研究对于认识和预测CH4 在全球气候变暖过程中的作用具有重要意义。
自然湿地是大气CH4 的重要排放源, 年排放量为177-284 Tg (1 Tg = 1012 g), 约占全球CH4 排放量的26%-42% (IPCC, 2013 ), 排放量的不确定, 一是由于不同湿地的CH4 排放存在时空变化格局(Whalen & Reeburgh, 1992 ; Huttunen et al ., 2003 ; Inubushi et al ., 2005 ; Chen et al ., 2008 ; Glagolev et al ., 2011 ; 黄璞祎等, 2011 ; McEwing et al ., 2015 ; Song et al ., 2015 ), 二是因为气候变化(IPCC, 2013 ; Munir & Strack, 2014 )。湿地CH4 排放经由厌氧条件下产CH4 菌生成CH4 和需氧条件下氧化CH4 菌氧化CH4 两种微生物过程, 以扩散、冒泡和植物传输3个过程排放CH4 (Le Mer & Roger, 2001 ; 王智平等, 2003 ; Lai, 2009 ; McEwing et al ., 2015 )。这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 )。由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 )。目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 )。因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量。
若尔盖高原(101.60°-103.50° E, 32.33°-34.00° N, 平均海拔为3400 m)泥炭沼泽面积约为4038 km2 , 是我国面积最大的高原泥炭沼泽分布区(王德宣等, 2002 ), 也是青藏高原东部边缘的CH4 排放源(Jin et al ., 1999 )。近10年来, 国内专家研究若尔盖高原泥炭沼泽湿地CH4 排放特征(王德宣等, 2002 ; Ding et al ., 2004 ; Hirota et al ., 2004 ; Chen et al ., 2008 ; 王德宣, 2010 ; 李丽等, 2011 ; Song et al ., 2015 ), 取得了一定的成果, 为理解高原湿地碳循环和CH4 排放机理提供了一定理论基础。然而, 若尔盖高原泥炭沼泽微地貌区(草丘和洼地) CH4 排放的时空变化格局鲜有报道。Wei等(2015)报道了青藏高原两种海拔高度(4758和4320 m)的湿地微地貌区(草丘和洼地) CH4 排放特征, 结果表明其影响因子较多, 存在时间和空间上的差异, 区域CH4 排放量仍存在较大的不确定性, 这将不利于我们深刻理解高原湿地CH4 排放对环境变化和气候变化的响应机制, 以及精确预算我国高原湿地CH4 排放量。
1 研究区概况和研究方法
1.1 研究区概况
本研究地点(33.92˚ N, 102.82˚ E, 海拔为3441 m)位于若尔盖湿地自然保护区。若尔盖湿地2008年被列入《湿地公约》的国际重要湿地名录。该地属于寒温带湿润气候, 11月至次年4月受西伯利亚和蒙古的冷空气控制, 5至10月受西南季风控制, 年平均气温为1 ℃, 最暖月7月平均气温为10.7 ℃, 最冷月1月平均气温-10.3 ℃ (王智平等, 2003 ; Ding et al ., 2004 )。年降水量650 mm, 降水集中在6-9月, 相对湿度78% (王智平等, 2003 )。
研究地点位于花湖湖泊边缘, 有3种水位深度的泥炭湿地: 常年性淹水、季节性淹水和地表无淹水。在这3种泥炭湿地, 常年性淹水泥炭湿地位于湖泊边缘, 季节性淹水泥炭湿地位于湖泊外围, 地表无淹水泥炭湿地位于前两个样地之间的过渡带。常年性淹水和季节性淹水泥炭湿地均形成了微地貌草丘(hummock)和洼地(hollow), 这两种微地貌面积所占比例约为55%和45%。共有5种微地貌, 其植物类型如下: (1)常年性淹水草丘(P-hummock)主要植物为木里薹草(Carex muliensis ); (2)常年性淹水洼地(P-hollow)主要植物为沉水植物小眼子菜(Potam- ogeton pusillus )和狸藻(Utricularia vulgaris ), 伴生稀疏的木里薹草; (3)季节性淹水草丘(S-hummock)主要植物为西藏嵩草(Kobresia tibetica ), 伴生具刚毛荸荠(Eleocharis valleculosa )、蕨麻(Potentilla anserina )和花葶驴蹄草(Caltha scaposa ); (4)季节性淹水洼地(S-hollow)主要植物为木里薹草; (5)过渡带平坦地(lawn)主要植物为西藏嵩草和花葶驴蹄草。土壤类型为泥炭沼泽土, 土壤理化性质见表1 。
1.2 研究方法
1.2.1 样地设置
2014年4月下旬, 在花湖湖滨湿地5种微地貌区各建立3个标准样地(20 m × 20 m), 在5种微地貌区各安装静态箱底座3个(n = 3), 共15个。底座由不锈钢制作(规格为50 cm × 50 cm × 20 cm), 底座上口四周有5 cm高度的水槽, 下口插入土壤15 cm, 底座永久保留在实验地土壤中。同时, 在常年性淹水样地, 用直径15 cm的原木搭建栈道, 通过铁钉固定, 防止取样时人为对土壤的干扰。
1.2.2 CH4 气体测量
通过静态箱法(Chen et al ., 2008 ; McEwing et al ., 2015 )采集CH4 。静态箱由底座、中箱(50 cm × 50 cm × 50 cm)和顶箱(50 cm × 50 cm × 50 cm)组成(孙晓新等, 2009 )。常年性淹水P-hollow采用底座、中箱和顶箱测量CH4 气体, 其他微地貌区采用底座和顶箱测量CH4 气体。中箱和顶箱由薄的铝材料制成, 中箱上口四周有5 cm高度的水槽, 防止气体泄露, 为了使箱内温度稳定, 中箱和顶箱外包装塑料泡沫, 顶箱内部有2个5 cm × 5 cm的风扇, 顶箱上部中央附有直径为2 cm的2个橡皮塞小圆孔, 连接快速温室气体分析仪器(Model GGA-24EP, Los Gatos Research, San Jose, USA)的2根附有橡皮塞的透明导气管,长度4 m (内径为4 mm)(Mastepanov et al ., 2008 ; McEwing et al ., 2015 ), 仪器通过12 V蓄电池供电, 数据采集设置为1 Hz (Mastepanov et al ., 2008 )。启动仪器后, 测量CH4 排放通量时, 静态箱与底座水槽密闭后, 密闭箱内空气进入分析仪, 并通过2根透明导气管来回在分析仪器内无损坏地循环分析CH4 浓度变化。每次气体测量之前, 在底座水槽注满水, 启动仪器, 等待仪器启动显示的顶箱内部大气CH4 浓度稳定为当地环境气体CH4 浓度(8.04×10-8 mol·L-1 )时, 将静态箱扣在底座或中箱上, 密闭测量3-5 min, 然后揭开静态箱置于开放状态, 约为2 min, 然后密闭测量下一个静态箱底座, 循环操作以上过程。测量时间为2014年5-10月北京时间9:00-11:30, 观测频率为每月2次。CH4 排放通量是以封闭箱内顶部的CH4 浓度随时间变化的直线斜率计算(Mastepanov et al ., 2008 ; McEwing et al ., 2015 ), 回归方程决定系数R 2 ≥0.90; 当R 2 < 0.90时, 数据不作为CH4 排放通量计算, 其比例为3.8% (包含P-hollow的两个瞬时值过大(592.44和327.82 mg·m-2 ·h-1 ), 尽管R 2 > 0.90)。CH4 排放通量的计算公式(孙晓新等, 2009 ; McEwing et al ., 2015 )如下:
式中: F 为CH4 排放通量(mg·m-2 ·h-1 ); M 为被测气体的摩尔质量, V 为箱内空气体积; A 为静态箱底面积(0.25 m2 ); dc /dt 代表CH4 浓度随时间变化的直线斜率; V 0 、T 0 和P 0 分别为标准状态下的CH4 气体摩尔体积(22.4 L·mol-1 )、空气绝对温度(273.15 K)和气压(1013.25 hPa); P 为采样地点的气压; T 为采样时箱内的绝对温度。
测量CH4 排放通量时, 采用数字温度计测量6种深度(5、10、15、20、30和45 cm)的土壤温度。通过在静态箱附近挖井约70 cm测量土壤水位深度, 而常年性淹水点直接测量地表水位深度值, 2014年8月中旬测量地上生物量, 采集3个重复样方面积为50 cm × 50 cm的地上生物量, 运输到实验室恒温箱70 ℃烘干至恒质量, 称量。另外, 在3种类型的泥炭沼泽中取0-30 cm深度土壤测量土壤理化性质(表1 )。
1.2.3 数据统计
采用t 检验比较3种湿地5种微地貌区之间的CH4 排放通量差异; 采用单因素多重配对Duncan分析CH4 排放通量的季节性变化; 采用Pearson相关系数评价CH4 排放通量与土壤温度、水位深度和地上生物量的相关关系。所有数据采用SPSS 18.0软件包进行分析; 图表中数据为平均值±标准偏差(mean ± SD )。显著水平p = 0.05; 极显著水平p = 0.01。
2 结果和分析
2.1 若尔盖高原湿地微地貌区CH4 排放通量的时空变化
若尔盖高原湿地5种微地貌区CH4 排放通量如图1 所示。2014年5-10月CH4 排放通量观测期间, 湿地3种微地貌区(P-hummock、P-hollow和S-hum- mock) CH4 排放通量存在极显著的季节性变化(p < 0.01), 而湿地Lawn和S-hollow两种微地貌区CH4 排放通量无显著季节变化(p ˃ 0.05)。P-hummock的CH4 排放通量曲线为单峰, 5月初排放通量较低(14.44 mg·m-2 ·h-1 ), 随后大幅升高(32.73-56.52 mg·m-2 ·h-1 ), 在9月初达到峰值(76.86 mg·m-2 ·h-1 ),10月底达到最低值; P-hollow的CH4 排放通量曲线为3峰, 5月初最低值为5.78 mg·m-2 ·h-1 , 随后也大幅增加, 6月11日和7月24日出现2个小峰值, 9月底达到最大峰值(144.43 mg·m-2 ·h-1 ), 10月底回到较低水平。S-hummock的CH4 排放通量曲线为双峰型, 5月初排放通量最低(0.17 mg·m-2 ·h-1 ), 直到7月底达到次峰值(1.24 mg·m-2 ·h-1 ), 随后降低, 10月中旬达到最大峰值(1.48 mg·m-2 ·h-1 ); Lawn和S-hollow生长季CH4 排放通量无明显的季节变化, 曲线为双峰型, 峰值出现在6月初、8月初或秋末, 排放通量范围分别为0.23-8.45和0.48-4.91 mg·m-2 ·h-1 。
图1 若尔盖高原湿地5种微地貌区2014年CH4 排放通量季节性变化(平均值±标准偏差)。Lawn, 常年性淹水与季节性淹水点之间的过渡带平坦地; P-hollow, 常年性淹水洼地; P-hummock, 常年性淹水草丘; S-hollow, 季节性淹水洼地; S-hummock, 季节性淹水草丘。
Fig. 1 Seasonal variations of CH4 emission fluxes from Zoigê Plateau wetland on five microtopography in 2014 (mean ± SD ). Lawn, transitional zones between permanently flooded and seasonally flooded sites; P-hollow, permanently flooded hollow; P-hummock, permanently flooded hummock; S-hollow, seasonally flooded hollow; S-hummock, seasonally flooded hummock.
若尔盖高原湿地5种微地貌区P-hummock、P-hollow、Lawn、S-hummock、S-hollow生长季CH4 排放通量分别为(40.32 ± 19.78)、(68.48 ± 36.23)、(3.68 ± 2.73)、(0.63 ± 0.41)、(2.38 ± 1.45) mg·m-2 ·h-1 (平均值±标准偏差), 中值依次为40.81、67.51、2.74、0.46和2.44 mg·m-2 ·h-1 , 它们之间的CH4 排放通量平均值存在显著差异(p < 0.05)。P-hollow的CH4 排放通量最高, 是S-hummock的108倍, Lawn和S-hollow之间的CH4 的排放通量倍数相差最小, 但也达1.6倍。为了准确地预算区域CH4 排放量, 常年性淹水湿地生长季CH4 排放通量(草丘和洼地面积比例55: 45)为(52.99 ± 19.57) mg·m-2 ·h-1 (平均值±标准偏差); 季节性淹水湿地生长季CH4 排放通量(草丘和洼地面积比例55:45)为(1.42 ± 0.82) mg·m-2 ·h-1 (平均值±标准偏差)。
2.2 若尔盖高原湿地微地貌区CH4 排放通量与土壤温度和水位深度的相关性
Pearson相关性分析表明P-hummock与5-30 cm土壤温度显著相关(n =12, p < 0.05)或极显著相关(n = 12, p < 0.01), 其他4种微地貌区CH4 排放与土壤温度不显著相关(p ˃ 0.05), 但S-hummock剔除10月份数据后, CH4 排放通量与10-30 cm土壤温度显著相关(n = 10, p < 0.05)(表2 )。5种微地貌区生长季CH4 排放通量与水位深度存在极显著线性正相关关系(n = 5, p < 0.01) (表2 )。
3 讨论和结论
3.1 若尔盖高原湿地微地貌区CH4 排放通量的季节性变化
除了本研究湿地常年性淹水P-hollow CH4 排放通量范围(5.78-144.3 mg·m-2 ·h-1 )稍大于其他研究(见表3 列出的参考文献)的高原湿地CH4 通量范围(-0.81-86.78 mg·m-2 ·h-1 )以外, 其他4种微地貌区CH4 排放通量范围(0.17-76.86 mg·m-2 ·h-1 )均在其他研究的高原湿地CH4 通量范围内(表3 )。
本研究湿地5种微地貌区CH4 排放通量峰值出现在夏季(6-8月)或秋季(9-10月)(图1 ), 与以往研究结果(Dise, 1993 ; Chen et al ., 2008 ; 孙晓新等, 2009 ; 黄璞祎等, 2011 ; Wei et al ., 2015 )一致。夏季CH4 排放通量高的原因可能是夏季温度较高(图2 ), 促进湿地植物的生长、分蘖, 为CH4 产生提供充足的有机底物和传输通道(宋长春等, 2006 ; 孙晓新等, 2009 ; 黄璞祎等, 2011 ); 同时, 土壤微生物活性增强, 加快土壤中氧的消耗, 降低了氧化还原电位, 有利于产CH4 菌的生长(孙晓新等, 2009 ; 黄璞祎等, 2011 )。秋季CH4 排放通量高的原因可能是大量有机碳输入,当年植物生长的根开始分解或凋落物输入增加(孙晓新等, 2009 ; 邓昭衡等, 2015 ), 使可利用活性有机底物增加, 促进产CH4 菌产生CH4 ; 另外, 秋季水位深度增加(图2 ), 湿地土壤厌氧条件增多, 有利于产CH4 菌产生CH4 和减少氧化CH4 菌氧化CH4 (Moore et al ., 1994 ; 黄璞祎等, 2011 ; Wei et al ., 2015 )。
图2 2014年若尔盖高原湿地5种微地貌区15 cm土壤温度和水位深度。Lawn, 常年性淹水与季节性淹水点之间的过渡带平坦地; P-hollow, 常年性淹水洼地; P-hummock, 常年性淹水草丘; S-hollow, 季节性淹水洼地; S-hummock, 季节性淹水草丘。
Fig. 2 Soil temperature at 15 cm depth and water table depth from the Zoigê Plateau wetland on five microtopography in 2104. Lawn, transitional zones between permanently flooded and seasonally flooded sites; P-hollow, permanently flooded hollow; P-hummock, permanently flooded hummock; S-hollow, seasonally flooded hollow; S-hummock, seasonally flooded hummock.
然而, 湿地CH4 排放是土壤中CH4 的生成、氧化、传输与释放过程相互作用的结果(Whalen & Reeburgh, 1992 ; Le Mer & Roger, 2001 ; 孙晓新等, 2009 ), 受到一系列因子(包含水位深度、温度、植物和土壤性质等)影响, 使得生长季CH4 排放通量与土壤温度和水位深度的相互关系更加复杂。本研究发现湿地微地貌区(P-hummock、P-hollow和S-hum- mock) CH4 排放通量季节性变化存在极显著差异(p < 0.01), Lawn和S-hollow CH4 排放通量季节变化不显著(p > 0.05)。Pearson相关性分析表明整个生长季仅发现常年性淹水P-hummock与土壤温度(5-30 cm)存在显著线性正相关关系(p < 0.05)(表2 ), 这表明土壤温度是影响该微地貌区CH4 排放通量存在显著季节变化的主控因子, 与其他报道的北方湿地CH4 排放与温度显著相关通常局限于常年性淹水湿地(Whalen & Reeburgh, 1992 ; 孙晓新等, 2009 )吻合。但常年性淹水P-hollow没有发现这一规律, 说明还有其他因子影响湿地CH4 排放, 诸如水位深度和植物类型。常年性淹水P-hollow整个生长季水位深度超过土壤地表2 0 cm (图2 ); 另外, 植被类型以沉水植物小眼子菜和狸藻为主要植物群落, 它们不像维管植物通气组织(尤其是莎草科)的传输促进了CH4 从土壤向大气的输送, 进而增加CH4 排放(McEwing et al ., 2015 ), 如P-hummock样点以莎草科植物木里薹草为优势种。这种水位深度和植被类型因子的变化, 可能使湿地土壤-大气CH4 交换方式发生改变。许多研究表明湖泊湿地或泥炭湿地淹水小池塘水-大气界面CH4 交换方式以冒泡式(ebullition)为主(>95%)(Keller & Stallard, 1994 ; Casper et al ., 2000 ), 其CH4 排放通量极高(Keller & Stallard, 1994 ; Mikkelä et al ., 1995 ), 进而影响区域CH4 排放预算(Walter et al ., 2006 ; Tokida et al ., 2007 ), 这可能导致CH4 排放通量与温度或水位深度的关系趋于复杂。例如, 在9月底和10月观测到P-hollow CH4 排放通量的最高值为592.44和327.82 mg·m-2 ·h-1 。在北极圈河流阶地水淹洼地CH4 排放通量的最高值为559 mg·m-2 ·h-1 (van Huissteden et al ., 2005 )。北极圈湖泊解冻后, 冒泡式CH4 排放通量达到300 mg·m-2 ·h-1 (Walter et al ., 2006)。S-hummock生长季CH4 排放通量随温度增加而逐渐增加, 7月底出现次峰(图1 ), 秋季水位深度升高(图2 )和凋落物输入, 出现最大峰值, 可能掩盖了温度对CH4 排放的作用。剔除10月份数据后, S-hummock CH4 排放通量与土壤(10-30 cm)温度显著线性正相关(表2 ), 暗示秋季水位深度升高或凋落物输入促进了湿地CH4 排放。
Lawn和S-hollow CH4 排放通量无明显的季节变化, 这可能与该微地貌区水位深度(平均值为-21.6 cm和-21.1 cm)条件下的产CH4 菌和氧化CH4 菌的竞争有关(Hirota et al ., 2004 ; Sun et al ., 2011 )。通常湿地土壤表层CH4 氧化潜力较大(王长科等, 2004 ; Lai, 2009 ), 水位深度下降后, CH4 氧化加强, CH4 排放通量降低, 导致无明显高CH4 排放通量, 可能使得观测期间CH4 排放通量无明显的季节变化(Sun et al ., 2011 )。水位深度下降还导致下层土壤温度增加, 进而促进产CH4 菌生成CH4 , 促进了CH4 排放。在这两种微地貌区观测期间CH4 排放变异系数较大(7.2%-149.3%, 变异系数>40%的比例占75%)(图1 ), 进而推测标准偏差过大可能也使得CH4 排放通量无明显的季节性变化, 这与Mikkelä等(1995)研究发现的北方泥炭地微地貌区小池塘CH4 排放通量无明显日变化格局的结果类似。但是, 这两种微地貌区在夏季或秋季具有较高CH4 排放通量(图1 ), 说明温度、水位深度和凋落物输入对湿地CH4 排放影响较大。
3.2 若尔盖高原湿地微地貌区CH4 排放通量的空间变化
若尔盖高原湿地5种微地貌区CH4 排放通量大小顺序为: P-hollow > P-hummock > Lawn> S-hollow > S-hummock, 这与其他研究的湿地不同微地貌区CH4 排放通量规律吻合, 即水位深度较高的微地貌区CH4 排放通量较高(Clymo et al ., 1995 ; Kutzbach et al ., 2004 ; Glagolev et al ., 2011 ; Wei et al ., 2015 )。许多研究表明不同湿地生态系统内, 特别是泥炭地微地貌区的CH4 排放通量存在显著的空间变化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 )。本研究湖滨湿地的5种微地貌区之间CH4 排放通量的平均值存在显著的空间差异性(表3 ), 变异系数为131%。Pearson相关性分析表明5种微地貌区CH4 排放通量的平均值与水位深度平均值存在极显著的线性正相关关系(表2 ), 表明影响该湖滨湿地微地貌区CH4 排放通量存在空间差异的主控因子是水位深度, 这与其他报道的北方湿地的研究结果(Moore et al ., 1994 ; Ding et al ., 2003 ; Huttunen et al ., 2003 ) 一致。究其原因: 一方面可能是草丘(hummock)的水位深度较低, 产CH4 菌生成的CH4 大部分被氧化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Lai, 2009 ; Wei et al ., 2015 ), 进而减少了CH4 排放; 另一方面, 洼地CH4 排放通量高于草丘, 可能是由于较高水位深度, 产CH4 菌生成CH4 和温度升高后, 促进了CH4 排放(Waddington & Roulet, 1996 ; Lai, 2009 ; Wei et al ., 2015 ), 这表明水位深度在调控湿地CH4 排放通量中发挥着极其重要的作用。如果不考虑这种差异, 可能会低估或高估区域CH4 排放量。例如, P-hollow CH4 排放通量最高, 它是S-hummock CH4 最低排放通量的108倍, Lawn和S-hollow CH4 排放通量倍数相差最小, 也达1.6倍。因此, 研究湿地生态系统内部微地貌区CH4 排放特征具有重要意义, 量化其数值, 进一步通过与高精度分辨率的遥感或地理信息系统数据结合, 将有助于精确地预算若尔盖高原湿地的CH4 排放量。
致谢 本研究得到中国清洁发展机制基金赠款项目(2012076)和中国林业科学研究院林业新技术研究所基本科研业务费专项(CAFINT2014K06)的资助。若尔盖高寒湿地生态系统定位研究站和若尔盖湿地国家级自然保护区管理局对本研究给予大力支持和帮助, 在此特别感谢。
The authors have declared that no competing interests exist.
作者声明没有竞争性利益冲突.
参考文献
文献选项
[1]
Casper P , Maberly SC , Hall GH , Finlay BJ (2000 ). Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere
.Biogeochemistry , 49 , 1 -19 .
[本文引用: 1]
[2]
Chen H , Yao SP , Wu N , Wang YF , Luo P , Tian JQ , Gao YH , Sun G (2008 ). Determinants influencing seasonal variations of methane emissions from alpine wetlands in Zoigê Plateau and their implications
. Journal of Geophysical Research , 113(D12), doi:10.1029/2006JD008072 .
[本文引用: 4]
[3]
Chen YH , Prinn RG (2006 ). Estimation of atmospheric methane emissions between 1996 and 2001 using a three- dimensional global chemical transport model
. Journal of Geophysical Research , 111(D10), doi:10.1029/2005JD- 006058 .
[本文引用: 1]
[4]
Clymo RS , Pearce DME , Conrad R (1995 ). Methane and carbon dioxide production in, transport through, and efflux from a peatland [and discussion]
.Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences , 351 , 249 -259 .
[本文引用: 3]
[5]
Deng ZH , Zhang XW , Gao JJ , Gao JQ (2015 ). Effects of soil moisture and litter on CH4 emission from peat in Zoigê wetlands
.Journal of Ecology and Rural Environment , 31 , 548 -552 . (in Chinese with English abstract)
[邓昭衡 , 张雪雯 , 高居娟 , 高俊琴 (2015 ). 水分及凋落物对若尔盖泥炭土CH4 排放的影响
. 生态与农村环境学报 , 31 , 548 -552 .]
[本文引用: 1]
[6]
Ding WX , Cai ZC (2002 ). Methane emission from mires and its influencing factors
.Scientia Geographica Sinica , 22 , 619 -625 . (in Chinese with English abstract)
[丁维新 , 蔡祖聪 (2002 ). 沼泽甲烷排放及其主要影响因素
. 地理科学 , 22 , 619 -625 .]
[本文引用: 1]
[7]
Ding WX , Cai ZC , Tsuruta H , Li XP (2003 ). Key factors affecting spatial variation of methane emissions from freshwater marshes
.Chemosphere , 51 , 167 -173 .
[本文引用: 1]
[8]
Ding WX , Cai ZC , Wang DX (2004 ). Preliminary budget of methane emissions from natural wetlands in China
.Atmospheric Environment , 38 , 751 -759 .
[本文引用: 2]
[9]
Dise NB (1993 ). Methane emission from Minnesota peatlands: Spatial and seasonal variability
.Global Biogeochemical Cycles , 7 , 123 -142 .
[本文引用: 3]
[10]
Glagolev M , Kleptsova I , Filippov I , Maksyutov S , Machida T (2011 ). Regional methane emission from West Siberia mire landscapes
.Environmental Research Letters , 6 , doi:10.1088/1748-9326/6/4/045214 .
[本文引用: 4]
[11]
Glagolev MV , Shnyrev NA (2008 ). Methane emission from mires of Tomsk oblast in the summer and fall and the problem of spatial and temporal extrapolation of the obtained data
.Moscow University Soil Science Bulletin , 63 (2 ), 67 -80 .
[本文引用: 2]
[12]
Hirota M , Tang YH , Hu QW , Hirata S , Kato T , Mo WH , Cao GM , Mariko S (2004 ). Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland
.Soil Biology & Biochemistry , 36 , 737 -748 .
[本文引用: 3]
[13]
Huang PY , Yu HX , Chai LH , Chai FY , Zhang WF (2011 ). Methane emission flux of Zhalong Phragmites australis wetlands in growth season
.Chinese Journal of Applied Ecology , 22 , 1219 -1224 . (in Chinese with English abstract)
[黄璞祎 , 于洪贤 , 柴龙会 , 柴方营 , 张万峰 (2011 ). 扎龙芦苇湿地生长季的甲烷排放通量
. 应用生态学报 , 22 , 1219 -1224 .]
[本文引用: 5]
[14]
Huttunen JT , Nykänen H , Turunen J , Martikainen PJ (2003 ). Methane emissions from natural peatlands in the northern boreal zone in Finland, Fennoscandia
.Atmospheric Environment , 37 , 147 -151 .
[本文引用: 2]
[15]
Inubushi K , Otake S , Furukawa Y , Shibasaki N , Ali M , Itang AM , Tsuruta H (2005 ). Factors influencing methane emission from peat soils: Comparison of tropical and temperate wetlands
.Nutrient Cycling in Agroecosystems , 71 , 93 -99 .
[本文引用: 2]
[16]
IPCC (Intergovernmental Panel on Climate Change) (2013 ). Climate change 2013: The physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM eds. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
[本文引用: 5]
[17]
Jin HJ , Wu J , Cheng GD , Nakano T , Sun GY (1999 ). Methane emissions from wetlands on the Qinghai-Tibet Plateau
.Chinese Science Bulletin , 44 , 2282 -2286 .
[本文引用: 2]
[18]
Kalyuzhnyi IL , Lavrov SA , Reshetnikov AI , Paramonova NN , Privalov VI (2009 ). Methane emission from the oligotrophic bog massif in the Northwestern Russia
.Russian Meteorology and Hydrology , 34 , 35 -45 .
[本文引用: 2]
[19]
Keller M , Stallard RF (1994 ). Methane emission by bubbling from Gatun Lake, Panama
.Journal of Geophysical Research , 99 (D4 ), 8307 -8319 .
[本文引用: 2]
[20]
Kirschke S , Bousquet P , Ciais P , Saunois M , Canadell JG , Dlugokencky EJ , Bergamaschi P , Bergmann D , Blake DR , Bruhwiler L , Cameron-Smith P , Castaldi S , Chevallier F , Feng L , Fraser A , Heimann M , Hodson EL , Houweling S , Josse B , Fraser PJ , Krummel PB , Lamarque JF , Langenfelds RL , Le Quéré C , Naik V , O’Doherty S , Palmer PI , Pison I , Plummer D , Poulter B , Prinn RG , Rigby M , Ringeval B , Santini M , Schmidt M , Shindell DT , Simpson IJ , Spahni R , Steele LP , Strode SA , Sudo K , Szopa S , van der Werf GR , Voulgarakis A , van Weele M , Weiss RF , Williams JE , Zeng G (2013 ). Three decades of global methane sources and sinks
.Nature Geoscience , 6 , 813 -823 .
[本文引用: 1]
[21]
Kutzbach L , Wagner D , Pfeiffer EM (2004 ). Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia
.Biogeochemistry , 69 , 341 -362 .
[本文引用: 5]
[22]
Lai DYF (2009 ). Methane dynamics in northern peatlands: A review
.Pedosphere , 19 , 409 -421 .
[本文引用: 2]
[23]
Le Mer J , Roger P (2001 ). Production, oxidation, emission and consumption of methane by soils: A review
.European Journal of Soil Biology , 37 , 25 -50 .
[本文引用: 1]
[24]
Li L , Lei GC , Gao JQ , Lu C , Zhou Y , Jia YF , Yang M , Suolang DEJ (2011 ). Effect of water table and soil water content on methane emission flux at Carex muliensis marshes in Zoigȇ Plateau
.Wetland Science , 9 (2 ), 173 -178 . (in Chinese with English abstract)
[李丽 , 雷光春 , 高俊琴 , 吕偲 , 周延 , 贾亦飞 , 杨萌 , 索郎夺尔基 (2011 ). 地下水位和土壤含水量对若尔盖木里薹草沼泽甲烷排放通量的影响
. 湿地科学 , 9 (2 ), 173 -178 .]
[本文引用: 3]
[25]
Mastepanov M , Sigsgaard C , Dlugokencky EJ , Houweling S , Ström L , Tamstorf MP , Christensen TR (2008 ). Large tundra methane burst during onset of freezing
.Nature , 456 , 628 -630 .
[本文引用: 8]
[26]
McEwing KR , Fisher JP , Zona D (2015 ). Environmental and vegetation controls on the spatial variability of CH4 emission from wet-sedge and tussock tundra ecosystems in the Arctic
.Plant and Soil , 388 , 37 -52 .
[本文引用: 4]
[27]
Mikkelä C , Sundh I , Svensson BH , Nilsson M (1995 ). Diurnal variation in methane emission in relation to the water table, soil temperature, climate and vegetation cover in a Swedish acid mire
.Biogeochemistry , 28 , 93 -114 .
[本文引用: 4]
[28]
Moore TR , Heyes A , Roulet NT (1994 ). Methane emissions from wetlands, southern Hudson Bay lowland
.Journal of Geophysical Research , 99 (D1 ), 1455 -1467 .
[本文引用: 4]
[29]
Munir TM , Strack M (2014 ). Methane flux influenced by experimental water table drawdown and soil warming in a dry boreal continental bog
.Ecosystems , 17 , 1271 -1285 .
[本文引用: 1]
[30]
Rigby M , Prinn RG , Fraser PJ , Simmonds PG , Langenfelds RL , Huang J , Cunnold DM , Steele LP , Krummel PB , Weiss RF , O’Doherty S , Salameh PK , Wang HJ , Hart CM , Mühle J , Porter LW (2008 ). Renewed growth of atmospheric methane
.Geophysical Research Letters , 35 , doi:10. 1029/2008GL036037 .
[本文引用: 1]
[31]
Song CC , Zhang LH , Wang YY , Zhao ZC (2006 ). Annual dynamics of CO2 , CH4 , N2 O emissions from freshwater marshes and affected by nitrogen fertilization
.Environmental Science , 7 , 2369 -2375 . (in Chinese with English abstract)
[宋长春 , 张丽华 , 王毅勇 , 赵志春 (2006 ). 淡水沼泽湿地CO2 、CH4 和N2 O排放通量年际变化及其对氮输入的响应
. 环境科学 , 27 , 2369 -2375 .]
[本文引用: 3]
[32]
Song WM , Wang H , Wang GS , Chen LT , Jin ZN , Zhuang QL , He JS (2015 ). Methane emissions from an alpine wetland on the Tibetan Plateau: Neglected but vital contribution of the nongrowing season
.Journal of Geophysical Research , 120 ,1475 -1490 .
[本文引用: 8]
[33]
Sun XX , Mu CC , Shi LY , Chen W , Liu X , Wu YX , Feng DJ (2009 ). Methane emission from forested swamps in Xiaoxing’an Mountains, northeastern China
.Chinese Journal of Plant Ecology , 33 , 535 -545 . (in Chinese with English abstract)
[孙晓新 , 牟长城 , 石兰英 , 程伟 , 刘霞 , 吴云霞 , 冯登军 (2009 ). 小兴安岭森林沼泽甲烷排放及其影响因子
. 植物生态学报 , 33 , 535 -545 .]
[本文引用: 2]
[34]
Sun XX , Mu CC , Song CC (2011 ). Seasonal and spatial variations of methane emissions from montane wetlands in Northeast China
.Atmospheric Environment , 45 , 1809 -1816
[本文引用: 1]
[35]
Tokida T , Miyazaki T , Mizoguchi M , Nagata O , Takakai F , Kagemoto A , Hatano R (2007 ). Falling atmospheric pressure as a trigger for methane ebullition from peatland
.Global Biogeochemical Cycles , 21 , doi:10.1029/2006- GB002790 .
[本文引用: 1]
[36]
van Huissteden J , Maximov TC , Dolman AJ (2005 ). High methane flux from an arctic floodplain (Indigirka lowlands, eastern Siberia)
.Journal of Geophysical Research , 110 , G02002 , doi:10.1029/2005JG000010 .
[本文引用: 3]
[37]
Waddington JM , Roulet NT (1996 ). Atmosphere-wetland carbon exchanges: Scale dependency of CO2 and CH4 exchange on the developmental topography of a peatland
. Global Biogeochemical Cycles , 10, 233 -245 .
[本文引用: 1]
[38]
Walter KM , Zimov SA , Chanton JP , Verbyla D , Chapin FS (2006 ). Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming
.Nature , 443 , 71 -75 .
[本文引用: 1]
[39]
Wang CK , Lu XG , Zhou HR , Cai ZC , Luo Y (2004 ). Studies on methane oxidation by bog soils in Zoigê Plateau
.China Environmental Science , 24 , 646 -649 . (in Chinese with English abstract)
[王长科 , 吕宪国 , 周华荣 , 蔡祖聪 , 罗勇 (2004 ). 若尔盖高原沼泽土壤氧化甲烷的研究
. 中国环境科学 , 24 , 646 -649 .]
[本文引用: 1]
[40]
Wang DX (2010 ). Emission fluxes of carbon dioxide, methane and nitrous oxide from peat marsh in Zoigê Plateau
.Wetland Science , 8 (3 ), 220 -224 . (in Chinese with English abstract)
[王德宣 (2010 ). 若尔盖高原泥炭沼泽二氧化碳、甲烷和氧化亚氮排放通量研究
. 湿地科学 , 8 (3 ), 220 -224 .]
[本文引用: 2]
[41]
Wang DX , Lu XG , Ding WX , Cai ZC , Gao JF , Yang FM (2002 ). Methane emission from marshes in Zoigê Plateau
.Advance in Earth Sciences , 17 , 877 -880 . (in Chinese with English abstract)
[王德宣 , 吕宪国 , 丁维新 , 蔡祖聪 , 高景福 , 杨福明 (2002 ). 若尔盖高原沼泽湿地CH4 排放研究
. 地球科学进展 , 17 , 877 -880 .]
[本文引用: 4]
[42]
Wang ZP , Duan Y , Yang JR , Chen QS , Han XG (2003 ). Spatial distribution of potential CH4 oxidation and production in Zoigê marsh of Qinghai-Tibet Plateau
.Acta Phytoecologica Sinica , 27 , 786 -791 . (in Chinese with English abstract)
[王智平 , 段毅 , 杨居荣 , 陈全胜 , 韩兴国 (2003 ). 青藏高原若尔盖沼泽潜在CH4 氧化与生成的分布特征
. 植物生态学报 , 27 , 786 -791 .]
[本文引用: 9]
[43]
Wei D , Xu R , Tarchen T , Dai DX , Wang YS , Wang YH (2015 ). Revisiting the role of CH4 emissions from alpine wetlands on the Tibetan Plateau: Evidence from two in situ measurements at 4758 and 4320 m above sea level
.Journal of Geophysical Research , 120 , 1741 -1750 .
[44]
West AE , Brooks PD , Fisk MC , Smith LK , Holland EA , Jaeger CH , Babcock S , Lai RS , Schmidt SK (1999 ). Landscape patterns of CH4 fluxes in an alpine tundra ecosystem
.Biogeochemistry , 45 , 243 -264 .
[本文引用: 3]
[45]
Whalen SC , Reeburgh WS (1992 ). Interannual variations in tundra methane emission: A 4-year time series at fixed sites
.Global Biogeochemical Cycles , 6 , 139 -159 .
[46]
Wickland KP , Striegl RG , Schmidt SK , Mast MA (1999 ). Methane flux in subalpine wetland and unsaturated soils in the southern Rocky Mountains
.Global Biogeochemical Cycles , 13 , 101 -113 .
Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere
1
2000
... 然而, 湿地CH4 排放是土壤中CH4 的生成、氧化、传输与释放过程相互作用的结果(Whalen & Reeburgh, 1992 ; Le Mer & Roger, 2001 ; 孙晓新等, 2009 ), 受到一系列因子(包含水位深度、温度、植物和土壤性质等)影响, 使得生长季CH4 排放通量与土壤温度和水位深度的相互关系更加复杂.本研究发现湿地微地貌区(P-hummock、P-hollow和S-hum- mock) CH4 排放通量季节性变化存在极显著差异(p < 0.01), Lawn和S-hollow CH4 排放通量季节变化不显著(p > 0.05).Pearson相关性分析表明整个生长季仅发现常年性淹水P-hummock与土壤温度(5-30 cm)存在显著线性正相关关系(p < 0.05)(表2 ), 这表明土壤温度是影响该微地貌区CH4 排放通量存在显著季节变化的主控因子, 与其他报道的北方湿地CH4 排放与温度显著相关通常局限于常年性淹水湿地(Whalen & Reeburgh, 1992 ; 孙晓新等, 2009 )吻合.但常年性淹水P-hollow没有发现这一规律, 说明还有其他因子影响湿地CH4 排放, 诸如水位深度和植物类型.常年性淹水P-hollow整个生长季水位深度超过土壤地表2 0 cm (图2 ); 另外, 植被类型以沉水植物小眼子菜和狸藻为主要植物群落, 它们不像维管植物通气组织(尤其是莎草科)的传输促进了CH4 从土壤向大气的输送, 进而增加CH4 排放(McEwing et al ., 2015 ), 如P-hummock样点以莎草科植物木里薹草为优势种.这种水位深度和植被类型因子的变化, 可能使湿地土壤-大气CH4 交换方式发生改变.许多研究表明湖泊湿地或泥炭湿地淹水小池塘水-大气界面CH4 交换方式以冒泡式(ebullition)为主(>95%)(Keller & Stallard, 1994 ; Casper et al ., 2000 ), 其CH4 排放通量极高(Keller & Stallard, 1994 ; Mikkelä et al ., 1995 ), 进而影响区域CH4 排放预算(Walter et al ., 2006 ; Tokida et al ., 2007 ), 这可能导致CH4 排放通量与温度或水位深度的关系趋于复杂.例如, 在9月底和10月观测到P-hollow CH4 排放通量的最高值为592.44和327.82 mg·m-2 ·h-1 .在北极圈河流阶地水淹洼地CH4 排放通量的最高值为559 mg·m-2 ·h-1 (van Huissteden et al ., 2005 ).北极圈湖泊解冻后, 冒泡式CH4 排放通量达到300 mg·m-2 ·h-1 (Walter et al ., 2006).S-hummock生长季CH4 排放通量随温度增加而逐渐增加, 7月底出现次峰(图1 ), 秋季水位深度升高(图2 )和凋落物输入, 出现最大峰值, 可能掩盖了温度对CH4 排放的作用.剔除10月份数据后, S-hummock CH4 排放通量与土壤(10-30 cm)温度显著线性正相关(表2 ), 暗示秋季水位深度升高或凋落物输入促进了湿地CH4 排放. ...
Determinants influencing seasonal variations of methane emissions from alpine wetlands in Zoigê Plateau and their implications
4
2008
... 自然湿地是大气CH4 的重要排放源, 年排放量为177-284 Tg (1 Tg = 1012 g), 约占全球CH4 排放量的26%-42% (IPCC, 2013 ), 排放量的不确定, 一是由于不同湿地的CH4 排放存在时空变化格局(Whalen & Reeburgh, 1992 ; Huttunen et al ., 2003 ; Inubushi et al ., 2005 ; Chen et al ., 2008 ; Glagolev et al ., 2011 ; 黄璞祎等, 2011 ; McEwing et al ., 2015 ; Song et al ., 2015 ), 二是因为气候变化(IPCC, 2013 ; Munir & Strack, 2014 ).湿地CH4 排放经由厌氧条件下产CH4 菌生成CH4 和需氧条件下氧化CH4 菌氧化CH4 两种微生物过程, 以扩散、冒泡和植物传输3个过程排放CH4 (Le Mer & Roger, 2001 ; 王智平等, 2003 ; Lai, 2009 ; McEwing et al ., 2015 ).这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... 若尔盖高原(101.60°-103.50° E, 32.33°-34.00° N, 平均海拔为3400 m)泥炭沼泽面积约为4038 km2 , 是我国面积最大的高原泥炭沼泽分布区(王德宣等, 2002 ), 也是青藏高原东部边缘的CH4 排放源(Jin et al ., 1999 ).近10年来, 国内专家研究若尔盖高原泥炭沼泽湿地CH4 排放特征(王德宣等, 2002 ; Ding et al ., 2004 ; Hirota et al ., 2004 ; Chen et al ., 2008 ; 王德宣, 2010 ; 李丽等, 2011 ; Song et al ., 2015 ), 取得了一定的成果, 为理解高原湿地碳循环和CH4 排放机理提供了一定理论基础.然而, 若尔盖高原泥炭沼泽微地貌区(草丘和洼地) CH4 排放的时空变化格局鲜有报道.Wei等(2015)报道了青藏高原两种海拔高度(4758和4320 m)的湿地微地貌区(草丘和洼地) CH4 排放特征, 结果表明其影响因子较多, 存在时间和空间上的差异, 区域CH4 排放量仍存在较大的不确定性, 这将不利于我们深刻理解高原湿地CH4 排放对环境变化和气候变化的响应机制, 以及精确预算我国高原湿地CH4 排放量. ...
... 通过静态箱法(Chen et al ., 2008 ; McEwing et al ., 2015 )采集CH4 .静态箱由底座、中箱(50 cm × 50 cm × 50 cm)和顶箱(50 cm × 50 cm × 50 cm)组成(孙晓新等, 2009 ).常年性淹水P-hollow采用底座、中箱和顶箱测量CH4 气体, 其他微地貌区采用底座和顶箱测量CH4 气体.中箱和顶箱由薄的铝材料制成, 中箱上口四周有5 cm高度的水槽, 防止气体泄露, 为了使箱内温度稳定, 中箱和顶箱外包装塑料泡沫, 顶箱内部有2个5 cm × 5 cm的风扇, 顶箱上部中央附有直径为2 cm的2个橡皮塞小圆孔, 连接快速温室气体分析仪器(Model GGA-24EP, Los Gatos Research, San Jose, USA)的2根附有橡皮塞的透明导气管,长度4 m (内径为4 mm)(Mastepanov et al ., 2008 ; McEwing et al ., 2015 ), 仪器通过12 V蓄电池供电, 数据采集设置为1 Hz (Mastepanov et al ., 2008 ).启动仪器后, 测量CH4 排放通量时, 静态箱与底座水槽密闭后, 密闭箱内空气进入分析仪, 并通过2根透明导气管来回在分析仪器内无损坏地循环分析CH4 浓度变化.每次气体测量之前, 在底座水槽注满水, 启动仪器, 等待仪器启动显示的顶箱内部大气CH4 浓度稳定为当地环境气体CH4 浓度(8.04×10-8 mol·L-1 )时, 将静态箱扣在底座或中箱上, 密闭测量3-5 min, 然后揭开静态箱置于开放状态, 约为2 min, 然后密闭测量下一个静态箱底座, 循环操作以上过程.测量时间为2014年5-10月北京时间9:00-11:30, 观测频率为每月2次.CH4 排放通量是以封闭箱内顶部的CH4 浓度随时间变化的直线斜率计算(Mastepanov et al ., 2008 ; McEwing et al ., 2015 ), 回归方程决定系数R 2 ≥0.90; 当R 2 < 0.90时, 数据不作为CH4 排放通量计算, 其比例为3.8% (包含P-hollow的两个瞬时值过大(592.44和327.82 mg·m-2 ·h-1 ), 尽管R 2 > 0.90).CH4 排放通量的计算公式(孙晓新等, 2009 ; McEwing et al ., 2015 )如下: ...
... 本研究湿地5种微地貌区CH4 排放通量峰值出现在夏季(6-8月)或秋季(9-10月)(图1 ), 与以往研究结果(Dise, 1993 ; Chen et al ., 2008 ; 孙晓新等, 2009 ; 黄璞祎等, 2011 ; Wei et al ., 2015 )一致.夏季CH4 排放通量高的原因可能是夏季温度较高(图2 ), 促进湿地植物的生长、分蘖, 为CH4 产生提供充足的有机底物和传输通道(宋长春等, 2006 ; 孙晓新等, 2009 ; 黄璞祎等, 2011 ); 同时, 土壤微生物活性增强, 加快土壤中氧的消耗, 降低了氧化还原电位, 有利于产CH4 菌的生长(孙晓新等, 2009 ; 黄璞祎等, 2011 ).秋季CH4 排放通量高的原因可能是大量有机碳输入,当年植物生长的根开始分解或凋落物输入增加(孙晓新等, 2009 ; 邓昭衡等, 2015 ), 使可利用活性有机底物增加, 促进产CH4 菌产生CH4 ; 另外, 秋季水位深度增加(图2 ), 湿地土壤厌氧条件增多, 有利于产CH4 菌产生CH4 和减少氧化CH4 菌氧化CH4 (Moore et al ., 1994 ; 黄璞祎等, 2011 ; Wei et al ., 2015 ). ...
Estimation of atmospheric methane emissions between 1996 and 2001 using a three- dimensional global chemical transport model
1
2006
... 甲烷(CH4 )是一种重要的温室气体, 它比CO2 活跃, 其单分子的增温效应为CO2 的28倍(IPCC, 2013 ).由于人类活动的影响, 大气中的CH4 含量已从1750年的0.722 µmol·mol-1 上升到2011年的1.803 µmol·mol-1 , 升高了约2.5倍(IPCC, 2013 ).虽然在1999-2006年大气中的CH4 含量趋于稳定, 但从2007年开始, 大气CH4 含量再次升高(Rigby et al ., 2008 ; Kirschke et al ., 2013 ), 这主要是由于湿地、稻田和生物质燃烧排放的CH4 增加(Chen & Prinn, 2006 ; Kirschke et al ., 2013 ).因此, CH4 的源/汇问题仍是目前研究的热点, 加强CH4 源/汇问题的研究对于认识和预测CH4 在全球气候变暖过程中的作用具有重要意义. ...
Methane and carbon dioxide production in, transport through, and efflux from a peatland [and discussion]
3
1995
... 若尔盖高原湿地5种微地貌区CH4 排放通量大小顺序为: P-hollow > P-hummock > Lawn> S-hollow > S-hummock, 这与其他研究的湿地不同微地貌区CH4 排放通量规律吻合, 即水位深度较高的微地貌区CH4 排放通量较高(Clymo et al ., 1995 ; Kutzbach et al ., 2004 ; Glagolev et al ., 2011 ; Wei et al ., 2015 ).许多研究表明不同湿地生态系统内, 特别是泥炭地微地貌区的CH4 排放通量存在显著的空间变化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ).本研究湖滨湿地的5种微地貌区之间CH4 排放通量的平均值存在显著的空间差异性(表3 ), 变异系数为131%.Pearson相关性分析表明5种微地貌区CH4 排放通量的平均值与水位深度平均值存在极显著的线性正相关关系(表2 ), 表明影响该湖滨湿地微地貌区CH4 排放通量存在空间差异的主控因子是水位深度, 这与其他报道的北方湿地的研究结果(Moore et al ., 1994 ; Ding et al ., 2003 ; Huttunen et al ., 2003 ) 一致.究其原因: 一方面可能是草丘(hummock)的水位深度较低, 产CH4 菌生成的CH4 大部分被氧化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Lai, 2009 ; Wei et al ., 2015 ), 进而减少了CH4 排放; 另一方面, 洼地CH4 排放通量高于草丘, 可能是由于较高水位深度, 产CH4 菌生成CH4 和温度升高后, 促进了CH4 排放(Waddington & Roulet, 1996 ; Lai, 2009 ; Wei et al ., 2015 ), 这表明水位深度在调控湿地CH4 排放通量中发挥着极其重要的作用.如果不考虑这种差异, 可能会低估或高估区域CH4 排放量.例如, P-hollow CH4 排放通量最高, 它是S-hummock CH4 最低排放通量的108倍, Lawn和S-hollow CH4 排放通量倍数相差最小, 也达1.6倍.因此, 研究湿地生态系统内部微地貌区CH4 排放特征具有重要意义, 量化其数值, 进一步通过与高精度分辨率的遥感或地理信息系统数据结合, 将有助于精确地预算若尔盖高原湿地的CH4 排放量. ...
... ; Clymo et al ., 1995 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ).本研究湖滨湿地的5种微地貌区之间CH4 排放通量的平均值存在显著的空间差异性(表3 ), 变异系数为131%.Pearson相关性分析表明5种微地貌区CH4 排放通量的平均值与水位深度平均值存在极显著的线性正相关关系(表2 ), 表明影响该湖滨湿地微地貌区CH4 排放通量存在空间差异的主控因子是水位深度, 这与其他报道的北方湿地的研究结果(Moore et al ., 1994 ; Ding et al ., 2003 ; Huttunen et al ., 2003 ) 一致.究其原因: 一方面可能是草丘(hummock)的水位深度较低, 产CH4 菌生成的CH4 大部分被氧化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Lai, 2009 ; Wei et al ., 2015 ), 进而减少了CH4 排放; 另一方面, 洼地CH4 排放通量高于草丘, 可能是由于较高水位深度, 产CH4 菌生成CH4 和温度升高后, 促进了CH4 排放(Waddington & Roulet, 1996 ; Lai, 2009 ; Wei et al ., 2015 ), 这表明水位深度在调控湿地CH4 排放通量中发挥着极其重要的作用.如果不考虑这种差异, 可能会低估或高估区域CH4 排放量.例如, P-hollow CH4 排放通量最高, 它是S-hummock CH4 最低排放通量的108倍, Lawn和S-hollow CH4 排放通量倍数相差最小, 也达1.6倍.因此, 研究湿地生态系统内部微地貌区CH4 排放特征具有重要意义, 量化其数值, 进一步通过与高精度分辨率的遥感或地理信息系统数据结合, 将有助于精确地预算若尔盖高原湿地的CH4 排放量. ...
... ; Clymo et al ., 1995 ; Lai, 2009 ; Wei et al ., 2015 ), 进而减少了CH4 排放; 另一方面, 洼地CH4 排放通量高于草丘, 可能是由于较高水位深度, 产CH4 菌生成CH4 和温度升高后, 促进了CH4 排放(Waddington & Roulet, 1996 ; Lai, 2009 ; Wei et al ., 2015 ), 这表明水位深度在调控湿地CH4 排放通量中发挥着极其重要的作用.如果不考虑这种差异, 可能会低估或高估区域CH4 排放量.例如, P-hollow CH4 排放通量最高, 它是S-hummock CH4 最低排放通量的108倍, Lawn和S-hollow CH4 排放通量倍数相差最小, 也达1.6倍.因此, 研究湿地生态系统内部微地貌区CH4 排放特征具有重要意义, 量化其数值, 进一步通过与高精度分辨率的遥感或地理信息系统数据结合, 将有助于精确地预算若尔盖高原湿地的CH4 排放量. ...
水分及凋落物对若尔盖泥炭土CH4 排放的影响
1
2015
... 本研究湿地5种微地貌区CH4 排放通量峰值出现在夏季(6-8月)或秋季(9-10月)(图1 ), 与以往研究结果(Dise, 1993 ; Chen et al ., 2008 ; 孙晓新等, 2009 ; 黄璞祎等, 2011 ; Wei et al ., 2015 )一致.夏季CH4 排放通量高的原因可能是夏季温度较高(图2 ), 促进湿地植物的生长、分蘖, 为CH4 产生提供充足的有机底物和传输通道(宋长春等, 2006 ; 孙晓新等, 2009 ; 黄璞祎等, 2011 ); 同时, 土壤微生物活性增强, 加快土壤中氧的消耗, 降低了氧化还原电位, 有利于产CH4 菌的生长(孙晓新等, 2009 ; 黄璞祎等, 2011 ).秋季CH4 排放通量高的原因可能是大量有机碳输入,当年植物生长的根开始分解或凋落物输入增加(孙晓新等, 2009 ; 邓昭衡等, 2015 ), 使可利用活性有机底物增加, 促进产CH4 菌产生CH4 ; 另外, 秋季水位深度增加(图2 ), 湿地土壤厌氧条件增多, 有利于产CH4 菌产生CH4 和减少氧化CH4 菌氧化CH4 (Moore et al ., 1994 ; 黄璞祎等, 2011 ; Wei et al ., 2015 ). ...
沼泽甲烷排放及其主要影响因素
1
2002
... 自然湿地是大气CH4 的重要排放源, 年排放量为177-284 Tg (1 Tg = 1012 g), 约占全球CH4 排放量的26%-42% (IPCC, 2013 ), 排放量的不确定, 一是由于不同湿地的CH4 排放存在时空变化格局(Whalen & Reeburgh, 1992 ; Huttunen et al ., 2003 ; Inubushi et al ., 2005 ; Chen et al ., 2008 ; Glagolev et al ., 2011 ; 黄璞祎等, 2011 ; McEwing et al ., 2015 ; Song et al ., 2015 ), 二是因为气候变化(IPCC, 2013 ; Munir & Strack, 2014 ).湿地CH4 排放经由厌氧条件下产CH4 菌生成CH4 和需氧条件下氧化CH4 菌氧化CH4 两种微生物过程, 以扩散、冒泡和植物传输3个过程排放CH4 (Le Mer & Roger, 2001 ; 王智平等, 2003 ; Lai, 2009 ; McEwing et al ., 2015 ).这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
Key factors affecting spatial variation of methane emissions from freshwater marshes
1
2003
... 若尔盖高原湿地5种微地貌区CH4 排放通量大小顺序为: P-hollow > P-hummock > Lawn> S-hollow > S-hummock, 这与其他研究的湿地不同微地貌区CH4 排放通量规律吻合, 即水位深度较高的微地貌区CH4 排放通量较高(Clymo et al ., 1995 ; Kutzbach et al ., 2004 ; Glagolev et al ., 2011 ; Wei et al ., 2015 ).许多研究表明不同湿地生态系统内, 特别是泥炭地微地貌区的CH4 排放通量存在显著的空间变化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ).本研究湖滨湿地的5种微地貌区之间CH4 排放通量的平均值存在显著的空间差异性(表3 ), 变异系数为131%.Pearson相关性分析表明5种微地貌区CH4 排放通量的平均值与水位深度平均值存在极显著的线性正相关关系(表2 ), 表明影响该湖滨湿地微地貌区CH4 排放通量存在空间差异的主控因子是水位深度, 这与其他报道的北方湿地的研究结果(Moore et al ., 1994 ; Ding et al ., 2003 ; Huttunen et al ., 2003 ) 一致.究其原因: 一方面可能是草丘(hummock)的水位深度较低, 产CH4 菌生成的CH4 大部分被氧化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Lai, 2009 ; Wei et al ., 2015 ), 进而减少了CH4 排放; 另一方面, 洼地CH4 排放通量高于草丘, 可能是由于较高水位深度, 产CH4 菌生成CH4 和温度升高后, 促进了CH4 排放(Waddington & Roulet, 1996 ; Lai, 2009 ; Wei et al ., 2015 ), 这表明水位深度在调控湿地CH4 排放通量中发挥着极其重要的作用.如果不考虑这种差异, 可能会低估或高估区域CH4 排放量.例如, P-hollow CH4 排放通量最高, 它是S-hummock CH4 最低排放通量的108倍, Lawn和S-hollow CH4 排放通量倍数相差最小, 也达1.6倍.因此, 研究湿地生态系统内部微地貌区CH4 排放特征具有重要意义, 量化其数值, 进一步通过与高精度分辨率的遥感或地理信息系统数据结合, 将有助于精确地预算若尔盖高原湿地的CH4 排放量. ...
Preliminary budget of methane emissions from natural wetlands in China
2
2004
... 若尔盖高原(101.60°-103.50° E, 32.33°-34.00° N, 平均海拔为3400 m)泥炭沼泽面积约为4038 km2 , 是我国面积最大的高原泥炭沼泽分布区(王德宣等, 2002 ), 也是青藏高原东部边缘的CH4 排放源(Jin et al ., 1999 ).近10年来, 国内专家研究若尔盖高原泥炭沼泽湿地CH4 排放特征(王德宣等, 2002 ; Ding et al ., 2004 ; Hirota et al ., 2004 ; Chen et al ., 2008 ; 王德宣, 2010 ; 李丽等, 2011 ; Song et al ., 2015 ), 取得了一定的成果, 为理解高原湿地碳循环和CH4 排放机理提供了一定理论基础.然而, 若尔盖高原泥炭沼泽微地貌区(草丘和洼地) CH4 排放的时空变化格局鲜有报道.Wei等(2015)报道了青藏高原两种海拔高度(4758和4320 m)的湿地微地貌区(草丘和洼地) CH4 排放特征, 结果表明其影响因子较多, 存在时间和空间上的差异, 区域CH4 排放量仍存在较大的不确定性, 这将不利于我们深刻理解高原湿地CH4 排放对环境变化和气候变化的响应机制, 以及精确预算我国高原湿地CH4 排放量. ...
... 本研究地点(33.92˚ N, 102.82˚ E, 海拔为3441 m)位于若尔盖湿地自然保护区.若尔盖湿地2008年被列入《湿地公约》的国际重要湿地名录.该地属于寒温带湿润气候, 11月至次年4月受西伯利亚和蒙古的冷空气控制, 5至10月受西南季风控制, 年平均气温为1 ℃, 最暖月7月平均气温为10.7 ℃, 最冷月1月平均气温-10.3 ℃ (王智平等, 2003 ; Ding et al ., 2004 ).年降水量650 mm, 降水集中在6-9月, 相对湿度78% (王智平等, 2003 ). ...
Methane emission from Minnesota peatlands: Spatial and seasonal variability
3
1993
... 自然湿地是大气CH4 的重要排放源, 年排放量为177-284 Tg (1 Tg = 1012 g), 约占全球CH4 排放量的26%-42% (IPCC, 2013 ), 排放量的不确定, 一是由于不同湿地的CH4 排放存在时空变化格局(Whalen & Reeburgh, 1992 ; Huttunen et al ., 2003 ; Inubushi et al ., 2005 ; Chen et al ., 2008 ; Glagolev et al ., 2011 ; 黄璞祎等, 2011 ; McEwing et al ., 2015 ; Song et al ., 2015 ), 二是因为气候变化(IPCC, 2013 ; Munir & Strack, 2014 ).湿地CH4 排放经由厌氧条件下产CH4 菌生成CH4 和需氧条件下氧化CH4 菌氧化CH4 两种微生物过程, 以扩散、冒泡和植物传输3个过程排放CH4 (Le Mer & Roger, 2001 ; 王智平等, 2003 ; Lai, 2009 ; McEwing et al ., 2015 ).这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... 本研究湿地5种微地貌区CH4 排放通量峰值出现在夏季(6-8月)或秋季(9-10月)(图1 ), 与以往研究结果(Dise, 1993 ; Chen et al ., 2008 ; 孙晓新等, 2009 ; 黄璞祎等, 2011 ; Wei et al ., 2015 )一致.夏季CH4 排放通量高的原因可能是夏季温度较高(图2 ), 促进湿地植物的生长、分蘖, 为CH4 产生提供充足的有机底物和传输通道(宋长春等, 2006 ; 孙晓新等, 2009 ; 黄璞祎等, 2011 ); 同时, 土壤微生物活性增强, 加快土壤中氧的消耗, 降低了氧化还原电位, 有利于产CH4 菌的生长(孙晓新等, 2009 ; 黄璞祎等, 2011 ).秋季CH4 排放通量高的原因可能是大量有机碳输入,当年植物生长的根开始分解或凋落物输入增加(孙晓新等, 2009 ; 邓昭衡等, 2015 ), 使可利用活性有机底物增加, 促进产CH4 菌产生CH4 ; 另外, 秋季水位深度增加(图2 ), 湿地土壤厌氧条件增多, 有利于产CH4 菌产生CH4 和减少氧化CH4 菌氧化CH4 (Moore et al ., 1994 ; 黄璞祎等, 2011 ; Wei et al ., 2015 ). ...
Regional methane emission from West Siberia mire landscapes
4
2011
... 自然湿地是大气CH4 的重要排放源, 年排放量为177-284 Tg (1 Tg = 1012 g), 约占全球CH4 排放量的26%-42% (IPCC, 2013 ), 排放量的不确定, 一是由于不同湿地的CH4 排放存在时空变化格局(Whalen & Reeburgh, 1992 ; Huttunen et al ., 2003 ; Inubushi et al ., 2005 ; Chen et al ., 2008 ; Glagolev et al ., 2011 ; 黄璞祎等, 2011 ; McEwing et al ., 2015 ; Song et al ., 2015 ), 二是因为气候变化(IPCC, 2013 ; Munir & Strack, 2014 ).湿地CH4 排放经由厌氧条件下产CH4 菌生成CH4 和需氧条件下氧化CH4 菌氧化CH4 两种微生物过程, 以扩散、冒泡和植物传输3个过程排放CH4 (Le Mer & Roger, 2001 ; 王智平等, 2003 ; Lai, 2009 ; McEwing et al ., 2015 ).这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... 若尔盖高原湿地5种微地貌区CH4 排放通量大小顺序为: P-hollow > P-hummock > Lawn> S-hollow > S-hummock, 这与其他研究的湿地不同微地貌区CH4 排放通量规律吻合, 即水位深度较高的微地貌区CH4 排放通量较高(Clymo et al ., 1995 ; Kutzbach et al ., 2004 ; Glagolev et al ., 2011 ; Wei et al ., 2015 ).许多研究表明不同湿地生态系统内, 特别是泥炭地微地貌区的CH4 排放通量存在显著的空间变化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ).本研究湖滨湿地的5种微地貌区之间CH4 排放通量的平均值存在显著的空间差异性(表3 ), 变异系数为131%.Pearson相关性分析表明5种微地貌区CH4 排放通量的平均值与水位深度平均值存在极显著的线性正相关关系(表2 ), 表明影响该湖滨湿地微地貌区CH4 排放通量存在空间差异的主控因子是水位深度, 这与其他报道的北方湿地的研究结果(Moore et al ., 1994 ; Ding et al ., 2003 ; Huttunen et al ., 2003 ) 一致.究其原因: 一方面可能是草丘(hummock)的水位深度较低, 产CH4 菌生成的CH4 大部分被氧化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Lai, 2009 ; Wei et al ., 2015 ), 进而减少了CH4 排放; 另一方面, 洼地CH4 排放通量高于草丘, 可能是由于较高水位深度, 产CH4 菌生成CH4 和温度升高后, 促进了CH4 排放(Waddington & Roulet, 1996 ; Lai, 2009 ; Wei et al ., 2015 ), 这表明水位深度在调控湿地CH4 排放通量中发挥着极其重要的作用.如果不考虑这种差异, 可能会低估或高估区域CH4 排放量.例如, P-hollow CH4 排放通量最高, 它是S-hummock CH4 最低排放通量的108倍, Lawn和S-hollow CH4 排放通量倍数相差最小, 也达1.6倍.因此, 研究湿地生态系统内部微地貌区CH4 排放特征具有重要意义, 量化其数值, 进一步通过与高精度分辨率的遥感或地理信息系统数据结合, 将有助于精确地预算若尔盖高原湿地的CH4 排放量. ...
... ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ).本研究湖滨湿地的5种微地貌区之间CH4 排放通量的平均值存在显著的空间差异性(表3 ), 变异系数为131%.Pearson相关性分析表明5种微地貌区CH4 排放通量的平均值与水位深度平均值存在极显著的线性正相关关系(表2 ), 表明影响该湖滨湿地微地貌区CH4 排放通量存在空间差异的主控因子是水位深度, 这与其他报道的北方湿地的研究结果(Moore et al ., 1994 ; Ding et al ., 2003 ; Huttunen et al ., 2003 ) 一致.究其原因: 一方面可能是草丘(hummock)的水位深度较低, 产CH4 菌生成的CH4 大部分被氧化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Lai, 2009 ; Wei et al ., 2015 ), 进而减少了CH4 排放; 另一方面, 洼地CH4 排放通量高于草丘, 可能是由于较高水位深度, 产CH4 菌生成CH4 和温度升高后, 促进了CH4 排放(Waddington & Roulet, 1996 ; Lai, 2009 ; Wei et al ., 2015 ), 这表明水位深度在调控湿地CH4 排放通量中发挥着极其重要的作用.如果不考虑这种差异, 可能会低估或高估区域CH4 排放量.例如, P-hollow CH4 排放通量最高, 它是S-hummock CH4 最低排放通量的108倍, Lawn和S-hollow CH4 排放通量倍数相差最小, 也达1.6倍.因此, 研究湿地生态系统内部微地貌区CH4 排放特征具有重要意义, 量化其数值, 进一步通过与高精度分辨率的遥感或地理信息系统数据结合, 将有助于精确地预算若尔盖高原湿地的CH4 排放量. ...
Methane emission from mires of Tomsk oblast in the summer and fall and the problem of spatial and temporal extrapolation of the obtained data
2
2008
... 自然湿地是大气CH4 的重要排放源, 年排放量为177-284 Tg (1 Tg = 1012 g), 约占全球CH4 排放量的26%-42% (IPCC, 2013 ), 排放量的不确定, 一是由于不同湿地的CH4 排放存在时空变化格局(Whalen & Reeburgh, 1992 ; Huttunen et al ., 2003 ; Inubushi et al ., 2005 ; Chen et al ., 2008 ; Glagolev et al ., 2011 ; 黄璞祎等, 2011 ; McEwing et al ., 2015 ; Song et al ., 2015 ), 二是因为气候变化(IPCC, 2013 ; Munir & Strack, 2014 ).湿地CH4 排放经由厌氧条件下产CH4 菌生成CH4 和需氧条件下氧化CH4 菌氧化CH4 两种微生物过程, 以扩散、冒泡和植物传输3个过程排放CH4 (Le Mer & Roger, 2001 ; 王智平等, 2003 ; Lai, 2009 ; McEwing et al ., 2015 ).这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... 若尔盖高原湿地5种微地貌区CH4 排放通量大小顺序为: P-hollow > P-hummock > Lawn> S-hollow > S-hummock, 这与其他研究的湿地不同微地貌区CH4 排放通量规律吻合, 即水位深度较高的微地貌区CH4 排放通量较高(Clymo et al ., 1995 ; Kutzbach et al ., 2004 ; Glagolev et al ., 2011 ; Wei et al ., 2015 ).许多研究表明不同湿地生态系统内, 特别是泥炭地微地貌区的CH4 排放通量存在显著的空间变化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ).本研究湖滨湿地的5种微地貌区之间CH4 排放通量的平均值存在显著的空间差异性(表3 ), 变异系数为131%.Pearson相关性分析表明5种微地貌区CH4 排放通量的平均值与水位深度平均值存在极显著的线性正相关关系(表2 ), 表明影响该湖滨湿地微地貌区CH4 排放通量存在空间差异的主控因子是水位深度, 这与其他报道的北方湿地的研究结果(Moore et al ., 1994 ; Ding et al ., 2003 ; Huttunen et al ., 2003 ) 一致.究其原因: 一方面可能是草丘(hummock)的水位深度较低, 产CH4 菌生成的CH4 大部分被氧化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Lai, 2009 ; Wei et al ., 2015 ), 进而减少了CH4 排放; 另一方面, 洼地CH4 排放通量高于草丘, 可能是由于较高水位深度, 产CH4 菌生成CH4 和温度升高后, 促进了CH4 排放(Waddington & Roulet, 1996 ; Lai, 2009 ; Wei et al ., 2015 ), 这表明水位深度在调控湿地CH4 排放通量中发挥着极其重要的作用.如果不考虑这种差异, 可能会低估或高估区域CH4 排放量.例如, P-hollow CH4 排放通量最高, 它是S-hummock CH4 最低排放通量的108倍, Lawn和S-hollow CH4 排放通量倍数相差最小, 也达1.6倍.因此, 研究湿地生态系统内部微地貌区CH4 排放特征具有重要意义, 量化其数值, 进一步通过与高精度分辨率的遥感或地理信息系统数据结合, 将有助于精确地预算若尔盖高原湿地的CH4 排放量. ...
Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland
3
2004
... 自然湿地是大气CH4 的重要排放源, 年排放量为177-284 Tg (1 Tg = 1012 g), 约占全球CH4 排放量的26%-42% (IPCC, 2013 ), 排放量的不确定, 一是由于不同湿地的CH4 排放存在时空变化格局(Whalen & Reeburgh, 1992 ; Huttunen et al ., 2003 ; Inubushi et al ., 2005 ; Chen et al ., 2008 ; Glagolev et al ., 2011 ; 黄璞祎等, 2011 ; McEwing et al ., 2015 ; Song et al ., 2015 ), 二是因为气候变化(IPCC, 2013 ; Munir & Strack, 2014 ).湿地CH4 排放经由厌氧条件下产CH4 菌生成CH4 和需氧条件下氧化CH4 菌氧化CH4 两种微生物过程, 以扩散、冒泡和植物传输3个过程排放CH4 (Le Mer & Roger, 2001 ; 王智平等, 2003 ; Lai, 2009 ; McEwing et al ., 2015 ).这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... 若尔盖高原(101.60°-103.50° E, 32.33°-34.00° N, 平均海拔为3400 m)泥炭沼泽面积约为4038 km2 , 是我国面积最大的高原泥炭沼泽分布区(王德宣等, 2002 ), 也是青藏高原东部边缘的CH4 排放源(Jin et al ., 1999 ).近10年来, 国内专家研究若尔盖高原泥炭沼泽湿地CH4 排放特征(王德宣等, 2002 ; Ding et al ., 2004 ; Hirota et al ., 2004 ; Chen et al ., 2008 ; 王德宣, 2010 ; 李丽等, 2011 ; Song et al ., 2015 ), 取得了一定的成果, 为理解高原湿地碳循环和CH4 排放机理提供了一定理论基础.然而, 若尔盖高原泥炭沼泽微地貌区(草丘和洼地) CH4 排放的时空变化格局鲜有报道.Wei等(2015)报道了青藏高原两种海拔高度(4758和4320 m)的湿地微地貌区(草丘和洼地) CH4 排放特征, 结果表明其影响因子较多, 存在时间和空间上的差异, 区域CH4 排放量仍存在较大的不确定性, 这将不利于我们深刻理解高原湿地CH4 排放对环境变化和气候变化的响应机制, 以及精确预算我国高原湿地CH4 排放量. ...
... Lawn和S-hollow CH4 排放通量无明显的季节变化, 这可能与该微地貌区水位深度(平均值为-21.6 cm和-21.1 cm)条件下的产CH4 菌和氧化CH4 菌的竞争有关(Hirota et al ., 2004 ; Sun et al ., 2011 ).通常湿地土壤表层CH4 氧化潜力较大(王长科等, 2004 ; Lai, 2009 ), 水位深度下降后, CH4 氧化加强, CH4 排放通量降低, 导致无明显高CH4 排放通量, 可能使得观测期间CH4 排放通量无明显的季节变化(Sun et al ., 2011 ).水位深度下降还导致下层土壤温度增加, 进而促进产CH4 菌生成CH4 , 促进了CH4 排放.在这两种微地貌区观测期间CH4 排放变异系数较大(7.2%-149.3%, 变异系数>40%的比例占75%)(图1 ), 进而推测标准偏差过大可能也使得CH4 排放通量无明显的季节性变化, 这与Mikkelä等(1995)研究发现的北方泥炭地微地貌区小池塘CH4 排放通量无明显日变化格局的结果类似.但是, 这两种微地貌区在夏季或秋季具有较高CH4 排放通量(图1 ), 说明温度、水位深度和凋落物输入对湿地CH4 排放影响较大. ...
扎龙芦苇湿地生长季的甲烷排放通量
5
2011
... 自然湿地是大气CH4 的重要排放源, 年排放量为177-284 Tg (1 Tg = 1012 g), 约占全球CH4 排放量的26%-42% (IPCC, 2013 ), 排放量的不确定, 一是由于不同湿地的CH4 排放存在时空变化格局(Whalen & Reeburgh, 1992 ; Huttunen et al ., 2003 ; Inubushi et al ., 2005 ; Chen et al ., 2008 ; Glagolev et al ., 2011 ; 黄璞祎等, 2011 ; McEwing et al ., 2015 ; Song et al ., 2015 ), 二是因为气候变化(IPCC, 2013 ; Munir & Strack, 2014 ).湿地CH4 排放经由厌氧条件下产CH4 菌生成CH4 和需氧条件下氧化CH4 菌氧化CH4 两种微生物过程, 以扩散、冒泡和植物传输3个过程排放CH4 (Le Mer & Roger, 2001 ; 王智平等, 2003 ; Lai, 2009 ; McEwing et al ., 2015 ).这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... 本研究湿地5种微地貌区CH4 排放通量峰值出现在夏季(6-8月)或秋季(9-10月)(图1 ), 与以往研究结果(Dise, 1993 ; Chen et al ., 2008 ; 孙晓新等, 2009 ; 黄璞祎等, 2011 ; Wei et al ., 2015 )一致.夏季CH4 排放通量高的原因可能是夏季温度较高(图2 ), 促进湿地植物的生长、分蘖, 为CH4 产生提供充足的有机底物和传输通道(宋长春等, 2006 ; 孙晓新等, 2009 ; 黄璞祎等, 2011 ); 同时, 土壤微生物活性增强, 加快土壤中氧的消耗, 降低了氧化还原电位, 有利于产CH4 菌的生长(孙晓新等, 2009 ; 黄璞祎等, 2011 ).秋季CH4 排放通量高的原因可能是大量有机碳输入,当年植物生长的根开始分解或凋落物输入增加(孙晓新等, 2009 ; 邓昭衡等, 2015 ), 使可利用活性有机底物增加, 促进产CH4 菌产生CH4 ; 另外, 秋季水位深度增加(图2 ), 湿地土壤厌氧条件增多, 有利于产CH4 菌产生CH4 和减少氧化CH4 菌氧化CH4 (Moore et al ., 1994 ; 黄璞祎等, 2011 ; Wei et al ., 2015 ). ...
... ; 黄璞祎等, 2011 ); 同时, 土壤微生物活性增强, 加快土壤中氧的消耗, 降低了氧化还原电位, 有利于产CH4 菌的生长(孙晓新等, 2009 ; 黄璞祎等, 2011 ).秋季CH4 排放通量高的原因可能是大量有机碳输入,当年植物生长的根开始分解或凋落物输入增加(孙晓新等, 2009 ; 邓昭衡等, 2015 ), 使可利用活性有机底物增加, 促进产CH4 菌产生CH4 ; 另外, 秋季水位深度增加(图2 ), 湿地土壤厌氧条件增多, 有利于产CH4 菌产生CH4 和减少氧化CH4 菌氧化CH4 (Moore et al ., 1994 ; 黄璞祎等, 2011 ; Wei et al ., 2015 ). ...
... ; 黄璞祎等, 2011 ).秋季CH4 排放通量高的原因可能是大量有机碳输入,当年植物生长的根开始分解或凋落物输入增加(孙晓新等, 2009 ; 邓昭衡等, 2015 ), 使可利用活性有机底物增加, 促进产CH4 菌产生CH4 ; 另外, 秋季水位深度增加(图2 ), 湿地土壤厌氧条件增多, 有利于产CH4 菌产生CH4 和减少氧化CH4 菌氧化CH4 (Moore et al ., 1994 ; 黄璞祎等, 2011 ; Wei et al ., 2015 ). ...
... ; 黄璞祎等, 2011 ; Wei et al ., 2015 ). ...
Methane emissions from natural peatlands in the northern boreal zone in Finland, Fennoscandia
2
2003
... 自然湿地是大气CH4 的重要排放源, 年排放量为177-284 Tg (1 Tg = 1012 g), 约占全球CH4 排放量的26%-42% (IPCC, 2013 ), 排放量的不确定, 一是由于不同湿地的CH4 排放存在时空变化格局(Whalen & Reeburgh, 1992 ; Huttunen et al ., 2003 ; Inubushi et al ., 2005 ; Chen et al ., 2008 ; Glagolev et al ., 2011 ; 黄璞祎等, 2011 ; McEwing et al ., 2015 ; Song et al ., 2015 ), 二是因为气候变化(IPCC, 2013 ; Munir & Strack, 2014 ).湿地CH4 排放经由厌氧条件下产CH4 菌生成CH4 和需氧条件下氧化CH4 菌氧化CH4 两种微生物过程, 以扩散、冒泡和植物传输3个过程排放CH4 (Le Mer & Roger, 2001 ; 王智平等, 2003 ; Lai, 2009 ; McEwing et al ., 2015 ).这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... 若尔盖高原湿地5种微地貌区CH4 排放通量大小顺序为: P-hollow > P-hummock > Lawn> S-hollow > S-hummock, 这与其他研究的湿地不同微地貌区CH4 排放通量规律吻合, 即水位深度较高的微地貌区CH4 排放通量较高(Clymo et al ., 1995 ; Kutzbach et al ., 2004 ; Glagolev et al ., 2011 ; Wei et al ., 2015 ).许多研究表明不同湿地生态系统内, 特别是泥炭地微地貌区的CH4 排放通量存在显著的空间变化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ).本研究湖滨湿地的5种微地貌区之间CH4 排放通量的平均值存在显著的空间差异性(表3 ), 变异系数为131%.Pearson相关性分析表明5种微地貌区CH4 排放通量的平均值与水位深度平均值存在极显著的线性正相关关系(表2 ), 表明影响该湖滨湿地微地貌区CH4 排放通量存在空间差异的主控因子是水位深度, 这与其他报道的北方湿地的研究结果(Moore et al ., 1994 ; Ding et al ., 2003 ; Huttunen et al ., 2003 ) 一致.究其原因: 一方面可能是草丘(hummock)的水位深度较低, 产CH4 菌生成的CH4 大部分被氧化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Lai, 2009 ; Wei et al ., 2015 ), 进而减少了CH4 排放; 另一方面, 洼地CH4 排放通量高于草丘, 可能是由于较高水位深度, 产CH4 菌生成CH4 和温度升高后, 促进了CH4 排放(Waddington & Roulet, 1996 ; Lai, 2009 ; Wei et al ., 2015 ), 这表明水位深度在调控湿地CH4 排放通量中发挥着极其重要的作用.如果不考虑这种差异, 可能会低估或高估区域CH4 排放量.例如, P-hollow CH4 排放通量最高, 它是S-hummock CH4 最低排放通量的108倍, Lawn和S-hollow CH4 排放通量倍数相差最小, 也达1.6倍.因此, 研究湿地生态系统内部微地貌区CH4 排放特征具有重要意义, 量化其数值, 进一步通过与高精度分辨率的遥感或地理信息系统数据结合, 将有助于精确地预算若尔盖高原湿地的CH4 排放量. ...
Factors influencing methane emission from peat soils: Comparison of tropical and temperate wetlands
2
2005
... 自然湿地是大气CH4 的重要排放源, 年排放量为177-284 Tg (1 Tg = 1012 g), 约占全球CH4 排放量的26%-42% (IPCC, 2013 ), 排放量的不确定, 一是由于不同湿地的CH4 排放存在时空变化格局(Whalen & Reeburgh, 1992 ; Huttunen et al ., 2003 ; Inubushi et al ., 2005 ; Chen et al ., 2008 ; Glagolev et al ., 2011 ; 黄璞祎等, 2011 ; McEwing et al ., 2015 ; Song et al ., 2015 ), 二是因为气候变化(IPCC, 2013 ; Munir & Strack, 2014 ).湿地CH4 排放经由厌氧条件下产CH4 菌生成CH4 和需氧条件下氧化CH4 菌氧化CH4 两种微生物过程, 以扩散、冒泡和植物传输3个过程排放CH4 (Le Mer & Roger, 2001 ; 王智平等, 2003 ; Lai, 2009 ; McEwing et al ., 2015 ).这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
5
2013
... 甲烷(CH4 )是一种重要的温室气体, 它比CO2 活跃, 其单分子的增温效应为CO2 的28倍(IPCC, 2013 ).由于人类活动的影响, 大气中的CH4 含量已从1750年的0.722 µmol·mol-1 上升到2011年的1.803 µmol·mol-1 , 升高了约2.5倍(IPCC, 2013 ).虽然在1999-2006年大气中的CH4 含量趋于稳定, 但从2007年开始, 大气CH4 含量再次升高(Rigby et al ., 2008 ; Kirschke et al ., 2013 ), 这主要是由于湿地、稻田和生物质燃烧排放的CH4 增加(Chen & Prinn, 2006 ; Kirschke et al ., 2013 ).因此, CH4 的源/汇问题仍是目前研究的热点, 加强CH4 源/汇问题的研究对于认识和预测CH4 在全球气候变暖过程中的作用具有重要意义. ...
... , 升高了约2.5倍(IPCC, 2013 ).虽然在1999-2006年大气中的CH4 含量趋于稳定, 但从2007年开始, 大气CH4 含量再次升高(Rigby et al ., 2008 ; Kirschke et al ., 2013 ), 这主要是由于湿地、稻田和生物质燃烧排放的CH4 增加(Chen & Prinn, 2006 ; Kirschke et al ., 2013 ).因此, CH4 的源/汇问题仍是目前研究的热点, 加强CH4 源/汇问题的研究对于认识和预测CH4 在全球气候变暖过程中的作用具有重要意义. ...
... 自然湿地是大气CH4 的重要排放源, 年排放量为177-284 Tg (1 Tg = 1012 g), 约占全球CH4 排放量的26%-42% (IPCC, 2013 ), 排放量的不确定, 一是由于不同湿地的CH4 排放存在时空变化格局(Whalen & Reeburgh, 1992 ; Huttunen et al ., 2003 ; Inubushi et al ., 2005 ; Chen et al ., 2008 ; Glagolev et al ., 2011 ; 黄璞祎等, 2011 ; McEwing et al ., 2015 ; Song et al ., 2015 ), 二是因为气候变化(IPCC, 2013 ; Munir & Strack, 2014 ).湿地CH4 排放经由厌氧条件下产CH4 菌生成CH4 和需氧条件下氧化CH4 菌氧化CH4 两种微生物过程, 以扩散、冒泡和植物传输3个过程排放CH4 (Le Mer & Roger, 2001 ; 王智平等, 2003 ; Lai, 2009 ; McEwing et al ., 2015 ).这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... ), 二是因为气候变化(IPCC, 2013 ; Munir & Strack, 2014 ).湿地CH4 排放经由厌氧条件下产CH4 菌生成CH4 和需氧条件下氧化CH4 菌氧化CH4 两种微生物过程, 以扩散、冒泡和植物传输3个过程排放CH4 (Le Mer & Roger, 2001 ; 王智平等, 2003 ; Lai, 2009 ; McEwing et al ., 2015 ).这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... 若尔盖高原(101.60°-103.50° E, 32.33°-34.00° N, 平均海拔为3400 m)泥炭沼泽面积约为4038 km2 , 是我国面积最大的高原泥炭沼泽分布区(王德宣等, 2002 ), 也是青藏高原东部边缘的CH4 排放源(Jin et al ., 1999 ).近10年来, 国内专家研究若尔盖高原泥炭沼泽湿地CH4 排放特征(王德宣等, 2002 ; Ding et al ., 2004 ; Hirota et al ., 2004 ; Chen et al ., 2008 ; 王德宣, 2010 ; 李丽等, 2011 ; Song et al ., 2015 ), 取得了一定的成果, 为理解高原湿地碳循环和CH4 排放机理提供了一定理论基础.然而, 若尔盖高原泥炭沼泽微地貌区(草丘和洼地) CH4 排放的时空变化格局鲜有报道.Wei等(2015)报道了青藏高原两种海拔高度(4758和4320 m)的湿地微地貌区(草丘和洼地) CH4 排放特征, 结果表明其影响因子较多, 存在时间和空间上的差异, 区域CH4 排放量仍存在较大的不确定性, 这将不利于我们深刻理解高原湿地CH4 排放对环境变化和气候变化的响应机制, 以及精确预算我国高原湿地CH4 排放量. ...
Methane emissions from wetlands on the Qinghai-Tibet Plateau
2
1999
... 自然湿地是大气CH4 的重要排放源, 年排放量为177-284 Tg (1 Tg = 1012 g), 约占全球CH4 排放量的26%-42% (IPCC, 2013 ), 排放量的不确定, 一是由于不同湿地的CH4 排放存在时空变化格局(Whalen & Reeburgh, 1992 ; Huttunen et al ., 2003 ; Inubushi et al ., 2005 ; Chen et al ., 2008 ; Glagolev et al ., 2011 ; 黄璞祎等, 2011 ; McEwing et al ., 2015 ; Song et al ., 2015 ), 二是因为气候变化(IPCC, 2013 ; Munir & Strack, 2014 ).湿地CH4 排放经由厌氧条件下产CH4 菌生成CH4 和需氧条件下氧化CH4 菌氧化CH4 两种微生物过程, 以扩散、冒泡和植物传输3个过程排放CH4 (Le Mer & Roger, 2001 ; 王智平等, 2003 ; Lai, 2009 ; McEwing et al ., 2015 ).这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... 若尔盖高原湿地5种微地貌区CH4 排放通量大小顺序为: P-hollow > P-hummock > Lawn> S-hollow > S-hummock, 这与其他研究的湿地不同微地貌区CH4 排放通量规律吻合, 即水位深度较高的微地貌区CH4 排放通量较高(Clymo et al ., 1995 ; Kutzbach et al ., 2004 ; Glagolev et al ., 2011 ; Wei et al ., 2015 ).许多研究表明不同湿地生态系统内, 特别是泥炭地微地貌区的CH4 排放通量存在显著的空间变化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ).本研究湖滨湿地的5种微地貌区之间CH4 排放通量的平均值存在显著的空间差异性(表3 ), 变异系数为131%.Pearson相关性分析表明5种微地貌区CH4 排放通量的平均值与水位深度平均值存在极显著的线性正相关关系(表2 ), 表明影响该湖滨湿地微地貌区CH4 排放通量存在空间差异的主控因子是水位深度, 这与其他报道的北方湿地的研究结果(Moore et al ., 1994 ; Ding et al ., 2003 ; Huttunen et al ., 2003 ) 一致.究其原因: 一方面可能是草丘(hummock)的水位深度较低, 产CH4 菌生成的CH4 大部分被氧化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Lai, 2009 ; Wei et al ., 2015 ), 进而减少了CH4 排放; 另一方面, 洼地CH4 排放通量高于草丘, 可能是由于较高水位深度, 产CH4 菌生成CH4 和温度升高后, 促进了CH4 排放(Waddington & Roulet, 1996 ; Lai, 2009 ; Wei et al ., 2015 ), 这表明水位深度在调控湿地CH4 排放通量中发挥着极其重要的作用.如果不考虑这种差异, 可能会低估或高估区域CH4 排放量.例如, P-hollow CH4 排放通量最高, 它是S-hummock CH4 最低排放通量的108倍, Lawn和S-hollow CH4 排放通量倍数相差最小, 也达1.6倍.因此, 研究湿地生态系统内部微地貌区CH4 排放特征具有重要意义, 量化其数值, 进一步通过与高精度分辨率的遥感或地理信息系统数据结合, 将有助于精确地预算若尔盖高原湿地的CH4 排放量. ...
Methane emission from the oligotrophic bog massif in the Northwestern Russia
2
2009
... 然而, 湿地CH4 排放是土壤中CH4 的生成、氧化、传输与释放过程相互作用的结果(Whalen & Reeburgh, 1992 ; Le Mer & Roger, 2001 ; 孙晓新等, 2009 ), 受到一系列因子(包含水位深度、温度、植物和土壤性质等)影响, 使得生长季CH4 排放通量与土壤温度和水位深度的相互关系更加复杂.本研究发现湿地微地貌区(P-hummock、P-hollow和S-hum- mock) CH4 排放通量季节性变化存在极显著差异(p < 0.01), Lawn和S-hollow CH4 排放通量季节变化不显著(p > 0.05).Pearson相关性分析表明整个生长季仅发现常年性淹水P-hummock与土壤温度(5-30 cm)存在显著线性正相关关系(p < 0.05)(表2 ), 这表明土壤温度是影响该微地貌区CH4 排放通量存在显著季节变化的主控因子, 与其他报道的北方湿地CH4 排放与温度显著相关通常局限于常年性淹水湿地(Whalen & Reeburgh, 1992 ; 孙晓新等, 2009 )吻合.但常年性淹水P-hollow没有发现这一规律, 说明还有其他因子影响湿地CH4 排放, 诸如水位深度和植物类型.常年性淹水P-hollow整个生长季水位深度超过土壤地表2 0 cm (图2 ); 另外, 植被类型以沉水植物小眼子菜和狸藻为主要植物群落, 它们不像维管植物通气组织(尤其是莎草科)的传输促进了CH4 从土壤向大气的输送, 进而增加CH4 排放(McEwing et al ., 2015 ), 如P-hummock样点以莎草科植物木里薹草为优势种.这种水位深度和植被类型因子的变化, 可能使湿地土壤-大气CH4 交换方式发生改变.许多研究表明湖泊湿地或泥炭湿地淹水小池塘水-大气界面CH4 交换方式以冒泡式(ebullition)为主(>95%)(Keller & Stallard, 1994 ; Casper et al ., 2000 ), 其CH4 排放通量极高(Keller & Stallard, 1994 ; Mikkelä et al ., 1995 ), 进而影响区域CH4 排放预算(Walter et al ., 2006 ; Tokida et al ., 2007 ), 这可能导致CH4 排放通量与温度或水位深度的关系趋于复杂.例如, 在9月底和10月观测到P-hollow CH4 排放通量的最高值为592.44和327.82 mg·m-2 ·h-1 .在北极圈河流阶地水淹洼地CH4 排放通量的最高值为559 mg·m-2 ·h-1 (van Huissteden et al ., 2005 ).北极圈湖泊解冻后, 冒泡式CH4 排放通量达到300 mg·m-2 ·h-1 (Walter et al ., 2006).S-hummock生长季CH4 排放通量随温度增加而逐渐增加, 7月底出现次峰(图1 ), 秋季水位深度升高(图2 )和凋落物输入, 出现最大峰值, 可能掩盖了温度对CH4 排放的作用.剔除10月份数据后, S-hummock CH4 排放通量与土壤(10-30 cm)温度显著线性正相关(表2 ), 暗示秋季水位深度升高或凋落物输入促进了湿地CH4 排放. ...
... 排放通量极高(Keller & Stallard, 1994 ; Mikkelä et al ., 1995 ), 进而影响区域CH4 排放预算(Walter et al ., 2006 ; Tokida et al ., 2007 ), 这可能导致CH4 排放通量与温度或水位深度的关系趋于复杂.例如, 在9月底和10月观测到P-hollow CH4 排放通量的最高值为592.44和327.82 mg·m-2 ·h-1 .在北极圈河流阶地水淹洼地CH4 排放通量的最高值为559 mg·m-2 ·h-1 (van Huissteden et al ., 2005 ).北极圈湖泊解冻后, 冒泡式CH4 排放通量达到300 mg·m-2 ·h-1 (Walter et al ., 2006).S-hummock生长季CH4 排放通量随温度增加而逐渐增加, 7月底出现次峰(图1 ), 秋季水位深度升高(图2 )和凋落物输入, 出现最大峰值, 可能掩盖了温度对CH4 排放的作用.剔除10月份数据后, S-hummock CH4 排放通量与土壤(10-30 cm)温度显著线性正相关(表2 ), 暗示秋季水位深度升高或凋落物输入促进了湿地CH4 排放. ...
Methane emission by bubbling from Gatun Lake, Panama
2
1994
... 甲烷(CH4 )是一种重要的温室气体, 它比CO2 活跃, 其单分子的增温效应为CO2 的28倍(IPCC, 2013 ).由于人类活动的影响, 大气中的CH4 含量已从1750年的0.722 µmol·mol-1 上升到2011年的1.803 µmol·mol-1 , 升高了约2.5倍(IPCC, 2013 ).虽然在1999-2006年大气中的CH4 含量趋于稳定, 但从2007年开始, 大气CH4 含量再次升高(Rigby et al ., 2008 ; Kirschke et al ., 2013 ), 这主要是由于湿地、稻田和生物质燃烧排放的CH4 增加(Chen & Prinn, 2006 ; Kirschke et al ., 2013 ).因此, CH4 的源/汇问题仍是目前研究的热点, 加强CH4 源/汇问题的研究对于认识和预测CH4 在全球气候变暖过程中的作用具有重要意义. ...
... ; Kirschke et al ., 2013 ).因此, CH4 的源/汇问题仍是目前研究的热点, 加强CH4 源/汇问题的研究对于认识和预测CH4 在全球气候变暖过程中的作用具有重要意义. ...
Three decades of global methane sources and sinks
1
2013
... 若尔盖高原湿地5种微地貌区CH4 排放通量大小顺序为: P-hollow > P-hummock > Lawn> S-hollow > S-hummock, 这与其他研究的湿地不同微地貌区CH4 排放通量规律吻合, 即水位深度较高的微地貌区CH4 排放通量较高(Clymo et al ., 1995 ; Kutzbach et al ., 2004 ; Glagolev et al ., 2011 ; Wei et al ., 2015 ).许多研究表明不同湿地生态系统内, 特别是泥炭地微地貌区的CH4 排放通量存在显著的空间变化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ).本研究湖滨湿地的5种微地貌区之间CH4 排放通量的平均值存在显著的空间差异性(表3 ), 变异系数为131%.Pearson相关性分析表明5种微地貌区CH4 排放通量的平均值与水位深度平均值存在极显著的线性正相关关系(表2 ), 表明影响该湖滨湿地微地貌区CH4 排放通量存在空间差异的主控因子是水位深度, 这与其他报道的北方湿地的研究结果(Moore et al ., 1994 ; Ding et al ., 2003 ; Huttunen et al ., 2003 ) 一致.究其原因: 一方面可能是草丘(hummock)的水位深度较低, 产CH4 菌生成的CH4 大部分被氧化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Lai, 2009 ; Wei et al ., 2015 ), 进而减少了CH4 排放; 另一方面, 洼地CH4 排放通量高于草丘, 可能是由于较高水位深度, 产CH4 菌生成CH4 和温度升高后, 促进了CH4 排放(Waddington & Roulet, 1996 ; Lai, 2009 ; Wei et al ., 2015 ), 这表明水位深度在调控湿地CH4 排放通量中发挥着极其重要的作用.如果不考虑这种差异, 可能会低估或高估区域CH4 排放量.例如, P-hollow CH4 排放通量最高, 它是S-hummock CH4 最低排放通量的108倍, Lawn和S-hollow CH4 排放通量倍数相差最小, 也达1.6倍.因此, 研究湿地生态系统内部微地貌区CH4 排放特征具有重要意义, 量化其数值, 进一步通过与高精度分辨率的遥感或地理信息系统数据结合, 将有助于精确地预算若尔盖高原湿地的CH4 排放量. ...
Effect of microrelief and vegetation on methane emission from wet polygonal tundra, Lena Delta, Northern Siberia
5
2004
... 自然湿地是大气CH4 的重要排放源, 年排放量为177-284 Tg (1 Tg = 1012 g), 约占全球CH4 排放量的26%-42% (IPCC, 2013 ), 排放量的不确定, 一是由于不同湿地的CH4 排放存在时空变化格局(Whalen & Reeburgh, 1992 ; Huttunen et al ., 2003 ; Inubushi et al ., 2005 ; Chen et al ., 2008 ; Glagolev et al ., 2011 ; 黄璞祎等, 2011 ; McEwing et al ., 2015 ; Song et al ., 2015 ), 二是因为气候变化(IPCC, 2013 ; Munir & Strack, 2014 ).湿地CH4 排放经由厌氧条件下产CH4 菌生成CH4 和需氧条件下氧化CH4 菌氧化CH4 两种微生物过程, 以扩散、冒泡和植物传输3个过程排放CH4 (Le Mer & Roger, 2001 ; 王智平等, 2003 ; Lai, 2009 ; McEwing et al ., 2015 ).这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... Lawn和S-hollow CH4 排放通量无明显的季节变化, 这可能与该微地貌区水位深度(平均值为-21.6 cm和-21.1 cm)条件下的产CH4 菌和氧化CH4 菌的竞争有关(Hirota et al ., 2004 ; Sun et al ., 2011 ).通常湿地土壤表层CH4 氧化潜力较大(王长科等, 2004 ; Lai, 2009 ), 水位深度下降后, CH4 氧化加强, CH4 排放通量降低, 导致无明显高CH4 排放通量, 可能使得观测期间CH4 排放通量无明显的季节变化(Sun et al ., 2011 ).水位深度下降还导致下层土壤温度增加, 进而促进产CH4 菌生成CH4 , 促进了CH4 排放.在这两种微地貌区观测期间CH4 排放变异系数较大(7.2%-149.3%, 变异系数>40%的比例占75%)(图1 ), 进而推测标准偏差过大可能也使得CH4 排放通量无明显的季节性变化, 这与Mikkelä等(1995)研究发现的北方泥炭地微地貌区小池塘CH4 排放通量无明显日变化格局的结果类似.但是, 这两种微地貌区在夏季或秋季具有较高CH4 排放通量(图1 ), 说明温度、水位深度和凋落物输入对湿地CH4 排放影响较大. ...
... 若尔盖高原湿地5种微地貌区CH4 排放通量大小顺序为: P-hollow > P-hummock > Lawn> S-hollow > S-hummock, 这与其他研究的湿地不同微地貌区CH4 排放通量规律吻合, 即水位深度较高的微地貌区CH4 排放通量较高(Clymo et al ., 1995 ; Kutzbach et al ., 2004 ; Glagolev et al ., 2011 ; Wei et al ., 2015 ).许多研究表明不同湿地生态系统内, 特别是泥炭地微地貌区的CH4 排放通量存在显著的空间变化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ).本研究湖滨湿地的5种微地貌区之间CH4 排放通量的平均值存在显著的空间差异性(表3 ), 变异系数为131%.Pearson相关性分析表明5种微地貌区CH4 排放通量的平均值与水位深度平均值存在极显著的线性正相关关系(表2 ), 表明影响该湖滨湿地微地貌区CH4 排放通量存在空间差异的主控因子是水位深度, 这与其他报道的北方湿地的研究结果(Moore et al ., 1994 ; Ding et al ., 2003 ; Huttunen et al ., 2003 ) 一致.究其原因: 一方面可能是草丘(hummock)的水位深度较低, 产CH4 菌生成的CH4 大部分被氧化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Lai, 2009 ; Wei et al ., 2015 ), 进而减少了CH4 排放; 另一方面, 洼地CH4 排放通量高于草丘, 可能是由于较高水位深度, 产CH4 菌生成CH4 和温度升高后, 促进了CH4 排放(Waddington & Roulet, 1996 ; Lai, 2009 ; Wei et al ., 2015 ), 这表明水位深度在调控湿地CH4 排放通量中发挥着极其重要的作用.如果不考虑这种差异, 可能会低估或高估区域CH4 排放量.例如, P-hollow CH4 排放通量最高, 它是S-hummock CH4 最低排放通量的108倍, Lawn和S-hollow CH4 排放通量倍数相差最小, 也达1.6倍.因此, 研究湿地生态系统内部微地貌区CH4 排放特征具有重要意义, 量化其数值, 进一步通过与高精度分辨率的遥感或地理信息系统数据结合, 将有助于精确地预算若尔盖高原湿地的CH4 排放量. ...
... ; Lai, 2009 ; Wei et al ., 2015 ), 这表明水位深度在调控湿地CH4 排放通量中发挥着极其重要的作用.如果不考虑这种差异, 可能会低估或高估区域CH4 排放量.例如, P-hollow CH4 排放通量最高, 它是S-hummock CH4 最低排放通量的108倍, Lawn和S-hollow CH4 排放通量倍数相差最小, 也达1.6倍.因此, 研究湿地生态系统内部微地貌区CH4 排放特征具有重要意义, 量化其数值, 进一步通过与高精度分辨率的遥感或地理信息系统数据结合, 将有助于精确地预算若尔盖高原湿地的CH4 排放量. ...
Methane dynamics in northern peatlands: A review
2
2009
... 自然湿地是大气CH4 的重要排放源, 年排放量为177-284 Tg (1 Tg = 1012 g), 约占全球CH4 排放量的26%-42% (IPCC, 2013 ), 排放量的不确定, 一是由于不同湿地的CH4 排放存在时空变化格局(Whalen & Reeburgh, 1992 ; Huttunen et al ., 2003 ; Inubushi et al ., 2005 ; Chen et al ., 2008 ; Glagolev et al ., 2011 ; 黄璞祎等, 2011 ; McEwing et al ., 2015 ; Song et al ., 2015 ), 二是因为气候变化(IPCC, 2013 ; Munir & Strack, 2014 ).湿地CH4 排放经由厌氧条件下产CH4 菌生成CH4 和需氧条件下氧化CH4 菌氧化CH4 两种微生物过程, 以扩散、冒泡和植物传输3个过程排放CH4 (Le Mer & Roger, 2001 ; 王智平等, 2003 ; Lai, 2009 ; McEwing et al ., 2015 ).这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... 然而, 湿地CH4 排放是土壤中CH4 的生成、氧化、传输与释放过程相互作用的结果(Whalen & Reeburgh, 1992 ; Le Mer & Roger, 2001 ; 孙晓新等, 2009 ), 受到一系列因子(包含水位深度、温度、植物和土壤性质等)影响, 使得生长季CH4 排放通量与土壤温度和水位深度的相互关系更加复杂.本研究发现湿地微地貌区(P-hummock、P-hollow和S-hum- mock) CH4 排放通量季节性变化存在极显著差异(p < 0.01), Lawn和S-hollow CH4 排放通量季节变化不显著(p > 0.05).Pearson相关性分析表明整个生长季仅发现常年性淹水P-hummock与土壤温度(5-30 cm)存在显著线性正相关关系(p < 0.05)(表2 ), 这表明土壤温度是影响该微地貌区CH4 排放通量存在显著季节变化的主控因子, 与其他报道的北方湿地CH4 排放与温度显著相关通常局限于常年性淹水湿地(Whalen & Reeburgh, 1992 ; 孙晓新等, 2009 )吻合.但常年性淹水P-hollow没有发现这一规律, 说明还有其他因子影响湿地CH4 排放, 诸如水位深度和植物类型.常年性淹水P-hollow整个生长季水位深度超过土壤地表2 0 cm (图2 ); 另外, 植被类型以沉水植物小眼子菜和狸藻为主要植物群落, 它们不像维管植物通气组织(尤其是莎草科)的传输促进了CH4 从土壤向大气的输送, 进而增加CH4 排放(McEwing et al ., 2015 ), 如P-hummock样点以莎草科植物木里薹草为优势种.这种水位深度和植被类型因子的变化, 可能使湿地土壤-大气CH4 交换方式发生改变.许多研究表明湖泊湿地或泥炭湿地淹水小池塘水-大气界面CH4 交换方式以冒泡式(ebullition)为主(>95%)(Keller & Stallard, 1994 ; Casper et al ., 2000 ), 其CH4 排放通量极高(Keller & Stallard, 1994 ; Mikkelä et al ., 1995 ), 进而影响区域CH4 排放预算(Walter et al ., 2006 ; Tokida et al ., 2007 ), 这可能导致CH4 排放通量与温度或水位深度的关系趋于复杂.例如, 在9月底和10月观测到P-hollow CH4 排放通量的最高值为592.44和327.82 mg·m-2 ·h-1 .在北极圈河流阶地水淹洼地CH4 排放通量的最高值为559 mg·m-2 ·h-1 (van Huissteden et al ., 2005 ).北极圈湖泊解冻后, 冒泡式CH4 排放通量达到300 mg·m-2 ·h-1 (Walter et al ., 2006).S-hummock生长季CH4 排放通量随温度增加而逐渐增加, 7月底出现次峰(图1 ), 秋季水位深度升高(图2 )和凋落物输入, 出现最大峰值, 可能掩盖了温度对CH4 排放的作用.剔除10月份数据后, S-hummock CH4 排放通量与土壤(10-30 cm)温度显著线性正相关(表2 ), 暗示秋季水位深度升高或凋落物输入促进了湿地CH4 排放. ...
Production, oxidation, emission and consumption of methane by soils: A review
1
2001
... 若尔盖高原(101.60°-103.50° E, 32.33°-34.00° N, 平均海拔为3400 m)泥炭沼泽面积约为4038 km2 , 是我国面积最大的高原泥炭沼泽分布区(王德宣等, 2002 ), 也是青藏高原东部边缘的CH4 排放源(Jin et al ., 1999 ).近10年来, 国内专家研究若尔盖高原泥炭沼泽湿地CH4 排放特征(王德宣等, 2002 ; Ding et al ., 2004 ; Hirota et al ., 2004 ; Chen et al ., 2008 ; 王德宣, 2010 ; 李丽等, 2011 ; Song et al ., 2015 ), 取得了一定的成果, 为理解高原湿地碳循环和CH4 排放机理提供了一定理论基础.然而, 若尔盖高原泥炭沼泽微地貌区(草丘和洼地) CH4 排放的时空变化格局鲜有报道.Wei等(2015)报道了青藏高原两种海拔高度(4758和4320 m)的湿地微地貌区(草丘和洼地) CH4 排放特征, 结果表明其影响因子较多, 存在时间和空间上的差异, 区域CH4 排放量仍存在较大的不确定性, 这将不利于我们深刻理解高原湿地CH4 排放对环境变化和气候变化的响应机制, 以及精确预算我国高原湿地CH4 排放量. ...
地下水位和土壤含水量对若尔盖木里薹草沼泽甲烷排放通量的影响
3
2011
... 通过静态箱法(Chen et al ., 2008 ; McEwing et al ., 2015 )采集CH4 .静态箱由底座、中箱(50 cm × 50 cm × 50 cm)和顶箱(50 cm × 50 cm × 50 cm)组成(孙晓新等, 2009 ).常年性淹水P-hollow采用底座、中箱和顶箱测量CH4 气体, 其他微地貌区采用底座和顶箱测量CH4 气体.中箱和顶箱由薄的铝材料制成, 中箱上口四周有5 cm高度的水槽, 防止气体泄露, 为了使箱内温度稳定, 中箱和顶箱外包装塑料泡沫, 顶箱内部有2个5 cm × 5 cm的风扇, 顶箱上部中央附有直径为2 cm的2个橡皮塞小圆孔, 连接快速温室气体分析仪器(Model GGA-24EP, Los Gatos Research, San Jose, USA)的2根附有橡皮塞的透明导气管,长度4 m (内径为4 mm)(Mastepanov et al ., 2008 ; McEwing et al ., 2015 ), 仪器通过12 V蓄电池供电, 数据采集设置为1 Hz (Mastepanov et al ., 2008 ).启动仪器后, 测量CH4 排放通量时, 静态箱与底座水槽密闭后, 密闭箱内空气进入分析仪, 并通过2根透明导气管来回在分析仪器内无损坏地循环分析CH4 浓度变化.每次气体测量之前, 在底座水槽注满水, 启动仪器, 等待仪器启动显示的顶箱内部大气CH4 浓度稳定为当地环境气体CH4 浓度(8.04×10-8 mol·L-1 )时, 将静态箱扣在底座或中箱上, 密闭测量3-5 min, 然后揭开静态箱置于开放状态, 约为2 min, 然后密闭测量下一个静态箱底座, 循环操作以上过程.测量时间为2014年5-10月北京时间9:00-11:30, 观测频率为每月2次.CH4 排放通量是以封闭箱内顶部的CH4 浓度随时间变化的直线斜率计算(Mastepanov et al ., 2008 ; McEwing et al ., 2015 ), 回归方程决定系数R 2 ≥0.90; 当R 2 < 0.90时, 数据不作为CH4 排放通量计算, 其比例为3.8% (包含P-hollow的两个瞬时值过大(592.44和327.82 mg·m-2 ·h-1 ), 尽管R 2 > 0.90).CH4 排放通量的计算公式(孙晓新等, 2009 ; McEwing et al ., 2015 )如下: ...
... ), 仪器通过12 V蓄电池供电, 数据采集设置为1 Hz (Mastepanov et al ., 2008 ).启动仪器后, 测量CH4 排放通量时, 静态箱与底座水槽密闭后, 密闭箱内空气进入分析仪, 并通过2根透明导气管来回在分析仪器内无损坏地循环分析CH4 浓度变化.每次气体测量之前, 在底座水槽注满水, 启动仪器, 等待仪器启动显示的顶箱内部大气CH4 浓度稳定为当地环境气体CH4 浓度(8.04×10-8 mol·L-1 )时, 将静态箱扣在底座或中箱上, 密闭测量3-5 min, 然后揭开静态箱置于开放状态, 约为2 min, 然后密闭测量下一个静态箱底座, 循环操作以上过程.测量时间为2014年5-10月北京时间9:00-11:30, 观测频率为每月2次.CH4 排放通量是以封闭箱内顶部的CH4 浓度随时间变化的直线斜率计算(Mastepanov et al ., 2008 ; McEwing et al ., 2015 ), 回归方程决定系数R 2 ≥0.90; 当R 2 < 0.90时, 数据不作为CH4 排放通量计算, 其比例为3.8% (包含P-hollow的两个瞬时值过大(592.44和327.82 mg·m-2 ·h-1 ), 尽管R 2 > 0.90).CH4 排放通量的计算公式(孙晓新等, 2009 ; McEwing et al ., 2015 )如下: ...
... 浓度随时间变化的直线斜率计算(Mastepanov et al ., 2008 ; McEwing et al ., 2015 ), 回归方程决定系数R 2 ≥0.90; 当R 2 < 0.90时, 数据不作为CH4 排放通量计算, 其比例为3.8% (包含P-hollow的两个瞬时值过大(592.44和327.82 mg·m-2 ·h-1 ), 尽管R 2 > 0.90).CH4 排放通量的计算公式(孙晓新等, 2009 ; McEwing et al ., 2015 )如下: ...
Large tundra methane burst during onset of freezing
8
2008
... 自然湿地是大气CH4 的重要排放源, 年排放量为177-284 Tg (1 Tg = 1012 g), 约占全球CH4 排放量的26%-42% (IPCC, 2013 ), 排放量的不确定, 一是由于不同湿地的CH4 排放存在时空变化格局(Whalen & Reeburgh, 1992 ; Huttunen et al ., 2003 ; Inubushi et al ., 2005 ; Chen et al ., 2008 ; Glagolev et al ., 2011 ; 黄璞祎等, 2011 ; McEwing et al ., 2015 ; Song et al ., 2015 ), 二是因为气候变化(IPCC, 2013 ; Munir & Strack, 2014 ).湿地CH4 排放经由厌氧条件下产CH4 菌生成CH4 和需氧条件下氧化CH4 菌氧化CH4 两种微生物过程, 以扩散、冒泡和植物传输3个过程排放CH4 (Le Mer & Roger, 2001 ; 王智平等, 2003 ; Lai, 2009 ; McEwing et al ., 2015 ).这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... ; McEwing et al ., 2015 ).这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... 通过静态箱法(Chen et al ., 2008 ; McEwing et al ., 2015 )采集CH4 .静态箱由底座、中箱(50 cm × 50 cm × 50 cm)和顶箱(50 cm × 50 cm × 50 cm)组成(孙晓新等, 2009 ).常年性淹水P-hollow采用底座、中箱和顶箱测量CH4 气体, 其他微地貌区采用底座和顶箱测量CH4 气体.中箱和顶箱由薄的铝材料制成, 中箱上口四周有5 cm高度的水槽, 防止气体泄露, 为了使箱内温度稳定, 中箱和顶箱外包装塑料泡沫, 顶箱内部有2个5 cm × 5 cm的风扇, 顶箱上部中央附有直径为2 cm的2个橡皮塞小圆孔, 连接快速温室气体分析仪器(Model GGA-24EP, Los Gatos Research, San Jose, USA)的2根附有橡皮塞的透明导气管,长度4 m (内径为4 mm)(Mastepanov et al ., 2008 ; McEwing et al ., 2015 ), 仪器通过12 V蓄电池供电, 数据采集设置为1 Hz (Mastepanov et al ., 2008 ).启动仪器后, 测量CH4 排放通量时, 静态箱与底座水槽密闭后, 密闭箱内空气进入分析仪, 并通过2根透明导气管来回在分析仪器内无损坏地循环分析CH4 浓度变化.每次气体测量之前, 在底座水槽注满水, 启动仪器, 等待仪器启动显示的顶箱内部大气CH4 浓度稳定为当地环境气体CH4 浓度(8.04×10-8 mol·L-1 )时, 将静态箱扣在底座或中箱上, 密闭测量3-5 min, 然后揭开静态箱置于开放状态, 约为2 min, 然后密闭测量下一个静态箱底座, 循环操作以上过程.测量时间为2014年5-10月北京时间9:00-11:30, 观测频率为每月2次.CH4 排放通量是以封闭箱内顶部的CH4 浓度随时间变化的直线斜率计算(Mastepanov et al ., 2008 ; McEwing et al ., 2015 ), 回归方程决定系数R 2 ≥0.90; 当R 2 < 0.90时, 数据不作为CH4 排放通量计算, 其比例为3.8% (包含P-hollow的两个瞬时值过大(592.44和327.82 mg·m-2 ·h-1 ), 尽管R 2 > 0.90).CH4 排放通量的计算公式(孙晓新等, 2009 ; McEwing et al ., 2015 )如下: ...
... ; McEwing et al ., 2015 ), 仪器通过12 V蓄电池供电, 数据采集设置为1 Hz (Mastepanov et al ., 2008 ).启动仪器后, 测量CH4 排放通量时, 静态箱与底座水槽密闭后, 密闭箱内空气进入分析仪, 并通过2根透明导气管来回在分析仪器内无损坏地循环分析CH4 浓度变化.每次气体测量之前, 在底座水槽注满水, 启动仪器, 等待仪器启动显示的顶箱内部大气CH4 浓度稳定为当地环境气体CH4 浓度(8.04×10-8 mol·L-1 )时, 将静态箱扣在底座或中箱上, 密闭测量3-5 min, 然后揭开静态箱置于开放状态, 约为2 min, 然后密闭测量下一个静态箱底座, 循环操作以上过程.测量时间为2014年5-10月北京时间9:00-11:30, 观测频率为每月2次.CH4 排放通量是以封闭箱内顶部的CH4 浓度随时间变化的直线斜率计算(Mastepanov et al ., 2008 ; McEwing et al ., 2015 ), 回归方程决定系数R 2 ≥0.90; 当R 2 < 0.90时, 数据不作为CH4 排放通量计算, 其比例为3.8% (包含P-hollow的两个瞬时值过大(592.44和327.82 mg·m-2 ·h-1 ), 尽管R 2 > 0.90).CH4 排放通量的计算公式(孙晓新等, 2009 ; McEwing et al ., 2015 )如下: ...
... ; McEwing et al ., 2015 ), 回归方程决定系数R 2 ≥0.90; 当R 2 < 0.90时, 数据不作为CH4 排放通量计算, 其比例为3.8% (包含P-hollow的两个瞬时值过大(592.44和327.82 mg·m-2 ·h-1 ), 尽管R 2 > 0.90).CH4 排放通量的计算公式(孙晓新等, 2009 ; McEwing et al ., 2015 )如下: ...
... ; McEwing et al ., 2015 )如下: ...
... 然而, 湿地CH4 排放是土壤中CH4 的生成、氧化、传输与释放过程相互作用的结果(Whalen & Reeburgh, 1992 ; Le Mer & Roger, 2001 ; 孙晓新等, 2009 ), 受到一系列因子(包含水位深度、温度、植物和土壤性质等)影响, 使得生长季CH4 排放通量与土壤温度和水位深度的相互关系更加复杂.本研究发现湿地微地貌区(P-hummock、P-hollow和S-hum- mock) CH4 排放通量季节性变化存在极显著差异(p < 0.01), Lawn和S-hollow CH4 排放通量季节变化不显著(p > 0.05).Pearson相关性分析表明整个生长季仅发现常年性淹水P-hummock与土壤温度(5-30 cm)存在显著线性正相关关系(p < 0.05)(表2 ), 这表明土壤温度是影响该微地貌区CH4 排放通量存在显著季节变化的主控因子, 与其他报道的北方湿地CH4 排放与温度显著相关通常局限于常年性淹水湿地(Whalen & Reeburgh, 1992 ; 孙晓新等, 2009 )吻合.但常年性淹水P-hollow没有发现这一规律, 说明还有其他因子影响湿地CH4 排放, 诸如水位深度和植物类型.常年性淹水P-hollow整个生长季水位深度超过土壤地表2 0 cm (图2 ); 另外, 植被类型以沉水植物小眼子菜和狸藻为主要植物群落, 它们不像维管植物通气组织(尤其是莎草科)的传输促进了CH4 从土壤向大气的输送, 进而增加CH4 排放(McEwing et al ., 2015 ), 如P-hummock样点以莎草科植物木里薹草为优势种.这种水位深度和植被类型因子的变化, 可能使湿地土壤-大气CH4 交换方式发生改变.许多研究表明湖泊湿地或泥炭湿地淹水小池塘水-大气界面CH4 交换方式以冒泡式(ebullition)为主(>95%)(Keller & Stallard, 1994 ; Casper et al ., 2000 ), 其CH4 排放通量极高(Keller & Stallard, 1994 ; Mikkelä et al ., 1995 ), 进而影响区域CH4 排放预算(Walter et al ., 2006 ; Tokida et al ., 2007 ), 这可能导致CH4 排放通量与温度或水位深度的关系趋于复杂.例如, 在9月底和10月观测到P-hollow CH4 排放通量的最高值为592.44和327.82 mg·m-2 ·h-1 .在北极圈河流阶地水淹洼地CH4 排放通量的最高值为559 mg·m-2 ·h-1 (van Huissteden et al ., 2005 ).北极圈湖泊解冻后, 冒泡式CH4 排放通量达到300 mg·m-2 ·h-1 (Walter et al ., 2006).S-hummock生长季CH4 排放通量随温度增加而逐渐增加, 7月底出现次峰(图1 ), 秋季水位深度升高(图2 )和凋落物输入, 出现最大峰值, 可能掩盖了温度对CH4 排放的作用.剔除10月份数据后, S-hummock CH4 排放通量与土壤(10-30 cm)温度显著线性正相关(表2 ), 暗示秋季水位深度升高或凋落物输入促进了湿地CH4 排放. ...
Environmental and vegetation controls on the spatial variability of CH4 emission from wet-sedge and tussock tundra ecosystems in the Arctic
4
2015
... 自然湿地是大气CH4 的重要排放源, 年排放量为177-284 Tg (1 Tg = 1012 g), 约占全球CH4 排放量的26%-42% (IPCC, 2013 ), 排放量的不确定, 一是由于不同湿地的CH4 排放存在时空变化格局(Whalen & Reeburgh, 1992 ; Huttunen et al ., 2003 ; Inubushi et al ., 2005 ; Chen et al ., 2008 ; Glagolev et al ., 2011 ; 黄璞祎等, 2011 ; McEwing et al ., 2015 ; Song et al ., 2015 ), 二是因为气候变化(IPCC, 2013 ; Munir & Strack, 2014 ).湿地CH4 排放经由厌氧条件下产CH4 菌生成CH4 和需氧条件下氧化CH4 菌氧化CH4 两种微生物过程, 以扩散、冒泡和植物传输3个过程排放CH4 (Le Mer & Roger, 2001 ; 王智平等, 2003 ; Lai, 2009 ; McEwing et al ., 2015 ).这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... 然而, 湿地CH4 排放是土壤中CH4 的生成、氧化、传输与释放过程相互作用的结果(Whalen & Reeburgh, 1992 ; Le Mer & Roger, 2001 ; 孙晓新等, 2009 ), 受到一系列因子(包含水位深度、温度、植物和土壤性质等)影响, 使得生长季CH4 排放通量与土壤温度和水位深度的相互关系更加复杂.本研究发现湿地微地貌区(P-hummock、P-hollow和S-hum- mock) CH4 排放通量季节性变化存在极显著差异(p < 0.01), Lawn和S-hollow CH4 排放通量季节变化不显著(p > 0.05).Pearson相关性分析表明整个生长季仅发现常年性淹水P-hummock与土壤温度(5-30 cm)存在显著线性正相关关系(p < 0.05)(表2 ), 这表明土壤温度是影响该微地貌区CH4 排放通量存在显著季节变化的主控因子, 与其他报道的北方湿地CH4 排放与温度显著相关通常局限于常年性淹水湿地(Whalen & Reeburgh, 1992 ; 孙晓新等, 2009 )吻合.但常年性淹水P-hollow没有发现这一规律, 说明还有其他因子影响湿地CH4 排放, 诸如水位深度和植物类型.常年性淹水P-hollow整个生长季水位深度超过土壤地表2 0 cm (图2 ); 另外, 植被类型以沉水植物小眼子菜和狸藻为主要植物群落, 它们不像维管植物通气组织(尤其是莎草科)的传输促进了CH4 从土壤向大气的输送, 进而增加CH4 排放(McEwing et al ., 2015 ), 如P-hummock样点以莎草科植物木里薹草为优势种.这种水位深度和植被类型因子的变化, 可能使湿地土壤-大气CH4 交换方式发生改变.许多研究表明湖泊湿地或泥炭湿地淹水小池塘水-大气界面CH4 交换方式以冒泡式(ebullition)为主(>95%)(Keller & Stallard, 1994 ; Casper et al ., 2000 ), 其CH4 排放通量极高(Keller & Stallard, 1994 ; Mikkelä et al ., 1995 ), 进而影响区域CH4 排放预算(Walter et al ., 2006 ; Tokida et al ., 2007 ), 这可能导致CH4 排放通量与温度或水位深度的关系趋于复杂.例如, 在9月底和10月观测到P-hollow CH4 排放通量的最高值为592.44和327.82 mg·m-2 ·h-1 .在北极圈河流阶地水淹洼地CH4 排放通量的最高值为559 mg·m-2 ·h-1 (van Huissteden et al ., 2005 ).北极圈湖泊解冻后, 冒泡式CH4 排放通量达到300 mg·m-2 ·h-1 (Walter et al ., 2006).S-hummock生长季CH4 排放通量随温度增加而逐渐增加, 7月底出现次峰(图1 ), 秋季水位深度升高(图2 )和凋落物输入, 出现最大峰值, 可能掩盖了温度对CH4 排放的作用.剔除10月份数据后, S-hummock CH4 排放通量与土壤(10-30 cm)温度显著线性正相关(表2 ), 暗示秋季水位深度升高或凋落物输入促进了湿地CH4 排放. ...
... 若尔盖高原湿地5种微地貌区CH4 排放通量大小顺序为: P-hollow > P-hummock > Lawn> S-hollow > S-hummock, 这与其他研究的湿地不同微地貌区CH4 排放通量规律吻合, 即水位深度较高的微地貌区CH4 排放通量较高(Clymo et al ., 1995 ; Kutzbach et al ., 2004 ; Glagolev et al ., 2011 ; Wei et al ., 2015 ).许多研究表明不同湿地生态系统内, 特别是泥炭地微地貌区的CH4 排放通量存在显著的空间变化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ).本研究湖滨湿地的5种微地貌区之间CH4 排放通量的平均值存在显著的空间差异性(表3 ), 变异系数为131%.Pearson相关性分析表明5种微地貌区CH4 排放通量的平均值与水位深度平均值存在极显著的线性正相关关系(表2 ), 表明影响该湖滨湿地微地貌区CH4 排放通量存在空间差异的主控因子是水位深度, 这与其他报道的北方湿地的研究结果(Moore et al ., 1994 ; Ding et al ., 2003 ; Huttunen et al ., 2003 ) 一致.究其原因: 一方面可能是草丘(hummock)的水位深度较低, 产CH4 菌生成的CH4 大部分被氧化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Lai, 2009 ; Wei et al ., 2015 ), 进而减少了CH4 排放; 另一方面, 洼地CH4 排放通量高于草丘, 可能是由于较高水位深度, 产CH4 菌生成CH4 和温度升高后, 促进了CH4 排放(Waddington & Roulet, 1996 ; Lai, 2009 ; Wei et al ., 2015 ), 这表明水位深度在调控湿地CH4 排放通量中发挥着极其重要的作用.如果不考虑这种差异, 可能会低估或高估区域CH4 排放量.例如, P-hollow CH4 排放通量最高, 它是S-hummock CH4 最低排放通量的108倍, Lawn和S-hollow CH4 排放通量倍数相差最小, 也达1.6倍.因此, 研究湿地生态系统内部微地貌区CH4 排放特征具有重要意义, 量化其数值, 进一步通过与高精度分辨率的遥感或地理信息系统数据结合, 将有助于精确地预算若尔盖高原湿地的CH4 排放量. ...
Diurnal variation in methane emission in relation to the water table, soil temperature, climate and vegetation cover in a Swedish acid mire
4
1995
... 本研究湿地5种微地貌区CH4 排放通量峰值出现在夏季(6-8月)或秋季(9-10月)(图1 ), 与以往研究结果(Dise, 1993 ; Chen et al ., 2008 ; 孙晓新等, 2009 ; 黄璞祎等, 2011 ; Wei et al ., 2015 )一致.夏季CH4 排放通量高的原因可能是夏季温度较高(图2 ), 促进湿地植物的生长、分蘖, 为CH4 产生提供充足的有机底物和传输通道(宋长春等, 2006 ; 孙晓新等, 2009 ; 黄璞祎等, 2011 ); 同时, 土壤微生物活性增强, 加快土壤中氧的消耗, 降低了氧化还原电位, 有利于产CH4 菌的生长(孙晓新等, 2009 ; 黄璞祎等, 2011 ).秋季CH4 排放通量高的原因可能是大量有机碳输入,当年植物生长的根开始分解或凋落物输入增加(孙晓新等, 2009 ; 邓昭衡等, 2015 ), 使可利用活性有机底物增加, 促进产CH4 菌产生CH4 ; 另外, 秋季水位深度增加(图2 ), 湿地土壤厌氧条件增多, 有利于产CH4 菌产生CH4 和减少氧化CH4 菌氧化CH4 (Moore et al ., 1994 ; 黄璞祎等, 2011 ; Wei et al ., 2015 ). ...
... 若尔盖高原湿地5种微地貌区CH4 排放通量大小顺序为: P-hollow > P-hummock > Lawn> S-hollow > S-hummock, 这与其他研究的湿地不同微地貌区CH4 排放通量规律吻合, 即水位深度较高的微地貌区CH4 排放通量较高(Clymo et al ., 1995 ; Kutzbach et al ., 2004 ; Glagolev et al ., 2011 ; Wei et al ., 2015 ).许多研究表明不同湿地生态系统内, 特别是泥炭地微地貌区的CH4 排放通量存在显著的空间变化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ).本研究湖滨湿地的5种微地貌区之间CH4 排放通量的平均值存在显著的空间差异性(表3 ), 变异系数为131%.Pearson相关性分析表明5种微地貌区CH4 排放通量的平均值与水位深度平均值存在极显著的线性正相关关系(表2 ), 表明影响该湖滨湿地微地貌区CH4 排放通量存在空间差异的主控因子是水位深度, 这与其他报道的北方湿地的研究结果(Moore et al ., 1994 ; Ding et al ., 2003 ; Huttunen et al ., 2003 ) 一致.究其原因: 一方面可能是草丘(hummock)的水位深度较低, 产CH4 菌生成的CH4 大部分被氧化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Lai, 2009 ; Wei et al ., 2015 ), 进而减少了CH4 排放; 另一方面, 洼地CH4 排放通量高于草丘, 可能是由于较高水位深度, 产CH4 菌生成CH4 和温度升高后, 促进了CH4 排放(Waddington & Roulet, 1996 ; Lai, 2009 ; Wei et al ., 2015 ), 这表明水位深度在调控湿地CH4 排放通量中发挥着极其重要的作用.如果不考虑这种差异, 可能会低估或高估区域CH4 排放量.例如, P-hollow CH4 排放通量最高, 它是S-hummock CH4 最低排放通量的108倍, Lawn和S-hollow CH4 排放通量倍数相差最小, 也达1.6倍.因此, 研究湿地生态系统内部微地貌区CH4 排放特征具有重要意义, 量化其数值, 进一步通过与高精度分辨率的遥感或地理信息系统数据结合, 将有助于精确地预算若尔盖高原湿地的CH4 排放量. ...
... 排放通量存在空间差异的主控因子是水位深度, 这与其他报道的北方湿地的研究结果(Moore et al ., 1994 ; Ding et al ., 2003 ; Huttunen et al ., 2003 ) 一致.究其原因: 一方面可能是草丘(hummock)的水位深度较低, 产CH4 菌生成的CH4 大部分被氧化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Lai, 2009 ; Wei et al ., 2015 ), 进而减少了CH4 排放; 另一方面, 洼地CH4 排放通量高于草丘, 可能是由于较高水位深度, 产CH4 菌生成CH4 和温度升高后, 促进了CH4 排放(Waddington & Roulet, 1996 ; Lai, 2009 ; Wei et al ., 2015 ), 这表明水位深度在调控湿地CH4 排放通量中发挥着极其重要的作用.如果不考虑这种差异, 可能会低估或高估区域CH4 排放量.例如, P-hollow CH4 排放通量最高, 它是S-hummock CH4 最低排放通量的108倍, Lawn和S-hollow CH4 排放通量倍数相差最小, 也达1.6倍.因此, 研究湿地生态系统内部微地貌区CH4 排放特征具有重要意义, 量化其数值, 进一步通过与高精度分辨率的遥感或地理信息系统数据结合, 将有助于精确地预算若尔盖高原湿地的CH4 排放量. ...
... 大部分被氧化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Lai, 2009 ; Wei et al ., 2015 ), 进而减少了CH4 排放; 另一方面, 洼地CH4 排放通量高于草丘, 可能是由于较高水位深度, 产CH4 菌生成CH4 和温度升高后, 促进了CH4 排放(Waddington & Roulet, 1996 ; Lai, 2009 ; Wei et al ., 2015 ), 这表明水位深度在调控湿地CH4 排放通量中发挥着极其重要的作用.如果不考虑这种差异, 可能会低估或高估区域CH4 排放量.例如, P-hollow CH4 排放通量最高, 它是S-hummock CH4 最低排放通量的108倍, Lawn和S-hollow CH4 排放通量倍数相差最小, 也达1.6倍.因此, 研究湿地生态系统内部微地貌区CH4 排放特征具有重要意义, 量化其数值, 进一步通过与高精度分辨率的遥感或地理信息系统数据结合, 将有助于精确地预算若尔盖高原湿地的CH4 排放量. ...
Methane emissions from wetlands, southern Hudson Bay lowland
4
1994
... 自然湿地是大气CH4 的重要排放源, 年排放量为177-284 Tg (1 Tg = 1012 g), 约占全球CH4 排放量的26%-42% (IPCC, 2013 ), 排放量的不确定, 一是由于不同湿地的CH4 排放存在时空变化格局(Whalen & Reeburgh, 1992 ; Huttunen et al ., 2003 ; Inubushi et al ., 2005 ; Chen et al ., 2008 ; Glagolev et al ., 2011 ; 黄璞祎等, 2011 ; McEwing et al ., 2015 ; Song et al ., 2015 ), 二是因为气候变化(IPCC, 2013 ; Munir & Strack, 2014 ).湿地CH4 排放经由厌氧条件下产CH4 菌生成CH4 和需氧条件下氧化CH4 菌氧化CH4 两种微生物过程, 以扩散、冒泡和植物传输3个过程排放CH4 (Le Mer & Roger, 2001 ; 王智平等, 2003 ; Lai, 2009 ; McEwing et al ., 2015 ).这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... 若尔盖高原湿地5种微地貌区CH4 排放通量大小顺序为: P-hollow > P-hummock > Lawn> S-hollow > S-hummock, 这与其他研究的湿地不同微地貌区CH4 排放通量规律吻合, 即水位深度较高的微地貌区CH4 排放通量较高(Clymo et al ., 1995 ; Kutzbach et al ., 2004 ; Glagolev et al ., 2011 ; Wei et al ., 2015 ).许多研究表明不同湿地生态系统内, 特别是泥炭地微地貌区的CH4 排放通量存在显著的空间变化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ).本研究湖滨湿地的5种微地貌区之间CH4 排放通量的平均值存在显著的空间差异性(表3 ), 变异系数为131%.Pearson相关性分析表明5种微地貌区CH4 排放通量的平均值与水位深度平均值存在极显著的线性正相关关系(表2 ), 表明影响该湖滨湿地微地貌区CH4 排放通量存在空间差异的主控因子是水位深度, 这与其他报道的北方湿地的研究结果(Moore et al ., 1994 ; Ding et al ., 2003 ; Huttunen et al ., 2003 ) 一致.究其原因: 一方面可能是草丘(hummock)的水位深度较低, 产CH4 菌生成的CH4 大部分被氧化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Lai, 2009 ; Wei et al ., 2015 ), 进而减少了CH4 排放; 另一方面, 洼地CH4 排放通量高于草丘, 可能是由于较高水位深度, 产CH4 菌生成CH4 和温度升高后, 促进了CH4 排放(Waddington & Roulet, 1996 ; Lai, 2009 ; Wei et al ., 2015 ), 这表明水位深度在调控湿地CH4 排放通量中发挥着极其重要的作用.如果不考虑这种差异, 可能会低估或高估区域CH4 排放量.例如, P-hollow CH4 排放通量最高, 它是S-hummock CH4 最低排放通量的108倍, Lawn和S-hollow CH4 排放通量倍数相差最小, 也达1.6倍.因此, 研究湿地生态系统内部微地貌区CH4 排放特征具有重要意义, 量化其数值, 进一步通过与高精度分辨率的遥感或地理信息系统数据结合, 将有助于精确地预算若尔盖高原湿地的CH4 排放量. ...
Methane flux influenced by experimental water table drawdown and soil warming in a dry boreal continental bog
1
2014
... 甲烷(CH4 )是一种重要的温室气体, 它比CO2 活跃, 其单分子的增温效应为CO2 的28倍(IPCC, 2013 ).由于人类活动的影响, 大气中的CH4 含量已从1750年的0.722 µmol·mol-1 上升到2011年的1.803 µmol·mol-1 , 升高了约2.5倍(IPCC, 2013 ).虽然在1999-2006年大气中的CH4 含量趋于稳定, 但从2007年开始, 大气CH4 含量再次升高(Rigby et al ., 2008 ; Kirschke et al ., 2013 ), 这主要是由于湿地、稻田和生物质燃烧排放的CH4 增加(Chen & Prinn, 2006 ; Kirschke et al ., 2013 ).因此, CH4 的源/汇问题仍是目前研究的热点, 加强CH4 源/汇问题的研究对于认识和预测CH4 在全球气候变暖过程中的作用具有重要意义. ...
Renewed growth of atmospheric methane
1
2008
... 本研究湿地5种微地貌区CH4 排放通量峰值出现在夏季(6-8月)或秋季(9-10月)(图1 ), 与以往研究结果(Dise, 1993 ; Chen et al ., 2008 ; 孙晓新等, 2009 ; 黄璞祎等, 2011 ; Wei et al ., 2015 )一致.夏季CH4 排放通量高的原因可能是夏季温度较高(图2 ), 促进湿地植物的生长、分蘖, 为CH4 产生提供充足的有机底物和传输通道(宋长春等, 2006 ; 孙晓新等, 2009 ; 黄璞祎等, 2011 ); 同时, 土壤微生物活性增强, 加快土壤中氧的消耗, 降低了氧化还原电位, 有利于产CH4 菌的生长(孙晓新等, 2009 ; 黄璞祎等, 2011 ).秋季CH4 排放通量高的原因可能是大量有机碳输入,当年植物生长的根开始分解或凋落物输入增加(孙晓新等, 2009 ; 邓昭衡等, 2015 ), 使可利用活性有机底物增加, 促进产CH4 菌产生CH4 ; 另外, 秋季水位深度增加(图2 ), 湿地土壤厌氧条件增多, 有利于产CH4 菌产生CH4 和减少氧化CH4 菌氧化CH4 (Moore et al ., 1994 ; 黄璞祎等, 2011 ; Wei et al ., 2015 ). ...
淡水沼泽湿地CO2 、CH4 和N2 O排放通量年际变化及其对氮输入的响应
3
2006
... 自然湿地是大气CH4 的重要排放源, 年排放量为177-284 Tg (1 Tg = 1012 g), 约占全球CH4 排放量的26%-42% (IPCC, 2013 ), 排放量的不确定, 一是由于不同湿地的CH4 排放存在时空变化格局(Whalen & Reeburgh, 1992 ; Huttunen et al ., 2003 ; Inubushi et al ., 2005 ; Chen et al ., 2008 ; Glagolev et al ., 2011 ; 黄璞祎等, 2011 ; McEwing et al ., 2015 ; Song et al ., 2015 ), 二是因为气候变化(IPCC, 2013 ; Munir & Strack, 2014 ).湿地CH4 排放经由厌氧条件下产CH4 菌生成CH4 和需氧条件下氧化CH4 菌氧化CH4 两种微生物过程, 以扩散、冒泡和植物传输3个过程排放CH4 (Le Mer & Roger, 2001 ; 王智平等, 2003 ; Lai, 2009 ; McEwing et al ., 2015 ).这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... 若尔盖高原(101.60°-103.50° E, 32.33°-34.00° N, 平均海拔为3400 m)泥炭沼泽面积约为4038 km2 , 是我国面积最大的高原泥炭沼泽分布区(王德宣等, 2002 ), 也是青藏高原东部边缘的CH4 排放源(Jin et al ., 1999 ).近10年来, 国内专家研究若尔盖高原泥炭沼泽湿地CH4 排放特征(王德宣等, 2002 ; Ding et al ., 2004 ; Hirota et al ., 2004 ; Chen et al ., 2008 ; 王德宣, 2010 ; 李丽等, 2011 ; Song et al ., 2015 ), 取得了一定的成果, 为理解高原湿地碳循环和CH4 排放机理提供了一定理论基础.然而, 若尔盖高原泥炭沼泽微地貌区(草丘和洼地) CH4 排放的时空变化格局鲜有报道.Wei等(2015)报道了青藏高原两种海拔高度(4758和4320 m)的湿地微地貌区(草丘和洼地) CH4 排放特征, 结果表明其影响因子较多, 存在时间和空间上的差异, 区域CH4 排放量仍存在较大的不确定性, 这将不利于我们深刻理解高原湿地CH4 排放对环境变化和气候变化的响应机制, 以及精确预算我国高原湿地CH4 排放量. ...
Methane emissions from an alpine wetland on the Tibetan Plateau: Neglected but vital contribution of the nongrowing season
8
2015
... 通过静态箱法(Chen et al ., 2008 ; McEwing et al ., 2015 )采集CH4 .静态箱由底座、中箱(50 cm × 50 cm × 50 cm)和顶箱(50 cm × 50 cm × 50 cm)组成(孙晓新等, 2009 ).常年性淹水P-hollow采用底座、中箱和顶箱测量CH4 气体, 其他微地貌区采用底座和顶箱测量CH4 气体.中箱和顶箱由薄的铝材料制成, 中箱上口四周有5 cm高度的水槽, 防止气体泄露, 为了使箱内温度稳定, 中箱和顶箱外包装塑料泡沫, 顶箱内部有2个5 cm × 5 cm的风扇, 顶箱上部中央附有直径为2 cm的2个橡皮塞小圆孔, 连接快速温室气体分析仪器(Model GGA-24EP, Los Gatos Research, San Jose, USA)的2根附有橡皮塞的透明导气管,长度4 m (内径为4 mm)(Mastepanov et al ., 2008 ; McEwing et al ., 2015 ), 仪器通过12 V蓄电池供电, 数据采集设置为1 Hz (Mastepanov et al ., 2008 ).启动仪器后, 测量CH4 排放通量时, 静态箱与底座水槽密闭后, 密闭箱内空气进入分析仪, 并通过2根透明导气管来回在分析仪器内无损坏地循环分析CH4 浓度变化.每次气体测量之前, 在底座水槽注满水, 启动仪器, 等待仪器启动显示的顶箱内部大气CH4 浓度稳定为当地环境气体CH4 浓度(8.04×10-8 mol·L-1 )时, 将静态箱扣在底座或中箱上, 密闭测量3-5 min, 然后揭开静态箱置于开放状态, 约为2 min, 然后密闭测量下一个静态箱底座, 循环操作以上过程.测量时间为2014年5-10月北京时间9:00-11:30, 观测频率为每月2次.CH4 排放通量是以封闭箱内顶部的CH4 浓度随时间变化的直线斜率计算(Mastepanov et al ., 2008 ; McEwing et al ., 2015 ), 回归方程决定系数R 2 ≥0.90; 当R 2 < 0.90时, 数据不作为CH4 排放通量计算, 其比例为3.8% (包含P-hollow的两个瞬时值过大(592.44和327.82 mg·m-2 ·h-1 ), 尽管R 2 > 0.90).CH4 排放通量的计算公式(孙晓新等, 2009 ; McEwing et al ., 2015 )如下: ...
... 排放通量的计算公式(孙晓新等, 2009 ; McEwing et al ., 2015 )如下: ...
... 本研究湿地5种微地貌区CH4 排放通量峰值出现在夏季(6-8月)或秋季(9-10月)(图1 ), 与以往研究结果(Dise, 1993 ; Chen et al ., 2008 ; 孙晓新等, 2009 ; 黄璞祎等, 2011 ; Wei et al ., 2015 )一致.夏季CH4 排放通量高的原因可能是夏季温度较高(图2 ), 促进湿地植物的生长、分蘖, 为CH4 产生提供充足的有机底物和传输通道(宋长春等, 2006 ; 孙晓新等, 2009 ; 黄璞祎等, 2011 ); 同时, 土壤微生物活性增强, 加快土壤中氧的消耗, 降低了氧化还原电位, 有利于产CH4 菌的生长(孙晓新等, 2009 ; 黄璞祎等, 2011 ).秋季CH4 排放通量高的原因可能是大量有机碳输入,当年植物生长的根开始分解或凋落物输入增加(孙晓新等, 2009 ; 邓昭衡等, 2015 ), 使可利用活性有机底物增加, 促进产CH4 菌产生CH4 ; 另外, 秋季水位深度增加(图2 ), 湿地土壤厌氧条件增多, 有利于产CH4 菌产生CH4 和减少氧化CH4 菌氧化CH4 (Moore et al ., 1994 ; 黄璞祎等, 2011 ; Wei et al ., 2015 ). ...
... ; 孙晓新等, 2009 ; 黄璞祎等, 2011 ); 同时, 土壤微生物活性增强, 加快土壤中氧的消耗, 降低了氧化还原电位, 有利于产CH4 菌的生长(孙晓新等, 2009 ; 黄璞祎等, 2011 ).秋季CH4 排放通量高的原因可能是大量有机碳输入,当年植物生长的根开始分解或凋落物输入增加(孙晓新等, 2009 ; 邓昭衡等, 2015 ), 使可利用活性有机底物增加, 促进产CH4 菌产生CH4 ; 另外, 秋季水位深度增加(图2 ), 湿地土壤厌氧条件增多, 有利于产CH4 菌产生CH4 和减少氧化CH4 菌氧化CH4 (Moore et al ., 1994 ; 黄璞祎等, 2011 ; Wei et al ., 2015 ). ...
... 菌的生长(孙晓新等, 2009 ; 黄璞祎等, 2011 ).秋季CH4 排放通量高的原因可能是大量有机碳输入,当年植物生长的根开始分解或凋落物输入增加(孙晓新等, 2009 ; 邓昭衡等, 2015 ), 使可利用活性有机底物增加, 促进产CH4 菌产生CH4 ; 另外, 秋季水位深度增加(图2 ), 湿地土壤厌氧条件增多, 有利于产CH4 菌产生CH4 和减少氧化CH4 菌氧化CH4 (Moore et al ., 1994 ; 黄璞祎等, 2011 ; Wei et al ., 2015 ). ...
... 排放通量高的原因可能是大量有机碳输入,当年植物生长的根开始分解或凋落物输入增加(孙晓新等, 2009 ; 邓昭衡等, 2015 ), 使可利用活性有机底物增加, 促进产CH4 菌产生CH4 ; 另外, 秋季水位深度增加(图2 ), 湿地土壤厌氧条件增多, 有利于产CH4 菌产生CH4 和减少氧化CH4 菌氧化CH4 (Moore et al ., 1994 ; 黄璞祎等, 2011 ; Wei et al ., 2015 ). ...
... 然而, 湿地CH4 排放是土壤中CH4 的生成、氧化、传输与释放过程相互作用的结果(Whalen & Reeburgh, 1992 ; Le Mer & Roger, 2001 ; 孙晓新等, 2009 ), 受到一系列因子(包含水位深度、温度、植物和土壤性质等)影响, 使得生长季CH4 排放通量与土壤温度和水位深度的相互关系更加复杂.本研究发现湿地微地貌区(P-hummock、P-hollow和S-hum- mock) CH4 排放通量季节性变化存在极显著差异(p < 0.01), Lawn和S-hollow CH4 排放通量季节变化不显著(p > 0.05).Pearson相关性分析表明整个生长季仅发现常年性淹水P-hummock与土壤温度(5-30 cm)存在显著线性正相关关系(p < 0.05)(表2 ), 这表明土壤温度是影响该微地貌区CH4 排放通量存在显著季节变化的主控因子, 与其他报道的北方湿地CH4 排放与温度显著相关通常局限于常年性淹水湿地(Whalen & Reeburgh, 1992 ; 孙晓新等, 2009 )吻合.但常年性淹水P-hollow没有发现这一规律, 说明还有其他因子影响湿地CH4 排放, 诸如水位深度和植物类型.常年性淹水P-hollow整个生长季水位深度超过土壤地表2 0 cm (图2 ); 另外, 植被类型以沉水植物小眼子菜和狸藻为主要植物群落, 它们不像维管植物通气组织(尤其是莎草科)的传输促进了CH4 从土壤向大气的输送, 进而增加CH4 排放(McEwing et al ., 2015 ), 如P-hummock样点以莎草科植物木里薹草为优势种.这种水位深度和植被类型因子的变化, 可能使湿地土壤-大气CH4 交换方式发生改变.许多研究表明湖泊湿地或泥炭湿地淹水小池塘水-大气界面CH4 交换方式以冒泡式(ebullition)为主(>95%)(Keller & Stallard, 1994 ; Casper et al ., 2000 ), 其CH4 排放通量极高(Keller & Stallard, 1994 ; Mikkelä et al ., 1995 ), 进而影响区域CH4 排放预算(Walter et al ., 2006 ; Tokida et al ., 2007 ), 这可能导致CH4 排放通量与温度或水位深度的关系趋于复杂.例如, 在9月底和10月观测到P-hollow CH4 排放通量的最高值为592.44和327.82 mg·m-2 ·h-1 .在北极圈河流阶地水淹洼地CH4 排放通量的最高值为559 mg·m-2 ·h-1 (van Huissteden et al ., 2005 ).北极圈湖泊解冻后, 冒泡式CH4 排放通量达到300 mg·m-2 ·h-1 (Walter et al ., 2006).S-hummock生长季CH4 排放通量随温度增加而逐渐增加, 7月底出现次峰(图1 ), 秋季水位深度升高(图2 )和凋落物输入, 出现最大峰值, 可能掩盖了温度对CH4 排放的作用.剔除10月份数据后, S-hummock CH4 排放通量与土壤(10-30 cm)温度显著线性正相关(表2 ), 暗示秋季水位深度升高或凋落物输入促进了湿地CH4 排放. ...
... ; 孙晓新等, 2009 )吻合.但常年性淹水P-hollow没有发现这一规律, 说明还有其他因子影响湿地CH4 排放, 诸如水位深度和植物类型.常年性淹水P-hollow整个生长季水位深度超过土壤地表2 0 cm (图2 ); 另外, 植被类型以沉水植物小眼子菜和狸藻为主要植物群落, 它们不像维管植物通气组织(尤其是莎草科)的传输促进了CH4 从土壤向大气的输送, 进而增加CH4 排放(McEwing et al ., 2015 ), 如P-hummock样点以莎草科植物木里薹草为优势种.这种水位深度和植被类型因子的变化, 可能使湿地土壤-大气CH4 交换方式发生改变.许多研究表明湖泊湿地或泥炭湿地淹水小池塘水-大气界面CH4 交换方式以冒泡式(ebullition)为主(>95%)(Keller & Stallard, 1994 ; Casper et al ., 2000 ), 其CH4 排放通量极高(Keller & Stallard, 1994 ; Mikkelä et al ., 1995 ), 进而影响区域CH4 排放预算(Walter et al ., 2006 ; Tokida et al ., 2007 ), 这可能导致CH4 排放通量与温度或水位深度的关系趋于复杂.例如, 在9月底和10月观测到P-hollow CH4 排放通量的最高值为592.44和327.82 mg·m-2 ·h-1 .在北极圈河流阶地水淹洼地CH4 排放通量的最高值为559 mg·m-2 ·h-1 (van Huissteden et al ., 2005 ).北极圈湖泊解冻后, 冒泡式CH4 排放通量达到300 mg·m-2 ·h-1 (Walter et al ., 2006).S-hummock生长季CH4 排放通量随温度增加而逐渐增加, 7月底出现次峰(图1 ), 秋季水位深度升高(图2 )和凋落物输入, 出现最大峰值, 可能掩盖了温度对CH4 排放的作用.剔除10月份数据后, S-hummock CH4 排放通量与土壤(10-30 cm)温度显著线性正相关(表2 ), 暗示秋季水位深度升高或凋落物输入促进了湿地CH4 排放. ...
小兴安岭森林沼泽甲烷排放及其影响因子
2
2009
... Lawn和S-hollow CH4 排放通量无明显的季节变化, 这可能与该微地貌区水位深度(平均值为-21.6 cm和-21.1 cm)条件下的产CH4 菌和氧化CH4 菌的竞争有关(Hirota et al ., 2004 ; Sun et al ., 2011 ).通常湿地土壤表层CH4 氧化潜力较大(王长科等, 2004 ; Lai, 2009 ), 水位深度下降后, CH4 氧化加强, CH4 排放通量降低, 导致无明显高CH4 排放通量, 可能使得观测期间CH4 排放通量无明显的季节变化(Sun et al ., 2011 ).水位深度下降还导致下层土壤温度增加, 进而促进产CH4 菌生成CH4 , 促进了CH4 排放.在这两种微地貌区观测期间CH4 排放变异系数较大(7.2%-149.3%, 变异系数>40%的比例占75%)(图1 ), 进而推测标准偏差过大可能也使得CH4 排放通量无明显的季节性变化, 这与Mikkelä等(1995)研究发现的北方泥炭地微地貌区小池塘CH4 排放通量无明显日变化格局的结果类似.但是, 这两种微地貌区在夏季或秋季具有较高CH4 排放通量(图1 ), 说明温度、水位深度和凋落物输入对湿地CH4 排放影响较大. ...
... 排放通量无明显的季节变化(Sun et al ., 2011 ).水位深度下降还导致下层土壤温度增加, 进而促进产CH4 菌生成CH4 , 促进了CH4 排放.在这两种微地貌区观测期间CH4 排放变异系数较大(7.2%-149.3%, 变异系数>40%的比例占75%)(图1 ), 进而推测标准偏差过大可能也使得CH4 排放通量无明显的季节性变化, 这与Mikkelä等(1995)研究发现的北方泥炭地微地貌区小池塘CH4 排放通量无明显日变化格局的结果类似.但是, 这两种微地貌区在夏季或秋季具有较高CH4 排放通量(图1 ), 说明温度、水位深度和凋落物输入对湿地CH4 排放影响较大. ...
Seasonal and spatial variations of methane emissions from montane wetlands in Northeast China
1
2011
... 然而, 湿地CH4 排放是土壤中CH4 的生成、氧化、传输与释放过程相互作用的结果(Whalen & Reeburgh, 1992 ; Le Mer & Roger, 2001 ; 孙晓新等, 2009 ), 受到一系列因子(包含水位深度、温度、植物和土壤性质等)影响, 使得生长季CH4 排放通量与土壤温度和水位深度的相互关系更加复杂.本研究发现湿地微地貌区(P-hummock、P-hollow和S-hum- mock) CH4 排放通量季节性变化存在极显著差异(p < 0.01), Lawn和S-hollow CH4 排放通量季节变化不显著(p > 0.05).Pearson相关性分析表明整个生长季仅发现常年性淹水P-hummock与土壤温度(5-30 cm)存在显著线性正相关关系(p < 0.05)(表2 ), 这表明土壤温度是影响该微地貌区CH4 排放通量存在显著季节变化的主控因子, 与其他报道的北方湿地CH4 排放与温度显著相关通常局限于常年性淹水湿地(Whalen & Reeburgh, 1992 ; 孙晓新等, 2009 )吻合.但常年性淹水P-hollow没有发现这一规律, 说明还有其他因子影响湿地CH4 排放, 诸如水位深度和植物类型.常年性淹水P-hollow整个生长季水位深度超过土壤地表2 0 cm (图2 ); 另外, 植被类型以沉水植物小眼子菜和狸藻为主要植物群落, 它们不像维管植物通气组织(尤其是莎草科)的传输促进了CH4 从土壤向大气的输送, 进而增加CH4 排放(McEwing et al ., 2015 ), 如P-hummock样点以莎草科植物木里薹草为优势种.这种水位深度和植被类型因子的变化, 可能使湿地土壤-大气CH4 交换方式发生改变.许多研究表明湖泊湿地或泥炭湿地淹水小池塘水-大气界面CH4 交换方式以冒泡式(ebullition)为主(>95%)(Keller & Stallard, 1994 ; Casper et al ., 2000 ), 其CH4 排放通量极高(Keller & Stallard, 1994 ; Mikkelä et al ., 1995 ), 进而影响区域CH4 排放预算(Walter et al ., 2006 ; Tokida et al ., 2007 ), 这可能导致CH4 排放通量与温度或水位深度的关系趋于复杂.例如, 在9月底和10月观测到P-hollow CH4 排放通量的最高值为592.44和327.82 mg·m-2 ·h-1 .在北极圈河流阶地水淹洼地CH4 排放通量的最高值为559 mg·m-2 ·h-1 (van Huissteden et al ., 2005 ).北极圈湖泊解冻后, 冒泡式CH4 排放通量达到300 mg·m-2 ·h-1 (Walter et al ., 2006).S-hummock生长季CH4 排放通量随温度增加而逐渐增加, 7月底出现次峰(图1 ), 秋季水位深度升高(图2 )和凋落物输入, 出现最大峰值, 可能掩盖了温度对CH4 排放的作用.剔除10月份数据后, S-hummock CH4 排放通量与土壤(10-30 cm)温度显著线性正相关(表2 ), 暗示秋季水位深度升高或凋落物输入促进了湿地CH4 排放. ...
Falling atmospheric pressure as a trigger for methane ebullition from peatland
1
2007
... 然而, 湿地CH4 排放是土壤中CH4 的生成、氧化、传输与释放过程相互作用的结果(Whalen & Reeburgh, 1992 ; Le Mer & Roger, 2001 ; 孙晓新等, 2009 ), 受到一系列因子(包含水位深度、温度、植物和土壤性质等)影响, 使得生长季CH4 排放通量与土壤温度和水位深度的相互关系更加复杂.本研究发现湿地微地貌区(P-hummock、P-hollow和S-hum- mock) CH4 排放通量季节性变化存在极显著差异(p < 0.01), Lawn和S-hollow CH4 排放通量季节变化不显著(p > 0.05).Pearson相关性分析表明整个生长季仅发现常年性淹水P-hummock与土壤温度(5-30 cm)存在显著线性正相关关系(p < 0.05)(表2 ), 这表明土壤温度是影响该微地貌区CH4 排放通量存在显著季节变化的主控因子, 与其他报道的北方湿地CH4 排放与温度显著相关通常局限于常年性淹水湿地(Whalen & Reeburgh, 1992 ; 孙晓新等, 2009 )吻合.但常年性淹水P-hollow没有发现这一规律, 说明还有其他因子影响湿地CH4 排放, 诸如水位深度和植物类型.常年性淹水P-hollow整个生长季水位深度超过土壤地表2 0 cm (图2 ); 另外, 植被类型以沉水植物小眼子菜和狸藻为主要植物群落, 它们不像维管植物通气组织(尤其是莎草科)的传输促进了CH4 从土壤向大气的输送, 进而增加CH4 排放(McEwing et al ., 2015 ), 如P-hummock样点以莎草科植物木里薹草为优势种.这种水位深度和植被类型因子的变化, 可能使湿地土壤-大气CH4 交换方式发生改变.许多研究表明湖泊湿地或泥炭湿地淹水小池塘水-大气界面CH4 交换方式以冒泡式(ebullition)为主(>95%)(Keller & Stallard, 1994 ; Casper et al ., 2000 ), 其CH4 排放通量极高(Keller & Stallard, 1994 ; Mikkelä et al ., 1995 ), 进而影响区域CH4 排放预算(Walter et al ., 2006 ; Tokida et al ., 2007 ), 这可能导致CH4 排放通量与温度或水位深度的关系趋于复杂.例如, 在9月底和10月观测到P-hollow CH4 排放通量的最高值为592.44和327.82 mg·m-2 ·h-1 .在北极圈河流阶地水淹洼地CH4 排放通量的最高值为559 mg·m-2 ·h-1 (van Huissteden et al ., 2005 ).北极圈湖泊解冻后, 冒泡式CH4 排放通量达到300 mg·m-2 ·h-1 (Walter et al ., 2006).S-hummock生长季CH4 排放通量随温度增加而逐渐增加, 7月底出现次峰(图1 ), 秋季水位深度升高(图2 )和凋落物输入, 出现最大峰值, 可能掩盖了温度对CH4 排放的作用.剔除10月份数据后, S-hummock CH4 排放通量与土壤(10-30 cm)温度显著线性正相关(表2 ), 暗示秋季水位深度升高或凋落物输入促进了湿地CH4 排放. ...
High methane flux from an arctic floodplain (Indigirka lowlands, eastern Siberia)
3
2005
... 自然湿地是大气CH4 的重要排放源, 年排放量为177-284 Tg (1 Tg = 1012 g), 约占全球CH4 排放量的26%-42% (IPCC, 2013 ), 排放量的不确定, 一是由于不同湿地的CH4 排放存在时空变化格局(Whalen & Reeburgh, 1992 ; Huttunen et al ., 2003 ; Inubushi et al ., 2005 ; Chen et al ., 2008 ; Glagolev et al ., 2011 ; 黄璞祎等, 2011 ; McEwing et al ., 2015 ; Song et al ., 2015 ), 二是因为气候变化(IPCC, 2013 ; Munir & Strack, 2014 ).湿地CH4 排放经由厌氧条件下产CH4 菌生成CH4 和需氧条件下氧化CH4 菌氧化CH4 两种微生物过程, 以扩散、冒泡和植物传输3个过程排放CH4 (Le Mer & Roger, 2001 ; 王智平等, 2003 ; Lai, 2009 ; McEwing et al ., 2015 ).这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... 若尔盖高原湿地5种微地貌区CH4 排放通量大小顺序为: P-hollow > P-hummock > Lawn> S-hollow > S-hummock, 这与其他研究的湿地不同微地貌区CH4 排放通量规律吻合, 即水位深度较高的微地貌区CH4 排放通量较高(Clymo et al ., 1995 ; Kutzbach et al ., 2004 ; Glagolev et al ., 2011 ; Wei et al ., 2015 ).许多研究表明不同湿地生态系统内, 特别是泥炭地微地貌区的CH4 排放通量存在显著的空间变化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ).本研究湖滨湿地的5种微地貌区之间CH4 排放通量的平均值存在显著的空间差异性(表3 ), 变异系数为131%.Pearson相关性分析表明5种微地貌区CH4 排放通量的平均值与水位深度平均值存在极显著的线性正相关关系(表2 ), 表明影响该湖滨湿地微地貌区CH4 排放通量存在空间差异的主控因子是水位深度, 这与其他报道的北方湿地的研究结果(Moore et al ., 1994 ; Ding et al ., 2003 ; Huttunen et al ., 2003 ) 一致.究其原因: 一方面可能是草丘(hummock)的水位深度较低, 产CH4 菌生成的CH4 大部分被氧化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Lai, 2009 ; Wei et al ., 2015 ), 进而减少了CH4 排放; 另一方面, 洼地CH4 排放通量高于草丘, 可能是由于较高水位深度, 产CH4 菌生成CH4 和温度升高后, 促进了CH4 排放(Waddington & Roulet, 1996 ; Lai, 2009 ; Wei et al ., 2015 ), 这表明水位深度在调控湿地CH4 排放通量中发挥着极其重要的作用.如果不考虑这种差异, 可能会低估或高估区域CH4 排放量.例如, P-hollow CH4 排放通量最高, 它是S-hummock CH4 最低排放通量的108倍, Lawn和S-hollow CH4 排放通量倍数相差最小, 也达1.6倍.因此, 研究湿地生态系统内部微地貌区CH4 排放特征具有重要意义, 量化其数值, 进一步通过与高精度分辨率的遥感或地理信息系统数据结合, 将有助于精确地预算若尔盖高原湿地的CH4 排放量. ...
... 排放(Waddington & Roulet, 1996 ; Lai, 2009 ; Wei et al ., 2015 ), 这表明水位深度在调控湿地CH4 排放通量中发挥着极其重要的作用.如果不考虑这种差异, 可能会低估或高估区域CH4 排放量.例如, P-hollow CH4 排放通量最高, 它是S-hummock CH4 最低排放通量的108倍, Lawn和S-hollow CH4 排放通量倍数相差最小, 也达1.6倍.因此, 研究湿地生态系统内部微地貌区CH4 排放特征具有重要意义, 量化其数值, 进一步通过与高精度分辨率的遥感或地理信息系统数据结合, 将有助于精确地预算若尔盖高原湿地的CH4 排放量. ...
Atmosphere-wetland carbon exchanges: Scale dependency of CO2 and CH4 exchange on the developmental topography of a peatland
1
1996
... 然而, 湿地CH4 排放是土壤中CH4 的生成、氧化、传输与释放过程相互作用的结果(Whalen & Reeburgh, 1992 ; Le Mer & Roger, 2001 ; 孙晓新等, 2009 ), 受到一系列因子(包含水位深度、温度、植物和土壤性质等)影响, 使得生长季CH4 排放通量与土壤温度和水位深度的相互关系更加复杂.本研究发现湿地微地貌区(P-hummock、P-hollow和S-hum- mock) CH4 排放通量季节性变化存在极显著差异(p < 0.01), Lawn和S-hollow CH4 排放通量季节变化不显著(p > 0.05).Pearson相关性分析表明整个生长季仅发现常年性淹水P-hummock与土壤温度(5-30 cm)存在显著线性正相关关系(p < 0.05)(表2 ), 这表明土壤温度是影响该微地貌区CH4 排放通量存在显著季节变化的主控因子, 与其他报道的北方湿地CH4 排放与温度显著相关通常局限于常年性淹水湿地(Whalen & Reeburgh, 1992 ; 孙晓新等, 2009 )吻合.但常年性淹水P-hollow没有发现这一规律, 说明还有其他因子影响湿地CH4 排放, 诸如水位深度和植物类型.常年性淹水P-hollow整个生长季水位深度超过土壤地表2 0 cm (图2 ); 另外, 植被类型以沉水植物小眼子菜和狸藻为主要植物群落, 它们不像维管植物通气组织(尤其是莎草科)的传输促进了CH4 从土壤向大气的输送, 进而增加CH4 排放(McEwing et al ., 2015 ), 如P-hummock样点以莎草科植物木里薹草为优势种.这种水位深度和植被类型因子的变化, 可能使湿地土壤-大气CH4 交换方式发生改变.许多研究表明湖泊湿地或泥炭湿地淹水小池塘水-大气界面CH4 交换方式以冒泡式(ebullition)为主(>95%)(Keller & Stallard, 1994 ; Casper et al ., 2000 ), 其CH4 排放通量极高(Keller & Stallard, 1994 ; Mikkelä et al ., 1995 ), 进而影响区域CH4 排放预算(Walter et al ., 2006 ; Tokida et al ., 2007 ), 这可能导致CH4 排放通量与温度或水位深度的关系趋于复杂.例如, 在9月底和10月观测到P-hollow CH4 排放通量的最高值为592.44和327.82 mg·m-2 ·h-1 .在北极圈河流阶地水淹洼地CH4 排放通量的最高值为559 mg·m-2 ·h-1 (van Huissteden et al ., 2005 ).北极圈湖泊解冻后, 冒泡式CH4 排放通量达到300 mg·m-2 ·h-1 (Walter et al ., 2006).S-hummock生长季CH4 排放通量随温度增加而逐渐增加, 7月底出现次峰(图1 ), 秋季水位深度升高(图2 )和凋落物输入, 出现最大峰值, 可能掩盖了温度对CH4 排放的作用.剔除10月份数据后, S-hummock CH4 排放通量与土壤(10-30 cm)温度显著线性正相关(表2 ), 暗示秋季水位深度升高或凋落物输入促进了湿地CH4 排放. ...
Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming
1
2006
... Lawn和S-hollow CH4 排放通量无明显的季节变化, 这可能与该微地貌区水位深度(平均值为-21.6 cm和-21.1 cm)条件下的产CH4 菌和氧化CH4 菌的竞争有关(Hirota et al ., 2004 ; Sun et al ., 2011 ).通常湿地土壤表层CH4 氧化潜力较大(王长科等, 2004 ; Lai, 2009 ), 水位深度下降后, CH4 氧化加强, CH4 排放通量降低, 导致无明显高CH4 排放通量, 可能使得观测期间CH4 排放通量无明显的季节变化(Sun et al ., 2011 ).水位深度下降还导致下层土壤温度增加, 进而促进产CH4 菌生成CH4 , 促进了CH4 排放.在这两种微地貌区观测期间CH4 排放变异系数较大(7.2%-149.3%, 变异系数>40%的比例占75%)(图1 ), 进而推测标准偏差过大可能也使得CH4 排放通量无明显的季节性变化, 这与Mikkelä等(1995)研究发现的北方泥炭地微地貌区小池塘CH4 排放通量无明显日变化格局的结果类似.但是, 这两种微地貌区在夏季或秋季具有较高CH4 排放通量(图1 ), 说明温度、水位深度和凋落物输入对湿地CH4 排放影响较大. ...
若尔盖高原沼泽土壤氧化甲烷的研究
1
2004
... 若尔盖高原(101.60°-103.50° E, 32.33°-34.00° N, 平均海拔为3400 m)泥炭沼泽面积约为4038 km2 , 是我国面积最大的高原泥炭沼泽分布区(王德宣等, 2002 ), 也是青藏高原东部边缘的CH4 排放源(Jin et al ., 1999 ).近10年来, 国内专家研究若尔盖高原泥炭沼泽湿地CH4 排放特征(王德宣等, 2002 ; Ding et al ., 2004 ; Hirota et al ., 2004 ; Chen et al ., 2008 ; 王德宣, 2010 ; 李丽等, 2011 ; Song et al ., 2015 ), 取得了一定的成果, 为理解高原湿地碳循环和CH4 排放机理提供了一定理论基础.然而, 若尔盖高原泥炭沼泽微地貌区(草丘和洼地) CH4 排放的时空变化格局鲜有报道.Wei等(2015)报道了青藏高原两种海拔高度(4758和4320 m)的湿地微地貌区(草丘和洼地) CH4 排放特征, 结果表明其影响因子较多, 存在时间和空间上的差异, 区域CH4 排放量仍存在较大的不确定性, 这将不利于我们深刻理解高原湿地CH4 排放对环境变化和气候变化的响应机制, 以及精确预算我国高原湿地CH4 排放量. ...
若尔盖高原泥炭沼泽二氧化碳、甲烷和氧化亚氮排放通量研究
2
2010
... 若尔盖高原(101.60°-103.50° E, 32.33°-34.00° N, 平均海拔为3400 m)泥炭沼泽面积约为4038 km2 , 是我国面积最大的高原泥炭沼泽分布区(王德宣等, 2002 ), 也是青藏高原东部边缘的CH4 排放源(Jin et al ., 1999 ).近10年来, 国内专家研究若尔盖高原泥炭沼泽湿地CH4 排放特征(王德宣等, 2002 ; Ding et al ., 2004 ; Hirota et al ., 2004 ; Chen et al ., 2008 ; 王德宣, 2010 ; 李丽等, 2011 ; Song et al ., 2015 ), 取得了一定的成果, 为理解高原湿地碳循环和CH4 排放机理提供了一定理论基础.然而, 若尔盖高原泥炭沼泽微地貌区(草丘和洼地) CH4 排放的时空变化格局鲜有报道.Wei等(2015)报道了青藏高原两种海拔高度(4758和4320 m)的湿地微地貌区(草丘和洼地) CH4 排放特征, 结果表明其影响因子较多, 存在时间和空间上的差异, 区域CH4 排放量仍存在较大的不确定性, 这将不利于我们深刻理解高原湿地CH4 排放对环境变化和气候变化的响应机制, 以及精确预算我国高原湿地CH4 排放量. ...
... 排放特征(王德宣等, 2002 ; Ding et al ., 2004 ; Hirota et al ., 2004 ; Chen et al ., 2008 ; 王德宣, 2010 ; 李丽等, 2011 ; Song et al ., 2015 ), 取得了一定的成果, 为理解高原湿地碳循环和CH4 排放机理提供了一定理论基础.然而, 若尔盖高原泥炭沼泽微地貌区(草丘和洼地) CH4 排放的时空变化格局鲜有报道.Wei等(2015)报道了青藏高原两种海拔高度(4758和4320 m)的湿地微地貌区(草丘和洼地) CH4 排放特征, 结果表明其影响因子较多, 存在时间和空间上的差异, 区域CH4 排放量仍存在较大的不确定性, 这将不利于我们深刻理解高原湿地CH4 排放对环境变化和气候变化的响应机制, 以及精确预算我国高原湿地CH4 排放量. ...
若尔盖高原沼泽湿地CH4 排放研究
4
2002
... 自然湿地是大气CH4 的重要排放源, 年排放量为177-284 Tg (1 Tg = 1012 g), 约占全球CH4 排放量的26%-42% (IPCC, 2013 ), 排放量的不确定, 一是由于不同湿地的CH4 排放存在时空变化格局(Whalen & Reeburgh, 1992 ; Huttunen et al ., 2003 ; Inubushi et al ., 2005 ; Chen et al ., 2008 ; Glagolev et al ., 2011 ; 黄璞祎等, 2011 ; McEwing et al ., 2015 ; Song et al ., 2015 ), 二是因为气候变化(IPCC, 2013 ; Munir & Strack, 2014 ).湿地CH4 排放经由厌氧条件下产CH4 菌生成CH4 和需氧条件下氧化CH4 菌氧化CH4 两种微生物过程, 以扩散、冒泡和植物传输3个过程排放CH4 (Le Mer & Roger, 2001 ; 王智平等, 2003 ; Lai, 2009 ; McEwing et al ., 2015 ).这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... 本研究地点(33.92˚ N, 102.82˚ E, 海拔为3441 m)位于若尔盖湿地自然保护区.若尔盖湿地2008年被列入《湿地公约》的国际重要湿地名录.该地属于寒温带湿润气候, 11月至次年4月受西伯利亚和蒙古的冷空气控制, 5至10月受西南季风控制, 年平均气温为1 ℃, 最暖月7月平均气温为10.7 ℃, 最冷月1月平均气温-10.3 ℃ (王智平等, 2003 ; Ding et al ., 2004 ).年降水量650 mm, 降水集中在6-9月, 相对湿度78% (王智平等, 2003 ). ...
... ).年降水量650 mm, 降水集中在6-9月, 相对湿度78% (王智平等, 2003 ). ...
青藏高原若尔盖沼泽潜在CH4 氧化与生成的分布特征
9
2003
... 自然湿地是大气CH4 的重要排放源, 年排放量为177-284 Tg (1 Tg = 1012 g), 约占全球CH4 排放量的26%-42% (IPCC, 2013 ), 排放量的不确定, 一是由于不同湿地的CH4 排放存在时空变化格局(Whalen & Reeburgh, 1992 ; Huttunen et al ., 2003 ; Inubushi et al ., 2005 ; Chen et al ., 2008 ; Glagolev et al ., 2011 ; 黄璞祎等, 2011 ; McEwing et al ., 2015 ; Song et al ., 2015 ), 二是因为气候变化(IPCC, 2013 ; Munir & Strack, 2014 ).湿地CH4 排放经由厌氧条件下产CH4 菌生成CH4 和需氧条件下氧化CH4 菌氧化CH4 两种微生物过程, 以扩散、冒泡和植物传输3个过程排放CH4 (Le Mer & Roger, 2001 ; 王智平等, 2003 ; Lai, 2009 ; McEwing et al ., 2015 ).这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... 本研究湿地5种微地貌区CH4 排放通量峰值出现在夏季(6-8月)或秋季(9-10月)(图1 ), 与以往研究结果(Dise, 1993 ; Chen et al ., 2008 ; 孙晓新等, 2009 ; 黄璞祎等, 2011 ; Wei et al ., 2015 )一致.夏季CH4 排放通量高的原因可能是夏季温度较高(图2 ), 促进湿地植物的生长、分蘖, 为CH4 产生提供充足的有机底物和传输通道(宋长春等, 2006 ; 孙晓新等, 2009 ; 黄璞祎等, 2011 ); 同时, 土壤微生物活性增强, 加快土壤中氧的消耗, 降低了氧化还原电位, 有利于产CH4 菌的生长(孙晓新等, 2009 ; 黄璞祎等, 2011 ).秋季CH4 排放通量高的原因可能是大量有机碳输入,当年植物生长的根开始分解或凋落物输入增加(孙晓新等, 2009 ; 邓昭衡等, 2015 ), 使可利用活性有机底物增加, 促进产CH4 菌产生CH4 ; 另外, 秋季水位深度增加(图2 ), 湿地土壤厌氧条件增多, 有利于产CH4 菌产生CH4 和减少氧化CH4 菌氧化CH4 (Moore et al ., 1994 ; 黄璞祎等, 2011 ; Wei et al ., 2015 ). ...
... ; Wei et al ., 2015 ). ...
... 若尔盖高原湿地5种微地貌区CH4 排放通量大小顺序为: P-hollow > P-hummock > Lawn> S-hollow > S-hummock, 这与其他研究的湿地不同微地貌区CH4 排放通量规律吻合, 即水位深度较高的微地貌区CH4 排放通量较高(Clymo et al ., 1995 ; Kutzbach et al ., 2004 ; Glagolev et al ., 2011 ; Wei et al ., 2015 ).许多研究表明不同湿地生态系统内, 特别是泥炭地微地貌区的CH4 排放通量存在显著的空间变化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ).本研究湖滨湿地的5种微地貌区之间CH4 排放通量的平均值存在显著的空间差异性(表3 ), 变异系数为131%.Pearson相关性分析表明5种微地貌区CH4 排放通量的平均值与水位深度平均值存在极显著的线性正相关关系(表2 ), 表明影响该湖滨湿地微地貌区CH4 排放通量存在空间差异的主控因子是水位深度, 这与其他报道的北方湿地的研究结果(Moore et al ., 1994 ; Ding et al ., 2003 ; Huttunen et al ., 2003 ) 一致.究其原因: 一方面可能是草丘(hummock)的水位深度较低, 产CH4 菌生成的CH4 大部分被氧化(Moore et al ., 1994 ; Clymo et al ., 1995 ; Lai, 2009 ; Wei et al ., 2015 ), 进而减少了CH4 排放; 另一方面, 洼地CH4 排放通量高于草丘, 可能是由于较高水位深度, 产CH4 菌生成CH4 和温度升高后, 促进了CH4 排放(Waddington & Roulet, 1996 ; Lai, 2009 ; Wei et al ., 2015 ), 这表明水位深度在调控湿地CH4 排放通量中发挥着极其重要的作用.如果不考虑这种差异, 可能会低估或高估区域CH4 排放量.例如, P-hollow CH4 排放通量最高, 它是S-hummock CH4 最低排放通量的108倍, Lawn和S-hollow CH4 排放通量倍数相差最小, 也达1.6倍.因此, 研究湿地生态系统内部微地貌区CH4 排放特征具有重要意义, 量化其数值, 进一步通过与高精度分辨率的遥感或地理信息系统数据结合, 将有助于精确地预算若尔盖高原湿地的CH4 排放量. ...
... ; Wei et al ., 2015 ), 进而减少了CH4 排放; 另一方面, 洼地CH4 排放通量高于草丘, 可能是由于较高水位深度, 产CH4 菌生成CH4 和温度升高后, 促进了CH4 排放(Waddington & Roulet, 1996 ; Lai, 2009 ; Wei et al ., 2015 ), 这表明水位深度在调控湿地CH4 排放通量中发挥着极其重要的作用.如果不考虑这种差异, 可能会低估或高估区域CH4 排放量.例如, P-hollow CH4 排放通量最高, 它是S-hummock CH4 最低排放通量的108倍, Lawn和S-hollow CH4 排放通量倍数相差最小, 也达1.6倍.因此, 研究湿地生态系统内部微地貌区CH4 排放特征具有重要意义, 量化其数值, 进一步通过与高精度分辨率的遥感或地理信息系统数据结合, 将有助于精确地预算若尔盖高原湿地的CH4 排放量. ...
... ; Wei et al ., 2015 ), 这表明水位深度在调控湿地CH4 排放通量中发挥着极其重要的作用.如果不考虑这种差异, 可能会低估或高估区域CH4 排放量.例如, P-hollow CH4 排放通量最高, 它是S-hummock CH4 最低排放通量的108倍, Lawn和S-hollow CH4 排放通量倍数相差最小, 也达1.6倍.因此, 研究湿地生态系统内部微地貌区CH4 排放特征具有重要意义, 量化其数值, 进一步通过与高精度分辨率的遥感或地理信息系统数据结合, 将有助于精确地预算若尔盖高原湿地的CH4 排放量. ...
Revisiting the role of CH4 emissions from alpine wetlands on the Tibetan Plateau: Evidence from two in situ measurements at 4758 and 4320 m above sea level
2015
Landscape patterns of CH4 fluxes in an alpine tundra ecosystem
3
1999
... 自然湿地是大气CH4 的重要排放源, 年排放量为177-284 Tg (1 Tg = 1012 g), 约占全球CH4 排放量的26%-42% (IPCC, 2013 ), 排放量的不确定, 一是由于不同湿地的CH4 排放存在时空变化格局(Whalen & Reeburgh, 1992 ; Huttunen et al ., 2003 ; Inubushi et al ., 2005 ; Chen et al ., 2008 ; Glagolev et al ., 2011 ; 黄璞祎等, 2011 ; McEwing et al ., 2015 ; Song et al ., 2015 ), 二是因为气候变化(IPCC, 2013 ; Munir & Strack, 2014 ).湿地CH4 排放经由厌氧条件下产CH4 菌生成CH4 和需氧条件下氧化CH4 菌氧化CH4 两种微生物过程, 以扩散、冒泡和植物传输3个过程排放CH4 (Le Mer & Roger, 2001 ; 王智平等, 2003 ; Lai, 2009 ; McEwing et al ., 2015 ).这3个过程受许多环境因子(温度、水位深度、底物活性和植物类型)影响(Mikkelä et al ., 1995 ; 丁维新和蔡祖聪, 2002 ; Inubushi et al ., 2005 ; McEwing et al ., 2015 ; Wei et al ., 2015 ).由于湿地(如泥炭地)形成了多种生态系统及其系统内异质性地貌(Lai, 2009 ; Glagolev et al ., 2011 ; Munir & Strack, 2014 ; Song et al ., 2015 ; Wei et al ., 2015 ), 不同水位深度条件下, 植被和土壤温度具有差异, 进而导致CH4 排放通量存在时空变化(Dise, 1993 ; 王智平等, 2003 ; Hirota et al ., 2004 ; Wei et al ., 2015 ).目前, 国外有关泥炭地微地貌区CH4 排放的研究较多(Dise, 1993 ; Mikkelä et al ., 1995 ; Waddington & Roulet, 1996 ; Glagolev & Shnyrev, 2008 ; Kalyuzhnyi et al ., 2009 ; Munir & Strack, 2014 ), 而国内有关这方面的研究鲜有报道(Wei et al ., 2015 ).因此, 进一步研究有助于人们深刻理解不同空间湿地CH4 排放对环境变化的响应机制和精确预算区域湿地CH4 排放量. ...
... 然而, 湿地CH4 排放是土壤中CH4 的生成、氧化、传输与释放过程相互作用的结果(Whalen & Reeburgh, 1992 ; Le Mer & Roger, 2001 ; 孙晓新等, 2009 ), 受到一系列因子(包含水位深度、温度、植物和土壤性质等)影响, 使得生长季CH4 排放通量与土壤温度和水位深度的相互关系更加复杂.本研究发现湿地微地貌区(P-hummock、P-hollow和S-hum- mock) CH4 排放通量季节性变化存在极显著差异(p < 0.01), Lawn和S-hollow CH4 排放通量季节变化不显著(p > 0.05).Pearson相关性分析表明整个生长季仅发现常年性淹水P-hummock与土壤温度(5-30 cm)存在显著线性正相关关系(p < 0.05)(表2 ), 这表明土壤温度是影响该微地貌区CH4 排放通量存在显著季节变化的主控因子, 与其他报道的北方湿地CH4 排放与温度显著相关通常局限于常年性淹水湿地(Whalen & Reeburgh, 1992 ; 孙晓新等, 2009 )吻合.但常年性淹水P-hollow没有发现这一规律, 说明还有其他因子影响湿地CH4 排放, 诸如水位深度和植物类型.常年性淹水P-hollow整个生长季水位深度超过土壤地表2 0 cm (图2 ); 另外, 植被类型以沉水植物小眼子菜和狸藻为主要植物群落, 它们不像维管植物通气组织(尤其是莎草科)的传输促进了CH4 从土壤向大气的输送, 进而增加CH4 排放(McEwing et al ., 2015 ), 如P-hummock样点以莎草科植物木里薹草为优势种.这种水位深度和植被类型因子的变化, 可能使湿地土壤-大气CH4 交换方式发生改变.许多研究表明湖泊湿地或泥炭湿地淹水小池塘水-大气界面CH4 交换方式以冒泡式(ebullition)为主(>95%)(Keller & Stallard, 1994 ; Casper et al ., 2000 ), 其CH4 排放通量极高(Keller & Stallard, 1994 ; Mikkelä et al ., 1995 ), 进而影响区域CH4 排放预算(Walter et al ., 2006 ; Tokida et al ., 2007 ), 这可能导致CH4 排放通量与温度或水位深度的关系趋于复杂.例如, 在9月底和10月观测到P-hollow CH4 排放通量的最高值为592.44和327.82 mg·m-2 ·h-1 .在北极圈河流阶地水淹洼地CH4 排放通量的最高值为559 mg·m-2 ·h-1 (van Huissteden et al ., 2005 ).北极圈湖泊解冻后, 冒泡式CH4 排放通量达到300 mg·m-2 ·h-1 (Walter et al ., 2006).S-hummock生长季CH4 排放通量随温度增加而逐渐增加, 7月底出现次峰(图1 ), 秋季水位深度升高(图2 )和凋落物输入, 出现最大峰值, 可能掩盖了温度对CH4 排放的作用.剔除10月份数据后, S-hummock CH4 排放通量与土壤(10-30 cm)温度显著线性正相关(表2 ), 暗示秋季水位深度升高或凋落物输入促进了湿地CH4 排放. ...
... 排放与温度显著相关通常局限于常年性淹水湿地(Whalen & Reeburgh, 1992 ; 孙晓新等, 2009 )吻合.但常年性淹水P-hollow没有发现这一规律, 说明还有其他因子影响湿地CH4 排放, 诸如水位深度和植物类型.常年性淹水P-hollow整个生长季水位深度超过土壤地表2 0 cm (图2 ); 另外, 植被类型以沉水植物小眼子菜和狸藻为主要植物群落, 它们不像维管植物通气组织(尤其是莎草科)的传输促进了CH4 从土壤向大气的输送, 进而增加CH4 排放(McEwing et al ., 2015 ), 如P-hummock样点以莎草科植物木里薹草为优势种.这种水位深度和植被类型因子的变化, 可能使湿地土壤-大气CH4 交换方式发生改变.许多研究表明湖泊湿地或泥炭湿地淹水小池塘水-大气界面CH4 交换方式以冒泡式(ebullition)为主(>95%)(Keller & Stallard, 1994 ; Casper et al ., 2000 ), 其CH4 排放通量极高(Keller & Stallard, 1994 ; Mikkelä et al ., 1995 ), 进而影响区域CH4 排放预算(Walter et al ., 2006 ; Tokida et al ., 2007 ), 这可能导致CH4 排放通量与温度或水位深度的关系趋于复杂.例如, 在9月底和10月观测到P-hollow CH4 排放通量的最高值为592.44和327.82 mg·m-2 ·h-1 .在北极圈河流阶地水淹洼地CH4 排放通量的最高值为559 mg·m-2 ·h-1 (van Huissteden et al ., 2005 ).北极圈湖泊解冻后, 冒泡式CH4 排放通量达到300 mg·m-2 ·h-1 (Walter et al ., 2006).S-hummock生长季CH4 排放通量随温度增加而逐渐增加, 7月底出现次峰(图1 ), 秋季水位深度升高(图2 )和凋落物输入, 出现最大峰值, 可能掩盖了温度对CH4 排放的作用.剔除10月份数据后, S-hummock CH4 排放通量与土壤(10-30 cm)温度显著线性正相关(表2 ), 暗示秋季水位深度升高或凋落物输入促进了湿地CH4 排放. ...
Interannual variations in tundra methane emission: A 4-year time series at fixed sites
1992
Methane flux in subalpine wetland and unsaturated soils in the southern Rocky Mountains
1999