植物生态学报  2017 , 41 (12): 1289-1300 https://doi.org/10.17521/cjpe.2017.0158

研究论文

C4植物玉米的光合-光响应曲线模拟研究

李义博12, 宋贺12, 周莉3, 许振柱1*, 周广胜13*

1中国科学院植物研究所植被与环境变化国家重点实验室, 北京 100093
2中国科学院大学资源与环境学院, 北京 100049
3中国气象科学研究院, 北京 100081

Modeling study on photosynthetic-light response curves of a C4 plant, maize

Yi-Bo Li12, SONG He12, ZHOU Li3, XU Zhen-Zhu1*, ZHOU Guang-Sheng13*

1State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093
2College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049
3Chinese Academy of Meteorological Sciences, , Beijing 100081

通讯作者:  * 共同通信作者 Co-author for correspondence Email: xuzz@ibcas.ac.cn; gszhou@camscma.cn

责任编辑:  Yi-Bo Li

版权声明:  2017 植物生态学报编辑部 本文是遵循CCAL协议的开放存取期刊,引用请务必标明出处。

基金资助:  国家自然科学基金(41330531)和国家公益性行业(气象)科研专项(GYHY201506019)

展开

摘要

光是植物光合作用最基本的一个决定因子, 准确分析光响应曲线及其参数是研究光合生理生态过程对环境变化响应的重要途径; 但相关模型及其模拟的准确性仍待改进。该研究基于C4作物玉米(Zea mays)不同干旱处理试验资料, 比较研究了现有光响应模型(直角双曲线模型、非直角双曲线模型、直角双曲线修正模型、指数模型、二次函数模型以及新提出的改进模型)的适应性。结果表明, 改进的光响应模型具有较好的精确度, 可较准确地描述光响应曲线, 也能够准确拟合最大净光合速率、光饱和点、光补偿点以及暗呼吸速率4个关键光合参数。该结果为研究植物光合生理生态过程及其环境适应性提供了一个改进的模拟方法。

关键词: 光响应模型 ; 改进模型 ; 干旱适用性 ; 光合参数 ; 玉米 ; C4植物

Abstract

Aims A light response curve can reflect a plant’s ability to utilize light, which is also a key tool in determining the relationship between photosynthetic capacity and environmental factors; however the model accuracies concerning the light response curve remain elusive. The objectives of this study were to compare and assess the model accuracies related to a light response curve and the effects of drought. Methods A field rain shelter was used to control the soil water conditions. To obtain photosynthesis parameters from the light response curve and the drought effects, the relevant models (including the rectangular model, non-rectangular hyperbolic model, modified rectangular hyperbolic model, exponential model, quadratic function model, and a newly modified model) were applied to fit the light response curves. The validity of each model was tested by analyzing the differences between the fitted values obtained by the models and the measured values. Important findings The newly modified model has been proved to performing relatively better in accurately describing the light response curve patterns, and credibly obtaining the crucial photosynthetic parameters such as the maximum net photosynthetic rate, light saturation point, light compensation point, and dark respiration rate, especially under high radiation conditions.

Keywords: light response curve ; modified model ; drought adaptation ; photosynthetic parameter ; maize ; C4 plants

0

PDF (1078KB) 元数据 多维度评价 相关文章 收藏文章

本文引用格式 导出 EndNote Ris Bibtex

李义博, 宋贺, 周莉, 许振柱, 周广胜. C4植物玉米的光合-光响应曲线模拟研究. 植物生态学报, 2017, 41(12): 1289-1300 https://doi.org/10.17521/cjpe.2017.0158

Yi-Bo Li. Modeling study on photosynthetic-light response curves of a C4 plant, maize. Chinese Journal of Plant Ecology, 2017, 41(12): 1289-1300 https://doi.org/10.17521/cjpe.2017.0158

光合作用是决定植物生长、发育和繁殖的关键环节, 同时也制约着陆地生态系统碳水循环等基本过程(Smith et al., 2000; Beer et al., 2010); C4作物作为至关重要的农作物(如玉米(Zea mays)、甘蔗(Saccharum officinarum)等), 主要分布在非洲南部、澳大利亚北部、亚洲东部和南部以及美洲大部分地区(Edwards et al., 2010), 由于C4植物中具有CO2浓缩机制从而限制了光呼吸并提高羧化效率, 使得C4植物能够在低浓度CO2下维持较高的光合速率; 另一方面, CO2在叶片细胞间隙的供应速率与通过气孔的水分蒸腾密切相关。较高的固碳能力和气孔调节能力, 使具有C4光合作用途径的植物具有较高的水分利用效率(Raschke, 1975; Taylor et al., 2014); 与C3物种相比, C4植物在强光、高温和干旱条件下具有明显的竞争优势(Moore, 1994; Ward et al., 1999)。在未来气候变化情景下, 干旱发生的频率、时期和严重性将持续增加, 严重影响到农业生产和食品安全(Stratonovitch & Semenov, 2015), 并且CO2的施肥效应对C4植物不明显, 干旱对玉米(Zea mays)的影响更加显著(Lobell et al., 2011)。所以分析干旱条件下玉米的光响应曲线对于深入理解C4植物光合的特性及其环境影响, 提高对玉米干旱发生的认知及识别, 乃至对保障中国粮食安全都具有重要作用。

叶片光合作用对光的响应曲线及其模拟是研究植物光合作用与环境变化相互作用的重要手段(叶子飘, 2007; 李力等, 2016), 也是有效模拟冠层光合作用、陆地生态系统过程进而预测植被生产力的关键方法(Yuan et al., 2007; Pinto et al., 2016; Yao et al., 2017)。光曲线模型是模拟光合作用对环境因子响应的重要方法, 通过分析光合有效辐射与净光合速率的关系, 可得出表观量子效率(AQE)、光补偿点(LCP)、最大净光合速率(Pnmax)、光饱和点(LSP)和暗呼吸速率(Rd)等若干重要光合生理参数(Larocque, 2002), 这些参数有助于了解植物光合作用中光化学效率(Sharp et al., 1984), 也能够指示植物的生长情况及抗逆性大小(许大全, 2002)。因此, 确定植物光响应曲线对于研究植物的光合特性具有重要意义。不同环境条件下最适模型的确定是定量研究植物对环境的适应性以及气体交换参数的基础(叶子飘和于强, 2008; 张利阳等, 2011)。目前, 常用的光响应曲线模型主要有: 直角双曲线模型(Baly, 1935; Kirschbaum & Farquhar, 1987)、非直角双曲线模型(Prioul & Chartier, 1977)、直角双曲线修正模型(Ye, 2007; Ye et al., 2012)、指数方程(Bassman & Zwier, 1991; Prado & Moraes, 1997)、二次函数(段爱国等, 2010)等。其中, 非直角双曲线模型的使用频率最高(王圣杰等, 2011), 但拟合的最大净光合速率值偏高, 限制了模型的应用(叶子飘, 2010; 王荣荣等, 2013); 直角双曲线修正模型由于能够模拟光抑制的情况, 近年来被广泛应用(Ye, 2007; 李力等, 2016), 但未进行模型的检验, 模型的准确性有待进一步确定(罗辅燕等, 2013)。这些模型对同一植物拟合所得的光合参数也有不同(吴爱姣等, 2015), 如何正确地模拟光响应曲线是准确获取相关参数的关键(闫小红等, 2013; Friedlingstein et al., 2014)。

水分胁迫是制约植物/作物生长和发育的关键因素(Boyer, 1982; 刘宇锋等, 2005); 近年来, 我国受干旱影响日益严重, 每年农田受旱面积占农业灾害面积的62%以上(纪瑞鹏等, 2012), C4作物玉米作为全球第一大粮食作物受干旱影响严重, 而研究玉米的光合特性对不同干旱程度的响应与适应可为灾害影响评估提供理论依据(郑江平和王春乙, 2006)。准确的光响应模型已成为解释光合信息及其对环境变化响应的重要手段(Lobo et al., 2013)。已有模型研究大多通过拟合曲线获取关键光合参数, 但并未对所用模型的适用性进行研究(Chen et al., 2011; 罗辅燕等, 2013)。本研究拟基于玉米不同干旱处理试验资料, 比较研究已有的5个常用光响应模型和本文提出的改进模型, 并在玉米拔节期到抽雄期探究其干旱的适应性, 以期为C4植物玉米光合-光响应曲线模型的选择提供参考依据, 也为陆地生态系统过程模拟提供较准确的光合参数。

1 材料和方法

1.1 试验地概况

该试验在辽宁省锦州市生态与农业气象中心(41.13° N, 121.17° E, 海拔27.4 m)进行。该区属温带季风型大陆性气候, 四季分明, 年极端最高气温41.8 ℃, 年极端最低气温-31.3 ℃; 1981-2010年年平均气温9.9 ℃。年降水量为568 mm, 其中60%- 70%的降水集中在夏季。年无霜期144-180天; 土壤为典型棕壤, pH值6.3, 有机质含量1.8%, 0-100 cm土壤容重为1.61 g·cm-3, 田间持水量22.3%, 凋萎湿度6.5%, 主要作物为玉米(于文颖等, 2015; 米娜等, 2017)。

1.2 材料和试验设计

试验于2016年5-7月在大型农田电动活动式防雨棚中开展, 采用降水模拟装置模拟自然降水。每个小区面积15 m2 (长5 m, 宽3 m, 深2 m), 小区之间被0.15 m的水泥隔离层隔开, 以避免小区间土壤水分渗透。种植密度为5.3株·m-2。供试玉米为‘丹玉405号’。

利用FAO (Allen et al., 1998)对作物需水量的计算方法, 结合玉米多年(1981-2010年)的平均需水量, 设置3个水分处理, 3次重复, 设置T1为对照处理, 拔节期至抽雄期每7天模拟降水一次, 每次灌水24 mm; T2为大喇叭前期至抽雄期控水处理, 控水时间为7月14至25日, 控水12天。控水指不接受自然降水, 也无人工补水。T3为拔节期至抽雄期控水处理, 控水时间为6月30日至7月25日, 控水26天。

1.3 光响应曲线的测定

在抽雄期至吐丝期(7月下旬)进行光响应曲线的测定, 随机挑选3株长势一致健康的植株, 每株植株选取最上面刚完全展开的叶片进行测量。在自然光诱导1 h后(9:30-10:00), 利用便携式光合仪LI-6400 (LI-COR, Lincoln, USA)进行光曲线测定。由于仪器自动测量时, 会出现数值未稳定就强迫记录数值, 此时需要手动延时, 以保证记录的是稳定状态下的测量值。CO2浓度控制在(390 ± 10) μmol·mol-1, 空气相对湿度控制在(70 ± 5)%, 温度控制在(30 ± 2) ℃。设置光合有效辐射(PAR)梯度为: 1β800、1β500、1β200、1β000、800、600、400、200、100、50、20和0 μmol·m-2·s-1, 测定不同处理下玉米净光合速率(Pn, μmol·m-2·s-1)、气孔导度(Gs, mol·m-2·s-1)、胞间CO2浓度(Ci, μmol·mol-1)、蒸腾速率(Tr, mmol·m-2·s-1)等, 用不同模型拟合光曲线, 得到光合参数, 包括表观量子效率(AQE)、光补偿点(LCP, μmol·m-2·s-1)、最大净光合速率(Pnmax, μmol·m-2·s-1)、光饱和点(LSP, μmol·m-2·s-1)和暗呼吸速率(Rd, μmol·m-2·s-1)。

1.4 光响应模型

1.4.1 直角双曲线模型(Baly, 1935)

${{P}_{\text{n}}}=\frac{\alpha I{{P}_{\text{n}\max }}}{\alpha I+{{P}_{\text{n}\max }}}-{{R}_{\text{d}}}$ (1)

式中, I为光量子通量密度(μmol·m-2·s-1), α为初始量子效率(μmol·umol-1), 即光响应曲线在I = 0时的斜率, Pnmax为最大净光合速率(μmol·m-2·s-1), Rd为暗呼吸速率(μmol·m-2·s-1)。直线方程拟合弱光下(≤ 200 μmol·m-2·s-1)的光响应, 获取光响应曲线的初始斜率, 即为AQE, 直线方程与x轴的交点即为LCP, 与直线y = Pnmax交点所对应的x轴数值即LSP (叶子飘, 2010)。

1.4.2 非直角双曲线模型(Thornley, 1976)

${{P}_{\text{n}}}=\frac{\alpha I+{{P}_{\text{nmax}}}-\sqrt{{{(\alpha I+{{P}_{\text{nmax}}})}^{2}}-4\theta \alpha I{{P}_{\text{nmax}}}}}{2\theta }-{{R}_{\text{d}}}$(2)

式中, θ为曲线的弯曲程度, 取值0 ≤ θ ≤ 1。AQELCPLSP计算方法与直角双曲线模型一致。

1.4.3 指数方程函数(Bassman & Zwier, 1991)

${{P}_{\text{n}}}={{P}_{\text{nmax}}}[1-{{C}_{0}}{{\text{e}}^{(\alpha I/{{P}_{\text{nmax}}})}}]$(3)

式中, PnαIPnmaxRd的定义同前, e为自然对数, C0为度量弱光下净光合速率区域为0的指标。计算LSP需假设光合速率为0.9Pnmax或0.99Pnmax所对应的光强(黄红英等, 2009)。

1.4.4 直角双曲线修正模型(Ye, 2007)

${{P}_{\text{n}}}=\alpha \frac{1-\beta I}{1+\gamma I}-{{R}_{\text{d}}}$ (4)

式中, PnαIRd的定义同前, β表示光抑制项, γ表示光饱和项, 可以直接从式中求得LCPLSPPnmax的解析解。

1.4.5 二次方程函数(郭水良等, 2004)

${{P}_{\text{n}}}=a{{I}^{2}}+bI+c$ (5)

式中, PnI同前, abc均为系数。二次函数拟合光曲线作为纯粹的数学模型, 可根据二次函数的特性拟合AQELCPPnmaxLSPRd的解析解。

1.4.6 光响应曲线改进模型

该模型基于米氏方程和直角双曲线模型而改进。有研究表明, 模型的参数越多, 拟合效果越好, 故模型中选用了4个未知量, 但过多的参数也会增加模型的不确定性; 有文献报道, 运用多项式回归方程具有较高的拟合效果(高志奎等, 2007)。

${{P}_{\text{n}}}=\frac{a+bI}{1+cI+d{{I}^{2}}}$ (6)

式中, abcd为系数。

PAR = 0时, Rd = a, (7)

Pn = 0时, $LCP=-\frac{a}{b}$ (8)

方程(6)在任意光强下的导数为:

${{{P}'}_{\text{n}}}=\frac{-bd{{I}^{2}}-2adI-ac+b}{{{(1+cI+d{{I}^{2}})}^{2}}}$ (9)

PAR = 0时, 光响应曲线在该点的斜率为初始量子效率 (Ye, 2007), α = b - ac (10)

由公式(9)可知, 当${{{P}'}_{\text{n}}}=0$, 该方程(9)有解析解, 这说明Pn存在最大值:

$LSP=\frac{2ad+\sqrt{4a2{{d}^{2}}-4bd(ac-b)}}{2bd}$ (11)

光饱和点的PnPnmax。公式如下:

${{P}_{\text{nmax}}}={{P}_{\text{n}}}(LSP)=\frac{a+bLSP}{1+cLSP+dLS{{P}^{2}}}$ (12)

1.5 数据分析

实验数据处理由Excel完成, 模型参数估计采用1stOp 5.0软件。将光合数据随机分为两部分: 一部分用于6个光响应曲线拟合, 分析拟合值的均方误差(MSE)和平均绝对误差(MAE), 余下的光合数据代入光响应曲线中, 求得测试值的MSEMAE, 用于检验模型的准确性(Chen et al., 2011)。同时将模型求出的光合参数与实测值进行比较, 综合判断模型拟合的精确度。

2 结果和分析

2.1 持续干旱下玉米光响应曲线特征分析

玉米叶片的Pn实测值与PAR的响应及其各模型拟合的光响应曲线如图1所示。在较低PAR水平下, 叶片的Pn随着PAR的增加而迅速增加, 当PAR到达光饱和点时, Pn增加的幅度减小; 随着持续干旱时间的增加, 光饱和点逐渐提前, 不同模型的拟合效果差异明显, 改进模型能较好地反映光响应曲线的变化规律。在图1A中, Pn随着光照强度的增加而一直增加, 之后光合-光响应曲线的变化趋于稳定, 各模型拟合差异不明显; 在图1B中, 当PAR小于600 μmol·m-2·s-1时, 曲线模拟值与实测值差异不明显, 随着PAR的增加, 光合能力受到限制, 导致曲线弯曲程度增加, 各曲线模拟差异明显; 图1C中, 在800 μmol·m-2·s-1附近达到光饱和点, 超过光饱和点后, 随着PAR的增加, 曲线下降明显, 产生光抑制现象(Kumar & Murthy, 2007), 各模型在PAR超过600 μmol·m-2·s-1后拟合效果差异明显。

2.2 不同光响应模型对持续干旱下玉米光合特征参数的比较

表1是6个光响应模型得出的玉米拔节期至抽雄期的光合生理参数值和实测值, 各模型模拟值与实测值差异较大。比较发现: 正常处理下, 以二次函数模型和改进模型模拟的Pnmax与实测值最为接近, LSP除了直角双曲线修正模型和改进模型与实测值比较接近外, 其他模型与实测值相差较大, 指数函数和二次函数对LCP的预测最为接近实测值, 二次函数和改进模型模拟Rd最接近实测值; 持续干旱处理12天时, 以二次函数模型和改进模型模拟的Pnmax与实测值最为接近, LSP除了直角双曲线修正模型、改进模型和二次函数模型与实测值比较接近外, 其他模型与实测值相差较大, 直角双曲线修正模型和改进模型对LCP的预测最接近实测值, 直角双曲线修正模型和改进模型模拟Rd最接近实测值; 持续干旱处理26天时, 以二次函数模型和改进模型模拟的Pnmax与实测值最为接近, LSP除了直角双曲线模型和改进模型与实测值比较接近外, 其他模型与实测值相差较大, 改进模型对LCP的预测最接近实测值, 二次函数模型和改进模型模拟Rd最接近实测值。

图1   玉米净光合速率与光合有效辐射的关系。A, 拔节期至抽雄期正常处理时光响应曲线。B, 拔节期至抽雄期干旱12天处理时光响应曲线。C, 拔节期至抽雄期干旱26天处理时光响应曲线。

Fig. 1   Comparison of measured and fitted values by six light response curves for maize under different drought treatment. A, Light response curves under control treatment. B, Light responses curves under continuous 12 days drought treatment. C, Light responses curves under continuous 26 days drought treatment.

表1   玉米拔节期至抽雄期6个光响应模型模拟的光合生理参数与实测值的比较

Table 1   Comparison between the fitted photosynthesis parameters by the models and the measured values

处理 Treatment模型 Model初始量子效率 α
(μmol·μmol-1 )
最大净光合速率 Pnmax
(μmol·m-2·s-1)
光饱和点 LSP
(μmol·m-2·s-1)
光补偿点 LCP
(μmol·m-2·s-1)
暗呼吸速率 Rd
(μmol·m-2·s-1)
拔节期至抽雄期正常处理
control treatment between jointing stage and tasseling stage
直角双曲线模型
Rectangular hyperbolic model
0.07252.081 287.6252.733.55
非直角双曲线模型
Non-rectangular hyperbolic model
0.04136.17912.3158.262.37
直角双曲线修正模型
Modified rectangular hyperbolic model
0.04932.221 536.9057.422.76
指数模型 Exponential model0.05734.74161.5756.432.62
二次函数模型 Quadratic function model0.04732.561 512.6957.232.61
改进模型 Modified model0.04331.881 596.8558.802.23
实测值 Measured value-31.781 775.0056.052.51
拔节期至抽雄期干旱12天处理
continuous 12 days drought treatment between jointing stage and tasseling stage
直角双曲线模型
Rectangular hyperbolic model
0.07837.05886.6359.434.14
非直角双曲线模型
Non-rectangular hyperbolic model
0.04027.42674.0964.882.68
直角双曲线修正模型
Modified rectangular hyperbolic model
0.05324.411 390.4666.073.35
指数模型 Exponential model0.05525.07117.8121.661.15
二次函数模型 Quadratic function model0.04225.601 340.6059.192.42
改进模型 Modified model0.04724.081 398.5967.912.88
实测值 Measured value-23.941 500.0068.833.12
拔节期至抽雄期干旱26天处理
continuous 26 days drought treatment between jointing stage and tasseling stage
直角双曲线模型
Rectangular hyperbolic model
0.07317.00740.6833.522.13
非直角双曲线模型
Non-rectangular hyperbolic model
0.02312.84572.6436.570.85
直角双曲线修正模型
Modified rectangular hyperbolic model
0.03614.041 033.4047.551.65
指数模型 Exponential model0.04612.4358.5241.031.16
二次函数模型 Quadratic function model0.02914.611 094.8146.371.32
改进模型 Modified model0.02214.18889.1956.631.33
实测值 Measured value-13.90800.0055.271.37

Maximum Pn is taken as Pnmax. Rd is the measured Pn when PAR = LCP is the visual value obtained by the interaction point between light response curve and x-axis. LSP is known when the curve is in stable state, the PAR corresponding maximum value of Pn is LSP. Italic numbers are measured value or estimated value. α, intrinsic quantum yield; Pn, net photosynthetic rates; PAR, photosynthetically active radiation; LCP, light compensation point; LSP, light saturation point; Rd, rate of dark respiration; Pnmax, the maximum net photosynthetic rates.取测量净光合速率最大值作为最大净光合速率实测值; 暗呼吸速率为光强等于0时的实测值; 光补偿点根据测量曲线与x交点的目测值; 以达到平稳状态时的光强作为光饱和点, 最大净光合速率对应的光合有效辐射值为光饱和点。斜体表示实测值或估测值。

新窗口打开

2.3 持续干旱下玉米光响应模型的适用性分析

表2可知, 所有模型的决定系数(R2)均大于0.92, 拟合效果较好。在3个处理中, 改进模型的R2最高。MSEMAE能够反映拟合值与测量值之间的差异性, 其值越小, 表示拟合值与测量值越接近(Chen et al., 2011)。在玉米拔节期至抽雄期正常处理下, 拟合MSE和拟合MAE由小到大顺序为: 改进模型<非直角双曲线模型<直角双曲线修正模型<二次函数模型<指数模型<直角双曲线模型; 实测MSE由小到大顺序为: 二次函数模型<非直角双曲线模型<改进模型<直角双曲线修正模型<直角双曲线模型<指数模型; 实测MAE由小到大顺序为: 二次函数模型<改进模型<非直角双曲线模型<直角双曲线修正模型<直角双曲线模型<指数模型。在玉米拔节期至抽雄期持续干旱12天时, 拟合MSE和拟合MAE由小到大顺序为: 直角双曲线修正模型<改进模型<非直角双曲线模型<二次函数模型<指数模型<直角双曲线模型; 拟合MAE由小到大顺序为: 改进模型<直角双曲线修正模型<非直角双曲线模型<指数模型<二次函数模型<直角双曲线模型; 实测MSE由小到大顺序为: 改进模型<直角双曲线修正模型<非直角双曲线模型<二次函数模型<直角双曲线模型<指数模型; 实测MAE由小到大顺序为: 改进模型<非直角双曲线模型<二次函数模型<直角双曲线修正模型<直角双曲线模型<指数模型。在玉米拔节期至抽雄期持续干旱26天时, 无论是拟合的MSEMAE值, 还是实测的MSEMAE值, 由小到大顺序均为: 改进模型<直角双曲线修正模型<二次函数模型<非直角双曲线模型<指数函数<直角双曲线模型。

表2   玉米拔节期至抽雄期6个光响应模型的适用性比较

Table 2   Comparison of precision of six light response curve models

处理 Treatment模型 ModelR2拟合MSE
Fitted MSE
拟合MAE
Fitted MAE
实测MSE
Test MSE
实测MAE
Test MAE
拔节期至抽雄期正常处理
control treatment between jointing stage and tasseling stage
直角双曲线模型
Rectangular hyperbolic model
0.991β81.681.083.741.50
非直角双曲线模型
Non-rectangular hyperbolic model
0.999β60.080.240.860.81
直角双曲线修正模型
Modified rectangular hyperbolic model
0.999β40.120.291.010.82
指数模型 Exponential model0.997β00.740.694.051.87
二次函数模型 quadratic function model0.999β30.150.300.750.72
改进模型 Modified model0.999β70.050.190.910.80
拔节期至抽雄期干旱12天处理
continuous 12 days drought treatment between jointing stage and tasseling stage
直角双曲线模型
Rectangular hyperbolic model
0.984β71.521.033.191.22
非直角双曲线模型
Non-rectangular hyperbolic model
0.995β80.400.520.580.49
直角双曲线修正模型
Modified rectangular hyperbolic model
0.997β30.250.450.490.61
指数模型 Exponential model0.993β00.710.735.422.05
二次函数模型 Quadratic function model0.992β70.740.760.710.57
改进模型 Modified model0.997β20.260.390.390.36
拔节期至抽雄期干旱26天处理
continuous 26 days drought treatment between jointing stage and tasseling stage
直角双曲线模型
Rectangular hyperbolic model
0.920β52.711.344.311.83
非直角双曲线模型
Non-rectangular hyperbolic model
0.961β01.240.903.311.45
直角双曲线修正模型
Modified rectangular hyperbolic model
0.997β10.100.260.370.48
指数模型 Exponential model0.950β81.731.065.201.60
二次函数模型 quadratic function model0.992β00.310.480.610.71
改进模型 Modified model0.999β20.030.140.140.21

MSE, mean square error; MAE, mean absolute error.MSE, 均方误差; MAE, 平均绝对误差。

新窗口打开

图2表示用于验证模型的实测值与预测值之间的1:1线(图2A-2F), 改进模型的R2最大(图2F)。综合分析, 实测值与二次函数模型和改进模型所得的预测值最接近(线性回归的斜率接近1, 截距也最接近0)。

3 讨论

在全球变化条件下, C4植物虽然能够利用低浓度的CO2, 在强光、高温和干旱条件下具有明显的竞争优势(Moore, 1994; Ward et al., 1999; Leakey et al., 2006; Xu et al., 2014), 但在CO2浓度升高, 且水分条件较好时, 其CO2的施肥效应不明显; 然而, 在水分亏缺条件下, 由于CO2浓度升高导致了气孔导度降低, 从而提高了水分利用率, 这使得在未来全球变化条件下, C4植物对干旱的适应性更强, 值得进行深入探讨(Leakey et al., 2006; Lobell et al., 2011)。阐明干旱对C4植物玉米光合生理生态特性的影响, 对指导制定玉米生产应对气候变化的适应管理策略, 乃至保障粮食安全都具有重要意义。

3.1 持续干旱处理对玉米光合特征参数的影响

分析光合-光响应曲线是理解光化学效率的重要方式, 被广泛用于研究植物生理生态过程及其环境的影响等方面: 光合-光响应曲线的参数能够反映植物光合机制对环境的响应(Akhkha, 2010)。C4作物玉米对干旱的响应因干旱时期和干旱程度的不同而异(吴玮等, 2013)。表观量子效率(AQE)能够反映植物在弱光下对光能的吸收、传递和利用的能力(焦念元等, 1998)。较高的AQE具有较高的光能传递能力, 在自然环境下, 植物的AQE一般在0.04-0.07 mol·mol-1之间(Long et al., 2003); 本研究结果表明, 持续干旱12天与对照处理的AQE差异不明显, 表明在大喇叭前期到抽雄期干旱不影响玉米在弱光下对光的利用效率, 在此期间体现了玉米对干旱较强的适应性; 而持续干旱26天后, 它比对照处理下降了37.3%, 表明持续干旱使得玉米在弱光下吸收、转化和利用光能的能力下降, 这与韩刚和赵忠(2010)的研究结果一致。Pnmax能够反映植物叶片的最大光合能力, 其值越大表明在强光下植物越不受光强的限制(闫小红等, 2013); 本研究表明, 持续干旱12天与持续干旱26天后, Pnmax较对照处理分别下降了24.7%和56.2%, 表明干旱限制了光合作用, 同时, 随着干旱时间的增加, 制约能力越明显(Prioul & Chartier, 1977; 叶子飘和于强, 2008)。光能利用效率的下降也可能是一种自我光保护机制, 用于消耗热量以保护光化学反应中心免遭逆境伤害(Zhu et al., 2004)。植物叶片Rd是指在光强为0时的光合速率(Coley, 1983), 本研究中, AQERd呈现相同的变化规律, 这与李力(2016)的研究结果一致。持续干旱26天后, 和对照比, Rd下降了45.5%, 表明在干旱条件下玉米通过减少呼吸作用的消耗来维持自身代谢平衡, 对光强具有一定的适应性, 这与已有研究结果(韩刚和赵忠, 2010; 王荣荣等, 2013)一致; 也可能是干旱限制了植物的生理活性, 从而减少对于能量的需求, 使Rd下降(Atkin & Macherel, 2009)。

图2   实测值与预测值之间的线性回归, 虚线表示1:1线。A、B、C、D、E、F分别表示直角双曲线模型、非直角双曲线模型、直角双曲线修正模型、指数模型、二次函数模型和改进模型, 所有模型的斜率与1无显著差异, 截距与0无显著差异。

Fig. 2   Linear regression for measured values and predicted values, the dashed line is the 1:1 line. A, B, C, D, E and F represent rectangular hyperbolic, non-rectangular hyperbolic model, modified rectangular hyperbolic model, exponential model, quadratic function model and modified model, respectively. All of these slopes are not significantly different from 1, and all of these intercepts are not significantly different from 0.

LCPLSP分别代表植物对强光和弱光的利用能力(韩刚和赵忠, 2010)。LCP是植物净光合速率为0的光强, 即植物光合同化量与自身呼吸消耗量相等时的光强; LSP能够反映植物利用光强的能力, 其值越大表明在强光下光合作用越不受抑制。Larcher (1997)认为, 典型阳生植物的LCP在9-27 μmol·m-2·s-1之间, LSP在360-900 μmol·m-2·s-1之间, 本试验中, 3种处理下玉米的LCPLSP都满足阳生植物特性, 但LSP随着干旱时间的增加而逐渐提前。当所处的环境不利于生长时, 植物通常减少LSP或增加LCP来确保正常的光合行为; 郎莹等(2011)的研究表明, 水分过高或过低都会使得叶片LCP增高, LSP降低, 从而使得植物对光能的利用率降低。LCPLSP对应的光强范围可在一定程度上代表净光合作用的有效时长, 韩刚和赵忠(2010)的研究表明, 随着干旱的加剧, 光能利用范围变窄。王荣荣等(2013)的研究表明, LCP逐渐升高, LSP下降会导致植物对光的适应性减弱。本试验中, 正常处理下LCPLSP对应的光强范围最宽(56.1-1β775 μmol·m-2·s-1), 其次为持续干旱12天(68.8-1β500 μmol·m-2·s-1), 范围最窄为持续干旱处理26天的(55.3-800 μmol·m-2·s-1), 表明随着干旱时间的增加, 净光合作用有效时间减少。本试验中, 干旱26天处理使得玉米的光合作用受到抑制, 使其抵御强光的能力下降。

3.2 不同光响应模型的适用性比较

表2可知, 6个光响应模型均具有很好的拟合效果(R2 > 0.92), 直角双曲线模型、非直角双曲线模型、直角双曲线修正模型、指数模型、二次函数模型被广泛地用于植物对光照强度响应的研究(刘国华等, 2009; 吴芹等, 2011; 陈卫英等, 2012), 但这些模型只用于拟合, 并未进行验证(Chen et al., 2011; 罗辅燕等, 2013)。直角双曲线模型和非直角双曲线模型虽被广泛应用, 但反映的是一条没有极值的渐近线(叶子飘, 2010), 所以无法预测光合速率随着光强增加而下降的特征(White & Critchley, 1999; 施曼等, 2014), 由表1可知, 拟合的Pnmax偏大, LSP偏小, 与现有研究结果相似, 这是该模型自身存在的缺陷(Ye, 2007; 钟楚和朱勇, 2013; 李力等, 2016)。除了直角双曲线修正模型、二次函数模型和改进模型外, 其他模型对存在光抑制下的光响应曲线拟合较差(图1C), 表明该类模型存在一定的局限性。而二次函数模型在预测光响应曲线时, 会出现光补偿点、暗呼吸速率为负值的问题(梁文斌等, 2014)。

除了正常处理时实测的MSEMAE和拔节期至抽雄期干旱12天处理拟合MSE外, 改进模型的拟合MSEMAE和测试MSEMAE值最小, 表明改进模型在6个模型中, 其准确度和精确度最高。在正常水分处理下, 改进模型和直角双曲线修正模型对Pnmax的拟合值分别为31.9和32.2 μmol·m-2·s-1, 均比较接近实测值(31.8 μmol·m-2·s-1); 在干旱12天处理下, 改进模型和直角双曲线修正模型对于Pnmax的拟合值分别为24.1和24.4 μmol·m-2·s-1均较接近实测值(23.9 μmol·m-2·s-1); 在干旱26天处理下, 改进模型和直角双曲线修正模型对Pnmax拟合值分别为14.2和14.0 μmol·m-2·s-1, 也均比较接近其13.9 μmol·m-2·s-1的实测值。由于改进模型MSEMAE小于直角双曲线修正模型, 改进模型模拟的Pnmax比直角双曲线修正模型更加接近实测值。LSPLCPRd的模拟结果与Pnmax的相似: 改进模型优于其他模型。其中, 持续干旱26天时, 改进模型的拟合MSEMAE和测试MSEMAE值均为最小, 这说明, 本改进模型不仅能拟合正常水分处理时的光合特性, 而且在玉米遭受干旱胁迫时也同样适用。

一般情况下, 模型的未知参量越多, 拟合的效果越好。研究表明: 运用多项式回归方程拟合光响应相关性较高, 并且随着高次多项式的增加拟合效果具有增大的趋势(高志奎等, 2007), 但未知变量过多也会为解析不同因子的作用带来新的复杂性和不确定性。本研究提出的改进模型具有4个未知参数, 并且最高项次数为二次, 增加了拟合效果, 但在降低其复杂性方面, 增加模型的可用性方面, 仍待进一步改进。综合来看, 改进模型能够反映玉米叶片不同干旱时期的光响应曲线特征, 并且各参数与实测值最接近, 曲线能够反映在弱光下随着光照强度的增加而迅速上升时的情景, 即光合作用诱导期的光响应过程; 也能反映达到光饱和点之后, 曲线缓慢下降的变化趋势, 即光抑制现象。本研究可为正确模拟和预测作物产量或陆地植被生产力及其对水分条件变化的响应提供理论基础和参数支持。另外, 玉米作为一种最重要的C4物种, 其在不同干旱程度下的光合-光响应特性的初步阐明, 有助于我们更好地理解C4植物对干旱的响应及其适应机制。

致谢 感谢中国科学院植物研究所宋健、马全会、刘晓迪、于鸿莹和李浪以及锦州市生态与农业气象中心工作人员在实验工作中给予的帮助。

The authors have declared that no competing interests exist.

作者声明没有竞争性利益冲突.


参考文献

[1] Akhkha A (2010).

Modelling photosynthetic light-response curve in Calotropis procera under salinity or water deficit stress using non-linear models

. Journal of Taibah University for Science, 3, 49-57.

[本文引用: 1]     

[2] Allen RG, Pereira LS, Raes D, Smith M (1998).

Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56

. Food and Agriculture Organization of the United Nations, Rome.

[本文引用: 1]     

[3] Atkin OK, Macherel D (2009).

The crucial role of plant mitochondria in orchestrating drought tolerance

.Annals of Botany, 103, 581.

https://doi.org/10.1093/aob/mcn094      URL      [本文引用: 1]     

[4] Baly EC (1935).

The kinetics of photosynthesis

.Proceedings of the Royal Society of London Series B, 117, 218-239.

https://doi.org/10.1098/rspb.1935.0026      URL      [本文引用: 2]     

[5] Bassman JH, Zwier JC (1991).

Gas exchange characteristics of Populus trichocarpa, Populus deltoides and Populus trichocarpa × P. deltoides clones

. Tree Physiology, 8, 145-159.

[本文引用: 2]     

[6] Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rodenbeck C, Arain MA, Baldocchi D, Bonan GB (2010).

Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate

.Science, 329, 834-838.

https://doi.org/10.1126/science.1184984      URL      PMID: 20603496      [本文引用: 1]      摘要

Abstract Terrestrial gross primary production (GPP) is the largest global CO(2) flux driving several ecosystem functions. We provide an observation-based estimate of this flux at 123 +/- 8 petagrams of carbon per year (Pg C year(-1)) using eddy covariance flux data and various diagnostic models. Tropical forests and savannahs account for 60%. GPP over 40% of the vegetated land is associated with precipitation. State-of-the-art process-oriented biosphere models used for climate predictions exhibit a large between-model variation of GPP's latitudinal patterns and show higher spatial correlations between GPP and precipitation, suggesting the existence of missing processes or feedback mechanisms which attenuate the vegetation response to climate. Our estimates of spatially distributed GPP and its covariation with climate can help improve coupled climate-carbon cycle process models.
[7] Boyer JS (1982).

Plant productivity and environment

.Science, 218, 443-448.

https://doi.org/10.1126/science.218.4571.443      URL      [本文引用: 1]     

[8] Chen WY, Chen ZY, Luo FY, Peng ZS, Yu MQ (2012).

Comparison between modified exponential model and common models of light-response curve

.Chinese Journal of Plant Ecology, 36, 1277-1285.
(in Chinese with English abstract) [陈卫英, 陈真勇, 罗辅燕, 彭正松, 余懋群 (2012).

光响应曲线的指数改进模型与常用模型比较

. 植物生态学报, 36, 1277-1285.]

[本文引用: 1]     

[9] Chen ZY, Peng ZS, Yang J, Chen WY, Ouyang ZM (2011).

A mathematical model for describing light-response curves in Nicotiana tabacum L

. Photosynthetica, 49, 467-471.

[本文引用: 4]     

[10] Coley PD (1983).

Herbivory and defensive characteristics of tree species in a lowland tropical forest

.Ecological Monographs, 53, 209-229.

https://doi.org/10.2307/1942495      URL      [本文引用: 1]     

[11] Duan AG, Zhang JG, He CY, Zeng YF (2010).

Characteristic parameters of light response of photosynthesis of main tree species for vegetation restoration in dry season in Dry-Hot River Valley

. Scientia Silvae Sinicae, 46(3), 68-73.
(in Chinese with English abstract) [段爱国, 张建国, 何彩云, 曾艳飞 (2010).

干热河谷主要植被恢复树种干季光合光响应生理参数

. 林业科学, 46(3), 68-73.]

https://doi.org/10.11707/j.1001-7488.20100311      Magsci      [本文引用: 1]      摘要

<p><font face="Verdana">探讨金沙江干热河谷元谋段13种野外生长树种在干季的光合光响应曲线特征参数,得出结论:1)以光合光响应曲线上光能利用效率的下降位点来界定植物表观光合速率随光强呈线性增长的弱光区域是科学可行的;2)分段函数对供试树种光合光响应曲线具有良好的拟合性能;3)弱光区域的界定与否对表观量子效率&alpha;和暗呼吸速率R<sub>d</sub>均产生明显影响,而对光补偿点LCP、光饱和点LSP及最大表观光合速率P<sub>max</sub>等3个特征参数影响不明显;4)元谋干热河谷13个树种在干季3月的表观光合量子效率、暗呼吸速率、光补偿点、光饱和点、最大净光合速率大小范围分别为0.020 7~0.059 2 &mu;mol CO<sub>2</sub>&middot;m<sup>-2</sup>s<sup>-1</sup>/&mu;molphotons&middot;m<sup>-2</sup>s<sup>-1</sup>,-2.07~-0.31 &mu;mol CO<sub>2</sub>&middot;m<sup>-2</sup>s<sup>-1</sup>,14~37 &mu;molphotons&middot;m<sup>-2</sup>s<sup>-1</sup>,1 015~1 648 &mu;molphotons&middot;m<sup>-2</sup>s<sup>-1</sup>,3.09~19.32 &mu;mol CO<sub>2</sub>&middot;m<sup>-2</sup>s<sup>-1</sup>;5)最大净光合速率P<sub>max</sub>、表观量子效率&alpha; 、饱和光能利用效率SLUE 3者间的树种排序十分相似,这表明树种在弱光区域及饱和光强下的光能利用效率愈高,其最大净光合效率一般亦越高。</font></p>
[12] Edwards EJ, Osborne CP, Strömberg CAE, Smith SA, Consortium CG (2010).

The origins of C4 grasslands: Integrating evolutionary and ecosystem science

.Science, 328, 587-591.

https://doi.org/10.1126/science.1177216      URL      [本文引用: 1]     

[13] Friedlingstein P, Meinshausen M, Arora VK, Jones CD, Anav A, Liddicoat SK, Knutti R (2014).

Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks

.Journal of Climate, 27, 511-526.

https://doi.org/10.1175/JCLI-D-12-00579.1      URL      [本文引用: 1]     

[14] Gao ZK, Gao RF, He JP, Wang M, Zhong CF (2007).

Analysis of photosynthetic simulation by a biochemical model or mathematical model in greenhouse eggplants

.Acta Ecologica Sinica, 27, 2265-2271.
(in Chinese with English abstract) [高志奎, 高荣孚, 何俊萍, 王梅, 钟传飞 (2007).

温室茄子(Solanum melongena L.)光合数学模型光合生化模型模拟分析

. 生态学报, 27, 2265-2271.]

[本文引用: 2]     

[15] Guo SL, Fang F, Huang H, Qiang S (2004).

Studies on the reproduction and photosynthetic ecophysiology of the exotic invasive plant,Plantago virginica

. Acta Phytoecologica Sinica, 28, 787-793.
(in Chinese with English abstract) [郭水良, 方芳, 黄华, 强胜 (2004).

外来入侵植物北美车前繁殖及光合生理生态学研究

. 植物生态学报, 28, 787-793.]

URL      [本文引用: 1]      摘要

北美车前(Plantago uirginica)原产北美,20世纪50年代进入我国华东地区,近年来其种群呈现爆发式增长态势,已分布到上海、浙江、江西、江苏等省区,是一种典型 的生态入侵种.本文计测了该种在不同密度下的繁殖指标,统计了种群密度与繁殖指标间的关系;应用LAC-4(ADC英国)光合和蒸腾系统测定了该种及其伴 生杂草一年蓬(Erigeron annuus)、小飞蓬(Conyza canadensis)、野塘蒿(Conyza bonarinsis)、马缨丹(Lantana camara)、空心莲子草(Alternathera philoxeroides)、菊芋(Helianthus tuberoses)、蓖麻(Ricinus communis)、紫茉莉(Mirabilis jalapa)、车前(Plantago asiatica)、苦苣菜(Sonch oleraceus)、羊蹄(Rumes japonicus)、藜(Chenopedium album)和黄鹌菜(Youngia japonica)等杂草的光合作用指标,作出了它们的光合-光响应曲线.主要实验结果有:1)北美车前个体花穗重(Y1)、花数/穗(Y2)与种群密度 (X)呈现倒数关系(Y1=0.138 2+15.959 8/X,Y2=46.306 9+6 914.07/X);随着种群密度增加,北美车前的繁殖投资(Y3)、与繁殖投资关系密切的种子数/营养器官重(Y4)呈线性增加(Y3=0.046 9+0.000 2X,Y4=130.24+0.023 9X);2)随着北美车前种群密度的增加,个体间的大小不整齐性(Y5)变小(Y5=0.374 8-0.00002X);3)种群个体间大小不整齐性(Y5)与繁殖投资(X)呈明显负相关(Y5=0.379 3-0.106 6 X),即随着个体大小不整齐性的增加,北美车前种群的繁殖投资减少;4)以自然条件下测得的光合作用数据为基础,拟合得到了北美车前及其它13种伴生杂草 的光合-光响应曲线.北美车前的光合-光响应曲线符合y=-7E-06X2+0.022 3X-0.831 2,光补偿点、光饱和点和最大净光合速率分别为37.32 μmol·m-2·s-1、1593μmol·m-2·s-1和16.93 μmol CO2·m-2·s-1,说明北美车前是典型的阳生杂草.从光补偿点分析,北美车前的耐荫能力比车前、黄鹌菜、小飞蓬、一年蓬、野塘蒿、蓖麻、加拿大一枝 黄花(Solidago canadensis)、苦苣菜、羊蹄和马缨丹的要弱;北美车前净光合速率比一年蓬、小飞蓬、野塘蒿和加拿大一枝黄花等要低些,但是比藜、苦苣菜、蓖麻等 的要高,与同属的车前比较接近;5)在5月下旬,杂草性极强的一年蓬、小飞蓬和空心莲子草的光合午休现象不明显,逸生杂草紫茉莉具有明显的光午休现象,北 美车前是早春杂草,在5月下旬也有明显的光合午休现象,反映出该种不能够很好地适生于5月下旬的高温强光环境.通过分析,得出如下结论:1)随着种群密度 的增加,北美车前产生种群自疏作用,使个体大小不整齐性下降;高密度给北美车前种群造成某种逆境状态,种群以r-对策的生存方式适应环境,提高其繁殖投 资,产生尽可能多的种子,以保证后代的生存,这反映出北美车前在繁殖策略上灵活的调节能力;2)北美车前种群在定居后,如果定居点不再受到人为干扰,其种 群将被快速更替,这与其粘液性的种子、较高的光补偿点有关;3)通过保护植被,定植高秆植物,减少对环境的干扰,能够有效地治理该外来杂草.
[16] Han G, Zhang Z (2010).

Light response characteristics of photosynthesis of four xerophilous shrubs under different soil moistures

.Acta Ecologica Sinica, 30, 4019-4026.
(in Chinese with English abstract) [韩刚, 赵忠 (2010).

不同土壤水分下4种沙生灌木的光合光响应特性

. 生态学报, 30, 4019-4026.]

[本文引用: 2]     

[17] Huang HY, Dou XY, Sun BY, Deng B, Wu GJ, Peng CL (2009).

Comparison of photosynthetic characteristics in two ecotypes of Jatropha curcas in summer

. Acta Ecologica Sinica, 29, 2861-2867.
(in Chinese with English abstract) [黄红英, 窦新永, 孙蓓育, 邓斌, 吴国江, 彭长连 (2009).

两种不同生态型麻疯树夏季光合特性的比较

. 生态学报, 29, 2861-2867.]

https://doi.org/10.3321/j.issn:1000-0933.2009.06.012      URL      [本文引用: 1]      摘要

以来源于海南及贵州的两种不同生态型麻风树(Jatropha curcas L.)为试材,利用LI-6400便携式光合作用测量系统及PAM-2100调制叶绿素荧光仪,在夏季对其气体交换特性及叶绿素荧光参数等进行测定。光强-光合速率响应曲线显示两种不同生态型叶片最大净光合速率(Pmax)和光饱和点(LSP)分别为18.9μmol.m-.2s-1、1600μmol.m-2.s-1(贵州型)和20.4μmol.m-.2s-1、1700μmol.m-.2s-1(海南型),而CO2光合速率响应曲线则显示两者的差异不大。两者的净光合速率(Pn)的日变化曲线都呈双峰型,主峰出现在10:00,在14:00左右出现低谷,次峰出现在16:00左右,有明显的光合"午休"现象。海南麻风树的Pmax、LSP、光补偿点(LCP)、表观量子效率(AQY)和暗呼吸速率(Rd)均高于贵州麻风树。两种生态型麻风树PSⅡ最大原初光化学效率(Fv/Fm)日变化无显著差异,而实际光化学效率(ΦPSⅡ)变化趋势与Pn相同。这表明麻风树是一种具有较高的光合速率和强光适应性的木本能源植物,不同生态型麻风树的气体交换特性及叶绿素荧光参数有一定的差异,海南麻风树对强光的适应能力强于贵州麻风树。
[18] Ji RP, Che YS, Zhu YN, Liang T, Feng R, Yu WY, Zhang YS (2012).

Impacts of drought stress on the growth and development and grain yield of spring maize in Northeast China

.Chinese Journal of Applied Ecology, 23, 3021-3026.
(in Chinese with English abstract) [纪瑞鹏, 车宇胜, 朱永宁, 梁涛, 冯瑞, 于文颖, 张玉书 (2012).

干旱对东北春玉米生长发育和产量的影响

. 应用生态学报, 23, 3021-3026.]

[本文引用: 1]     

[19] Jiao NY, Zhao C, Ning TY, Hou LT, Fu GZ, Li ZJ, Chen MC (2008).

Effects of maize-peanut intercropping on economic yield and light response of photosynthesis

.Chinese Journal of Applied Ecology, 19, 981-985.
(in Chinese with English abstract) [焦念元, 赵春, 宁堂原, 侯连涛, 付国占, 李增嘉, 陈明灿 (2008).

玉米-花生间作对作物产量和光合作用光响应的影响

. 应用生态学报, 19, 981-985.]

[20] Kirschbaum MU, Farquhar GD (1987).

Investigation of the CO2 dependence of quantum yield and respiration inEucalyptus pauciflora

. Plant Physiology, 83, 1032-1036.

https://doi.org/10.1104/pp.83.4.1032      URL      PMID: 16665319      [本文引用: 1]      摘要

In leaves of C(3) plants, the rate of nonphotorespiratory respiration appears to be higher in darkness than in the light. This change from a high to a low rate of carbon loss with increasing photon flux density leads to an increase in the apparent quantum yield of photosynthetic CO(2) assimilation at low photon flux densities (Kok effect). The mechanism of this suppression of nonphotorespiratory respiration is not understood, but biochemical evidence and the observation that a Kok effect is often not observed under low O(2), has led to the suggestion that photorespiration might be involved in some way. This hypothesis was tested with snowgum (Eucalyptus pauciflora Sieb. ex Spreng.) using gas exchange methods. The test was based on the assumption that if photorespiration were involved, then it would be expected that the intercellular partial pressure of CO(2) would also have an influence on the Kok effect. Under normal atmospheric levels of CO(2) and O(2), a Kok effect was found. Changing the intercellular partial pressure of CO(2), however, did not affect the estimate of nonphotorespiratory respiraton, and it was concluded that its decrease with increasing photon flux density did not involve photorespiration. Concurrent measurements showed that the quantum yield of net assimilation of CO(2) increased with increasing intercellular partial pressure of CO(2), and this increase agreed closely with predictions based on recent models of photosynthesis.
[21] Kumar DP, Murthy SD (2007).

Photoinhibition induced alterations in energy transfer process in phycobilisomes of PSII in the cyanobacterium, Spirulina platensis

. Journal of Biochemistry and Molecular Biology, 40, 644-648.

https://doi.org/10.5483/BMBRep.2007.40.5.644      URL      PMID: 17927895      [本文引用: 1]      摘要

Exposure of algae or plants to irradiance from above the light saturation point of photosynthesis is known as high light stress. This high light stress induces various responses including photoinhibition of the photosynthetic apparatus. The degree of photoinhibition could be clearly determined by measuring the parameters such as absorption and fluorescence of chromoproteins. In cyanobacteria and red algae, most of the photosystem (PS) II associated light harvesting is performed by a membrane attached complex called the phycobilisome (PBS). The effects of high intensity light (1000-4000 micromol photons m(-2) s(-1)) on excitation energy transfer from PBSs to PS II in a cyanobacterium Spirulina platensis were studied by measuring room temperature PC fluorescence emission spectra. High light (3000 micromol photons m(-2) s(-1)) stress had a significant effect on PC fluorescence emission spectra. On the other hand, light stress induced an increase in the ratio of PC fluorescence intensity of PBS indicating that light stress inhibits excitation energy transfer from PBS to PS II. The high light treatment to 3000 micromol photons m(-2) s(-1) caused disappearance of 31.5 kDa linker polypeptide which is known to link PC discs together. In addition we observed the similar decrease in the other polypeptide contents. Our data concludes that the Spirulina cells upon light treatment causes alterations in the phycobiliproteins (PBPs) and affects the energy transfer process within the PBSs.
[22] Lang Y, Zhang GC, Zhang ZK, Liu SS, Liu DH, Hu XL (2011).

Light response of photosynthesis and its simulation in leaves of Prunus sibirica L. under different soil water conditions

. Acta Ecologica Sinica, 31, 4499-4509.
(in Chinese with English abstract) [郎莹, 张光灿, 张征坤, 刘顺生, 刘德虎, 胡小兰 (2011).

不同土壤水分下山杏光合作用光响应过程及其模拟

. 生态学报, 31, 4499-4509.]

[23] Larcher W (1997). (Translated by Zhai ZX (翟志席), Guo YH (郭玉海), Ma YZ (马永泽)).

Plant Eco-physiology (植物生态生理学)

, China Agricultural University Press, Beijing. (in Chinese)

[24] Larocque GR (2002).

Coupling a detailed photosynthetic model with foliage distribution and light attenuation functions to compute daily gross photosynthesis in sugar maple ( Acer saccharum Marsh.) stands

. Ecological Modelling, 148, 213-232.

https://doi.org/10.1016/S0304-3800(01)00442-2      URL      [本文引用: 1]      摘要

Canopy multilayer models for forest stands to scale from leaf to canopy have generally focused on developing relatively detailed photosynthetic active radiation (PAR) characterization functions within canopies, but with much simplified photosynthetic production functions. This study aimed at developing a multilayer model based on detailed foliage distribution, PAR interception and photosynthesis components. Allometric, physiological and meteorological data collected in two sugar maple ( Acer saccharum Marsh.) stands that differed in climatic conditions, stand structure and fertility were used to calibrate the model. In the leaf photosynthesis model, photosynthetic rate is limited by the ribulose-bisphosphate (RUBP) concentration or the activity of RUBP carboxylase/oxygenase. The Rubisco potential capacity for CO 2 fixation, V cmax, and the potential electron transport rate, J, were related to temperature and leaf nitrogen and soluble and insoluble protein contents. The Weibull distribution function was used to represent leaf area and biomass distribution within the canopy. PAR was computed in different layers of the canopy using a radiative transfer approach. There was fairly good agreement between measured and predicted photosynthetic rate at the individual leaf level, which indicated that the leaf photosynthesis model accounted for variation in PAR, temperature and foliage nitrogen content. The pattern of foliage nitrogen variation at different levels of the canopy was similar for both sites. However, foliage area and biomass distribution functions were characterized by different patterns between both sites. Simulations showed that differences in canopy properties represented by the site-specific functions were essential to obtain good agreement between predicted and measured PAR below the canopy, as both stands had relatively close values in leaf area index (LAI) and leaf biomass. Sensitivity analysis indicated that the coupled multilayer model derived accounted for relatively small variation in LAI and foliage nitrogen concentration.
[25] Leakey AD, Uribelarrea M, Ainsworth EA, Naidu SL, Rogers A, Ort DR, Long SP (2006).

Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought

.Plant Physiology, 140, 779-790.

https://doi.org/10.1104/pp.105.073957      URL      PMID: 16407441      [本文引用: 2]      摘要

Abstract While increasing temperatures and altered soil moisture arising from climate change in the next 50 years are projected to decrease yield of food crops, elevated CO2 concentration ([CO2]) is predicted to enhance yield and offset these detrimental factors. However, C4 photosynthesis is usually saturated at current [CO2] and theoretically should not be stimulated under elevated [CO2]. Nevertheless, some controlled environment studies have reported direct stimulation of C4 photosynthesis and productivity, as well as physiological acclimation, under elevated [CO2]. To test if these effects occur in the open air and within the Corn Belt, maize (Zea mays) was grown in ambient [CO2] (376 micromol mol(-1)) and elevated [CO2] (550 micromol mol(-1)) using Free-Air Concentration Enrichment technology. The 2004 season had ideal growing conditions in which the crop did not experience water stress. In the absence of water stress, growth at elevated [CO2] did not stimulate photosynthesis, biomass, or yield. Nor was there any CO2 effect on the activity of key photosynthetic enzymes, or metabolic markers of carbon and nitrogen status. Stomatal conductance was lower (-34%) and soil moisture was higher (up to 31%), consistent with reduced crop water use. The results provide unique field evidence that photosynthesis and production of maize may be unaffected by rising [CO2] in the absence of drought. This suggests that rising [CO2] may not provide the full dividend to North American maize production anticipated in projections of future global food supply.
[26] Li L, Zhang XX, Zheng R, Guo JQ (2016).

Photosynthetic characteristics and photosynthesis-light response curve models of summer maize

.Chinese Journal of Plant Ecology, 40, 1310-1318.
(in Chinese with English abstract) [李力, 张祥星, 郑睿, 郭建青 (2016).

夏玉米光合特性及光响应曲线拟合

. 植物生态学报, 40, 1310-1318.]

URL      [本文引用: 3]     

[27] Liang WB, Nie DL, Wu SZ, Bai WF, Shen SZ (2014).

Photosynthetic light response curves of Macropanax rosthornii and their model fitting

. Nonwood Forest Research, 32(4),38-44.
(in Chinese with English abstract) [梁文斌, 聂东伶, 吴思政, 柏文富, 沈素贞 (2014).

短梗大参光合作用光响应曲线及模型拟合

. 经济林研究, 32(4), 38-44.]

URL      [本文引用: 1]      摘要

为了探讨不同光合作用光响应模型对短梗大参光合特性的适用性,采用LI-6400便携式光合仪分别观测了全光照和荫蔽环境下的5年生短梗大参叶片的光响应曲线;并应用二次多项式模型、分段函数、直角双曲线模型、非直角双曲线模型和修正的直角双曲线模型拟合短梗大参的光响应曲线,根据拟合效果筛选不同光照环境下短梗大参合适的光响应模型.结果表明:①在全光照环境下,短梗大参光合作用的光响应曲线属于饱和趋近型;直角双曲线模型、非直角双曲线模型和修正的直角双曲线模型无法直接求取其最大净光合速率和光饱和点的解析解;二次多项式回归模型拟合的光合参数值与实测值相差很大;分段函数为全光照下短梗大参光响应曲线最适用的分析模型,其拟合的初始量子效率为0.047,最大净光合速率为10.70.μmol·m-2s-1,光饱和点为1 333.33 μmol·m-2s-1,光补偿点为10.43 μmol·m-2s-1,暗呼吸速率为0.48 umol·m“s-1.②在荫蔽环境下,短梗大参光合作用的光响应曲线为中度抑制型;二次多项式拟合的光合参数值与实测值差异明显;分段函数拟合的光合参数值则比实测值要低;直角双曲线模型和非直角双曲线模型拟合的光饱和点均明显低于实测值;修正的直角双曲线模型为荫蔽环境下短梗大参光响应曲线分析的最适用模型,其拟合的初始量子效率为0.076,最大净光合速率为5.07μ.mol·m-2s-1,光饱和点为449.60 μmol·m-2s-1,光补偿点为2.79 μ mol·m-2s-1,暗呼吸速率为0.21 μmol·rn2s“.
[28] Liu GH, Wang FS, Ding YL, Lin SY (2009).

Study on the photosynthetic dynamic variation of 4 dwarf bamboos

.Journal of Fujian College of Forestry, 29, 258-263.
(in Chinese with English abstract) [刘国华, 王福升, 丁雨龙, 林树燕 (2009).

4种地被竹光合作用日变化及光合光响应曲线

. 福建林学院学报, 29, 258-263.]

https://doi.org/10.3969/j.issn.1001-389X.2009.03.013      URL      [本文引用: 1]      摘要

以4种地被竹[铺地竹(Arundinaria argenteostriata),菲白竹(Arundinaria fortunei),鹅毛竹(Shibataea chinensis),黄条金刚竹(Sasaella masamuneana f.aureostriata)]为材料,研究了其光合生理动态.结果表明,各竹种4、8月份光合日变化均为"双峰型"曲线,中间出现短暂的"午休"现象,但各竹种净光合速率(Pn)高峰值出现的时间不同,11月份为"单峰型"曲线,其中8月份各竹种的Pn要大于其余2个月份.用直角双曲线、非直角双曲线、二项式回归法对各竹种光合各参数进行拟合,二项式回归拟合各竹种的光饱和点(Lsp)较为准确,而用非直角双曲线拟合各竹种光合的其余参数较为准确.
[29] Liu YF, Xiao LT, Tong JH, Li XB (2005).

Primary application on the non-rectangular hyperbola model for photosynthetic light-response curve

.Chinese Agricultural Science Bulletin, 21(8), 76-79.
(in Chinese with English abstract) [刘宇锋, 萧浪涛, 童建华, 李晓波 (2005).

非直线双曲线模型在光合光响应曲线数据分析中的应用

. 中国农学通报, 21(8), 76-79.]

Magsci      [本文引用: 1]      摘要

通过对光响应曲线数据两种分析方法的比较,发现使用二项式回归来拟合光响应曲线,不能计算表观量子效率且无法解释光强超过光饱和点后,模型预测的光合速率很快下降等问题;而运用非直线双曲线模型结合SPSS软件的非线性回归,并在低光阶段辅以直线回归作补充,能较客观地计算光响应曲线相关参数并绘制出拟合图形。
[30] Lobell DB, Schlenker W, Costaroberts J (2011).

Climate trends and global crop production since 1980

.Science, 333, 616-620.

https://doi.org/10.1126/science.1204531      URL      PMID: 21551030      [本文引用: 2]      摘要

Efforts to anticipate how climate change will affect future food availability can benefit from understanding the impacts of changes to date. We found that in the cropping regions and growing seasons of most countries, with the important exception of the United States, temperature trends from 1980 to 2008 exceeded one standard deviation of historic year-to-year variability. Models that link yields of the four largest commodity crops to weather indicate that global maize and wheat production declined by 3.8 and 5.5%, respectively, relative to a counterfactual without climate trends. For soybeans and rice, winners and losers largely balanced out. Climate trends were large enough in some countries to offset a significant portion of the increases in average yields that arose from technology, carbon dioxide fertilization, and other factors.
[31] Lobo FDA, Barros MPD, Dalmagro HJ, Dalmolin ÂC (2013).

Fitting net photosynthetic light-response curves with Microsoft Excel—A critical look at the models

.Photosynthetica, 51, 445-456.

https://doi.org/10.1007/s11099-013-0045-y      URL      [本文引用: 1]     

[32] Long SP, Humphries AS, Falkowski PG (2003).

Photoinhibition of photosynthesis in nature

.Annual Review of Plant Biology, 45, 633-662.

https://doi.org/10.1146/annurev.pp.45.060194.003221      URL      [本文引用: 1]      摘要

Chlamydocin is a powerful in vitro antitumoral agent, quickly inactivated in vivo. A series of cyclic tetrapeptides related to chlamydocin or HC toxin and bearing a bioactive alkylating group on an epsilon-amino-lysyl function have been examined for their antitumoral activity on L1210 and P388 murine leukemia cell lines. One analog was found to be potent at inhibiting L1210 cell proliferation and had a higher therapeutic index than the reference compound bis-beta-chloroethylnitrosourea on the in vivo P388-induced leukemia model.
[33] Luo FY, Chen WY, Chen ZY (2013).

Applicability of modified exponential model in photosynthetic-CO2 response curve of barley

.Chinese Journal of Plant Ecology, 37, 650-655.
(in Chinese with English abstract) [罗辅燕, 陈卫英, 陈真勇 (2013).

指数改进模型在大麦光合-CO2响应曲线中的适用性

. 植物生态学报, 37, 650-655.]

[本文引用: 3]     

[34] Mi N, Cai F, Zhang YS, Ji RP, Yu WY, Zhang SJ, Fang Y (2017).

Effects of continuous drought during different growth stages on maize and its quantitative relationship

.Chinese Journal of Applied Ecology, 28, 1563-1570.
(in Chinese with English abstract) [米娜, 蔡福, 张玉书, 纪瑞鹏, 于文颖, 张淑杰, 方缘 (2017).

不同生育期持续干旱对玉米的影响及其与减产率的定量关系

. 应用生态学报, 28, 1563-1570.]

[本文引用: 1]     

[35] Moore PD (1994).

High hopes for C4 plants

.Nature, 367, 322-323.

[本文引用: 2]     

[36] Pinto H, Powell JR, Sharwood RE, Tissue DT, Ghannoum O (2016).

Variations in nitrogen use efficiency reflect the biochemical subtype while variations in water use efficiency reflect the evolutionary lineage of C4 grasses at interglacial CO2

.Plant, Cell & Environment, 39, 514-526.

[本文引用: 1]     

[37] Prado CH, Moraes JAPVD (1997).

Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field conditions

.Photosynthetica, 33, 103-112.

https://doi.org/10.1023/A:1022183423630      URL      [本文引用: 1]      摘要

Photosynthetic capacity on area (P Nmaxa ) and mass bases (P Nmaxm ) and specific leaf mass (SLM) were determined in twenty adult woody species of Cerrado under field conditions. The mean values obtained for P Nmaxa [11.4 mol(CO2) m-2 s-1], P Nmaxm [78 mol(CO2) kg-1 s-1] and SLM (150 g m-2) were compared with mean values found for deciduous and evergreen sclerophyllous species growing also under field conditions. P Nmaxm and SLM were statistically different among deciduous, Cerrado and evergreen sclerophyllous species. There was a gradual decrease of P Nmaxm and an increase of SLM from deciduous to evergreen sclerophyllous species. Woody species of Cerrado showed mean values of P Nmaxm and SLM between deciduous and evergreen species indicating its brevideciduousness. The comparison using mean values of P Nmaxm and SLM belonging to deciduous, Cerrado and evergreen sclerophyllous species was suitable to confirm the interdependence among leaf life span, structure and physiological attributes of leaf.
[38] Prioul JL, Chartier P (1977).

Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation: A critical analysis of the methods used

.Annals of Botany, 41, 789-800.

https://doi.org/10.1016/S1001-0521(07)60221-6      URL      [本文引用: 2]      摘要

The partitioning of intracellular resistance to CO60 transfer in two components: mesophyll (rm ) and carboxylation (rx) resistances, is based upon the combination of two sub-models: one encompassing transfer processes and the second, the carboxylation system. All the determinations derived from this method yield a high rm/rx ratio. It is demonstrated in low oxygen conditions, whatever the model used, that this conclusion is highly-dependent upon the form of the equation used at the carboxylation level. The possible influence of O60 concentration on the rm/rx ratio is discussed. Starting from a Rabinowitch model (rectangular hyperbola), some of the conditions necessary to yield lower rm/rx ratio are considered. It is shown that the most relevant factor when modelling the Calvin cycle is the number of limiting pools (enzymes or cofactors) rather than the number of limiting reactions.
[39] Raschke K (1975)

Stomatal action

.Annual Review of Plant Physiology, 26, 309-340.

https://doi.org/10.1146/annurev.pp.26.060175.001521      URL      [本文引用: 1]     

[40] Sharp RE, Matthews MA, Boyer JS (1984).

Kok effect and the quantum yield of photosynthesis

.Plant Physiology, 75, 95-101.

https://doi.org/10.1104/pp.75.1.95      URL      [本文引用: 1]     

[41] Shi M, Cheng LX, Zhu ZL (2014).

Model fitting and application of light response curves of Carpinus betulus

. Journal of Fujian College of Forestry, 34, 349-355.
(in Chinese with English abstract) [施曼, 程龙霞, 祝遵凌 (2014).

欧洲鹅耳枥光响应曲线模型拟合与应用

. 福建林学院学报, 34, 349-355.]

[本文引用: 1]     

[42] Smith SD, Human TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seemann JR, Nowak RS (2000).

Elevated CO2 increases productivity and invasive species success in an arid ecosystem

.Nature, 408, 79-82.

https://doi.org/10.1038/35040544      URL      PMID: 11081510      [本文引用: 1]      摘要

Abstract Arid ecosystems, which occupy about 20% of the earth's terrestrial surface area, have been predicted to be one of the most responsive ecosystem types to elevated atmospheric CO2 and associated global climate change. Here we show, using free-air CO2 enrichment (FACE) technology in an intact Mojave Desert ecosystem, that new shoot production of a dominant perennial shrub is doubled by a 50% increase in atmospheric CO2 concentration in a high rainfall year. However, elevated CO2 does not enhance production in a drought year. We also found that above-ground production and seed rain of an invasive annual grass increases more at elevated CO2 than in several species of native annuals. Consequently, elevated CO2 might enhance the long-term success and dominance of exotic annual grasses in the region. This shift in species composition in favour of exotic annual grasses, driven by global change, has the potential to accelerate the fire cycle, reduce biodiversity and alter ecosystem function in the deserts of western North America.
[43] Stratonovitch P, Semenov MA (2015).

Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change

.Journal of Experimental Botany, 66, 3599-3609.

https://doi.org/10.1093/jxb/erv070      URL      [本文引用: 1]     

[44] Taylor SH, Ripley BS, Martin T, De-Wet LA, Woodward FI, Osborne CP (2014).

Physiological advantages of C4 grasses in the field: A comparative experiment demonstrating the importance of drought

.Global Change Biology, 20, 1992-2003.

https://doi.org/10.1111/gcb.12498      URL      PMID: 24677339      [本文引用: 1]      摘要

Global climate change is expected to shift regional rainfall patterns, influencing species distributions where they depend on water availability. Comparative studies have demonstrated that C4 grasses inhabit drier habitats than C3 relatives, but that both C3 and C4 photosynthesis are susceptible to drought. However, C4 plants may show advantages in hydraulic performance in dry environments. We investigated the effects of seasonal variation in water availability on leaf physiology, using a common garden experiment in the Eastern Cape of South Africa to compare 12 locally occurring grass species from C4 and C3 sister lineages. Photosynthesis was always higher in the C4 than C3 grasses across every month, but the difference was not statistically significant during the wettest months. Surprisingly, stomatal conductance was typically lower in the C3 than C4 grasses, with the peak monthly average for C3 species being similar to that of C4 leaves. In water-limited, rain-fed plots, the photosynthesis of C4 leaves was between 2.0 and 7.4 μmol m612 s611 higher, stomatal conductance almost double, and transpiration 60% higher than for C3 plants. Although C4 average instantaneous water-use efficiencies were higher (2.4–8.1 mmol mol611) than C3 averages (0.7–6.8 mmol mol611), differences were not as great as we expected and were statistically significant only as drought became established. Photosynthesis declined earlier during drought among C3 than C4 species, coincident with decreases in stomatal conductance and transpiration. Eventual decreases in photosynthesis among C4 plants were linked with declining midday leaf water potentials. However, during the same phase of drought, C3 species showed significant decreases in hydrodynamic gradients that suggested hydraulic failure. Thus, our results indicate that stomatal and hydraulic behaviour during drought enhances the differences in photosynthesis between C4 and C3 species. We suggest that these drought responses are important for understanding the advantages of C4 photosynthesis under field conditions.
[45] Thornley JHM (1976).

Mathematical Models in Plant Physiology

. Academic Press, London.

[46] Wang RR, Xia JB, Yang JH, Zhao YY, Liu JT, Sun JK (2013).

Comparison of light response models of photosynthesis in leaves of Periploca sepium under drought stress in sand habitat formed from seashells

. Chinese Journal of Plant Ecology, 37, 111-121.
(in Chinese with English abstract) [王荣荣, 夏江宝, 杨吉华, 赵艳云, 刘京涛, 孙景宽 (2013).

贝壳砂生境干旱胁迫下杠柳叶片光合光响应模型比较

. 植物生态学报, 37, 111-121.]

[本文引用: 2]     

[47] Wang SJ, Huang DZ, Yan HX, Xu XH, Ma XC (2011).

Applicability of four empirical models on photosynthesis light response of Populous szechuanica Schneid

. Journal of Beihua University (Natural Science), 12, 208-212.
(in Chinese with English abstract) [王圣杰, 黄大庄, 闫海霞, 徐学华, 马向超 (2011).

4种经验模型在藏川杨光响应研究中的适用性

. 北华大学学报: 自然科学版, 12, 208-212.]

[本文引用: 1]     

[48] Ward JK, Tissue DT, Thomas RB, Strain BB (1999).

Comparative responses of model C3 and C4 plants to drought in low and elevated CO2

.Global Change Biology, 5, 857-867.

https://doi.org/10.1046/j.1365-2486.1999.00270.x      URL      [本文引用: 2]      摘要

Summary Interactive effects of CO 2 and water availability have been predicted to alter the competitive relationships between C3 and C4 species over geological and contemporary time scales. We tested the effects of drought and CO 2 partial pressures ( p CO 2 ) ranging from values of the Pleistocene to those predicted for the future on the physiology and growth of model C3 and C4 species. We grew co-occurring Abutilon theophrasti (C3) and Amaranthus retroflexus (C4) in monoculture at 18 (Pleistocene), 27 (preindustrial), 35 (current), and 70 (future) Pa CO 2 under conditions of high light and nutrient availability. After 27days of growth, water was withheld from randomly chosen plants of each species until visible wilting occurred. Under well-watered conditions, low p CO 2 that occurred during the Pleistocene was highly limiting to C3 photosynthesis and growth, and C3 plants showed increased photosynthesis and growth with increasing p CO 2 between the Pleistocene and future CO 2 values. Well-watered C4 plants exhibited increased photosynthesis in response to increasing p CO 2 , but total mass and leaf area were unaffected by p CO 2 . In response to drought, C3 plants dropped a large amount of leaf area and maintained relatively high leaf water potential in remaining leaves, whereas C4 plants retained greater leaf area, but at a lower leaf water potential. Furthermore, drought-treated C3 plants grown at 18Pa CO 2 retained relatively greater leaf area than C3 plants grown at higher p CO 2 and exhibited a delay in the reduction of stomatal conductance that may have occurred in response to severe carbon limitations. The C4 plants grown at 70Pa CO 2 showed lower relative reductions in net photosynthesis by the end of the drought compared to plants at lower p CO 2 , indicating that CO 2 enrichment may alleviate drought effects in C4 plants. At the Pleistocene p CO 2 , C3 and C4 plants showed similar relative recovery from drought for leaf area and biomass production, whereas C4 plants showed higher recovery than C3 plants at current and elevated p CO 2 . Based on these model systems, we conclude that C3 species may not have been at a disadvantage relative to C4 species in response to low CO 2 and severe drought during the Pleistocene. Furthermore, C4 species may have an advantage over C3 species in response to increasing atmospheric CO 2 and more frequent and severe droughts.
[49] White AJ, Critchley C (1999).

Rapid light curves: A new fluorescence method to assess the state of the photosynthetic apparatus

. Photosynthesis Research, 59, 63-72.

https://doi.org/10.1023/A:1006188004189      URL      [本文引用: 1]     

[50] Wu AJ, Xu WZ, Guo YL, Chen J, Li S, Xu BC (2015).

Photosynthetic light-response curves of Lespedeza davurica under different water and fertilization conditions

. Acta Agrestia Sinica, 23, 785-792.
(in Chinese with English abstract) [吴爱姣, 徐伟洲, 郭亚力, 陈吉, 李帅, 徐炳成 (2015).

不同水肥条件下达乌里胡枝子的光合-光响应曲线特征

. 草地学报, 23, 785-792.]

[本文引用: 1]     

[51] Wu Q, Zhang GC, Pei B, Xu ZQ, Zhao Y, Fang LD (2011).

CO2 response process and its simulation of Prunus sibirica photosynthesis under different soil moisture conditions

. Chinese Journal of Applied Ecology, 31, 1517-1524.
(in Chinese with English abstract) [吴芹, 张光灿, 裴斌, 徐志强, 赵瑜, 方立东 (2011).

不同土壤水分下山杏光合作用CO2响应过程及其模拟

. 应用生态学报, 31, 1517-1524.]

[本文引用: 1]     

[52] Wu W, Jing YS, Ma YP, E YH, Sun LL, Zheng TF (2013).

Light response characteristics of summer maize at different growth stages under drought

.Journal of Applied Meteorological Science, 6, 723-730.
(in Chinese with English abstract) [吴玮, 景元书, 马玉平, 俄有浩, 孙琳丽, 郑腾飞 (2013).

干旱环境下夏玉米各生育时期光响应特征

. 应用气象学报, 6, 723-730.]

[本文引用: 1]     

[53] Xu DQ (2002).

Efficiency of Photosynthesis

. Shanghai Science and Technology Press, Shanghai. 13-15, 33.
(in Chinese) [许大全 (2002).

光合作用效率

. 上海科学技术出版社, 上海. 13-15, 33.]

[54] Xu ZZ, Shimizu H, Ito S, Yagasaki Y, Zou CJ, Zhou GS, Zheng YR (2014).

Effects of elevated CO2, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland

. Planta, 239, 421-435.

https://doi.org/10.1007/s00425-013-1987-9      URL      [本文引用: 1]     

[55] Yan XH, Yin JH, Duan SH, Zhou B, Hu WH, Liu S (2013).

Photosynthesis light response curves of four rice varieties and model fitting

.Chinese Journal of Ecology, 32, 604-610.
(in Chinese with English abstract) [闫小红, 尹建华, 段世华, 周兵, 胡文海, 刘帅 (2013).

四种水稻品种的光合光响应曲线及其模型拟合

. 生态学杂志, 32, 604-610.]

[本文引用: 2]     

[56] Yao HS, Zhang YL, Yi XY, Zuo WQ, Lei ZY, Sui LL, Zhang WF (2107).

Characters in light-response curves of canopy photosynthetic use efficiency of light and N in responses to plant density in field-grown cotton

.Field Crops Research, 203, 192-200.

URL     

[57] Ye ZP (2007).

A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa

. Photosynthetica, 45, 637-640.

https://doi.org/10.1007/s11099-007-0110-5      URL      [本文引用: 5]     

[58] Ye ZP (2007).

Application of light-response model in estimating the photosynthesis of super-hybrid rice combination-II Youming 86

.Chinese Journal of Ecology, 26, 1323-1326.
(in Chinese with English abstract) [叶子飘 (2007).

光响应模型在超级杂交稻组合-II优明86中的应用

. 生态学杂志, 26, 1323-1326.]

[本文引用: 1]     

[59] Ye ZP (2010).

A review on modeling of responses of photosynthesis to light and CO2

.Journal of Plant Ecology (Chinese Version), 34, 727-740.
(in Chinese with English abstract) [叶子飘 (2010).

光合作用对光和CO2响应模型的研究进展

. 植物生态学报, 34, 727-740.]

[本文引用: 3]     

[60] Ye ZP, Yu Q (2008).

Comparison of new and several classical models of photosynthesis in response to irradiance

.Journal of Plant Ecology (Chinese Version), 32, 1356-1361.
(in Chinese with English abstract) [叶子飘, 于强 (2008).

光合作用光响应模型的比较

. 植物生态学报, 32, 1356-1361.]

https://doi.org/10.3773/j.issn.1005-264x.2008.06.016      URL      [本文引用: 2]      摘要

用美国Li-Cor公司生产的Li-6400光合作用测定仪控制CO2浓度和温度,测量了华北平原冬小麦(Triticum aestivum)的光响应数据.分别用C3植物光响应新模型、直角双曲线模型、非直角双曲线模型和Prado-Moraes模型拟合这些实测数据,分析了由直角双曲线模型、非直角双曲线模型和Prado-Moraes模型拟合这些数据得到的最大净光合速率(The maximum net photosynthetic rate)远大于实测值,而光饱和点(Light saturation point)远小于实测值的原因.结果表明,由C3植物光响应新模型拟合的结果与实测数据符合程度最高(R2=0.999 4和R2=0.998 7);表观量子效率(Apparent quantum yield)不是一个理想的表示植物利用光能的指标,建议用植物光响应曲线在光补偿点处的量子效率作为表示植物光能利用的指标.
[61] Ye ZP, Yu Q, Kang HJ (2012).

Evaluation of photosynthetic electron flow using simultaneous measurements of gas exchange and chlorophyll fluorescence under photorespiratory conditions

.Photosynthetica, 50, 472-476.

https://doi.org/10.1007/s11099-012-0051-5      URL      [本文引用: 1]     

[62] Yu WY, Ji RP, Feng R, Zhao XL, Zhang YS (2015).

Response of water stress on photosynthetic characteristics and water use efficiency of maize leaves in different growth stage

.Acta Ecologica Sinica, 9, 2902-2909.
(in Chinese with English abstract) [于文颖, 纪瑞鹏, 冯锐, 赵先丽, 张玉书 (2015).

不同生育期玉米叶片光合特性及水分利用效率对水分胁迫的响应

. 生态学报, 9, 2902-2909.]

[本文引用: 1]     

[63] Yuan WP, Liu SG, Zhou GS, Zhou GY, Tieszen LL, Baldocchi D, Bernhofer C, Gholz H, Goldstein AH, Goulden ML, Hollinger DY, Hu YM, Law BE, Stoy PC, Vesala T, Wofsy SC (2007).

Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes

.Agricultural and Forest Meteorology, 143, 189-207.

https://doi.org/10.1016/j.agrformet.2006.12.001      URL      [本文引用: 1]      摘要

The quantitative simulation of gross primary production (GPP) at various spatial and temporal scales has been a major challenge in quantifying the global carbon cycle. We developed a light use efficiency (LUE) daily GPP model from eddy covariance (EC) measurements. The model, called EC-LUE, is driven by only four variables: normalized difference vegetation index (NDVI), photosynthetically active radiation (PAR), air temperature, and the Bowen ratio of sensible to latent heat flux (used to calculate moisture stress). The EC-LUE model relies on two assumptions: First, that the fraction of absorbed PAR (fPAR) is a linear function of NDVI; Second, that the realized light use efficiency, calculated from a biome-independent invariant potential LUE, is controlled by air temperature or soil moisture, whichever is most limiting. The EC-LUE model was calibrated and validated using 24,349 daily GPP estimates derived from 28 eddy covariance flux towers from the AmeriFlux and EuroFlux networks, covering a variety of forests, grasslands and savannas. The model explained 85% and 77% of the observed variations of daily GPP for all the calibration and validation sites, respectively. A comparison with GPP calculated from the Moderate Resolution Imaging Spectroradiometer (MODIS) indicated that the EC-LUE model predicted GPP that better matched tower data across these sites. The realized LUE was predominantly controlled by moisture conditions throughout the growing season, and controlled by temperature only at the beginning and end of the growing season. The EC-LUE model is an alternative approach that makes it possible to map daily GPP over large areas because (1) the potential LUE is invariant across various land cover types and (2) all driving forces of the model can be derived from remote sensing data or existing climate observation networks.
[64] Zhang LY, Wen GS, Wang SJ, Liu ZL (2011).

Four light-response models to estimate photosynthesis of

Phyllostachys pubescens. Journal of Zhejiang A & F University, 28(2), 188-193.
(in Chinese with English abstract) [张利阳, 温国胜, 王圣杰, 刘兆玲 (2011).

毛竹光响应模型适用性分析

. 浙江农林大学学报, 28(2), 188-193.]

https://doi.org/10.3969/j.issn.2095-0756.2011.02.003      URL      Magsci      [本文引用: 1]      摘要

为更好地开展毛竹<EM>Phyllostachys pubescens</EM>固碳研究,筛选适合毛竹的光响应模型的基础性研究显得十分必要。以3年生毛竹叶片2009年1月-2010年1月光合响应曲线测定资料为基础,利用非直角双曲线模型、直角双曲线模型、二次函数和指数方程4种方法,对毛竹光响应曲线进行拟合。结果表明:非直角双曲线模型与直角双曲线模型拟合的相关度最高,均大于0.95,指数方程次之,二次函数最差;但非直角双曲线模型与直角双曲线模型所求出的最大净光合速率(<EM>P<SUB>max</SUB></EM>)和暗呼吸速率(<EM>R<SUB>d</SUB></EM>)较实测值高,指数模型的拟合结果准确,但对暗呼吸速率(<EM>R<SUB>d</SUB></EM>)的拟合结果比实测值低;二次函数所拟合的光饱和点(<EM>P<SUB>LS</SUB></EM>)与暗呼吸速率(<EM>R<SUB>d</SUB></EM>)均不正确。建议计算<EM>P<SUB>LS</SUB></EM>和<EM>P<SUB>max</SUB></EM>时使用指数方程,计算表观光量子效率(<EM>Y<SUB>AQ</SUB></EM>),光补偿点(<EM>P<SUB>LC</SUB></EM>)和<EM>R<SUB>d</SUB></EM>时使用50 ~ 100 μmol·m<SUP>-2</SUP>·s<SUP>-1</SUP>以下数值进行直线拟合。图1表2参22
[65] Zheng JP, Wang CY (2006).

Impact of chilling temperature and drought on maize physiological process in seedling stage

.Journal of Applied Meteorological Science, 17, 119-122.
(in Chinese with English abstract) [郑江平, 王春乙 (2006).

低温、干旱并发对玉米苗期生理过程的影响

. 应用气象学报, 17, 119-122.]

https://doi.org/10.3969/j.issn.1001-7313.2006.01.017      URL      [本文引用: 1]      摘要

该文从低温与干旱并发的角度出发,探讨其对玉米苗期生理过程、生 长发育过程产生的影响.通过2004年人工模拟试验,定量研究了低温、干旱及低温、干旱并发对玉米苗期生理过程、生长发育的影响.研究结果表明:低温对光 合作用速率、蒸腾速率均为负效应,在土壤相对湿度适宜时,温度由20 ℃降到16 ℃,光合作用速率下降22.4%,蒸腾速率下降44.0%.干旱对光合作用速率、蒸腾速率也是负效应,在温度适宜,土壤相对湿度由80%降至50%时,光 合作用速率下降11.5%;土壤相对湿度由60%降至50%时,蒸腾速率下降2.7%.低温、干旱并发的影响远大于低温、干旱单因子的影响,温度由20 ℃降至16 ℃,土壤相对湿度由80%降至50%时,光合作用速率下降32.1%,蒸腾速率下降52.7%.
[66] Zhong C, Zhu Y (2013).

Applicability analysis about different photosynthetic light-response models for tobacco

.Chinese Journal of Agrometeorology, 34, 74-80.
(in Chinese with English abstract) [钟楚, 朱勇 (2013).

几种光合作用光响应模型对烟草的适用性分析

. 中国农业气象, 34, 74-80.]

https://doi.org/10.3969/j.issn.1000-6362.2013.01.011      URL      [本文引用: 1]      摘要

为探讨不同光响应曲线模型对烟草的适用性,分别测定云南赵桅基地K326叶片在20、30和 35qC下的净光合速率光响应曲线,昭通自然条件下红花大金元(红大)、KRK26和云烟99叶片净光合速率的光响应曲线。用直角双曲线模型、非直角双曲 线模型、动力学模型、指数模型以及叶子飘等构建的新光响应模型(新模型)对各光响应曲线进行拟合。结果表明,新模型对光饱和、非光饱和及光抑制的光响应曲 线拟合均较好,指数模型对光饱和的光响应曲线拟合较好,其它3个模型对任何一种光响应的拟合效果均较差。指数模型和新模型拟合的最大净光合速率 (Pmax)与实测值最接近,其它3个模型拟合的P。。值偏高,以非直角双曲线模型偏高最明显。直角双曲线模型和非直角双曲线模型拟合的表观量子效率 (仅)普遍接近或超过最大量子效率理论值范围,指数模型和新模型拟合的仅值在正常范围内,动力学模型拟合的仅值则偏低。非直角双曲线模型拟合的光补偿点 (I0)明显低于实测值,其它模型拟合的I。与实测值均较接近。直角双曲线模型、非直角双曲线模型和动力学模型不能直接计算光饱和点(I。),新模型拟合 的I。与实测值均接近,出现光饱和及光抑制时,指数模型拟合的I1也与实测值接近。研究结果表明,以新模型对烟草光响应曲线进行拟合较为合理。
[67] Zhu XG, Ort DR, Whitmarsh J, Long SP (2004).

The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: A theoretical analysis

.Journal of Experimental Botany, 55, 1167-1175.

https://doi.org/10.1093/jxb/erh141      URL      [本文引用: 1]     

/