植物生态学报 ›› 2017, Vol. 41 ›› Issue (12): 1289-1300.DOI: 10.17521/cjpe.2017.0158
• 研究论文 • 上一篇
李义博1,2, 宋贺1,2, 周莉3, 许振柱1,*(), 周广胜1,3,*(
)
出版日期:
2017-12-10
发布日期:
2018-02-23
通讯作者:
许振柱,周广胜
基金资助:
Li Yi-Bo1,2, SONG He1,2, ZHOU Li3, XU Zhen-Zhu1,*(), ZHOU Guang-Sheng1,3,*(
)
Online:
2017-12-10
Published:
2018-02-23
Contact:
XU Zhen-Zhu,ZHOU Guang-Sheng
摘要:
光是植物光合作用最基本的一个决定因子, 准确分析光响应曲线及其参数是研究光合生理生态过程对环境变化响应的重要途径; 但相关模型及其模拟的准确性仍待改进。该研究基于C4作物玉米(Zea mays)不同干旱处理试验资料, 比较研究了现有光响应模型(直角双曲线模型、非直角双曲线模型、直角双曲线修正模型、指数模型、二次函数模型以及新提出的改进模型)的适应性。结果表明, 改进的光响应模型具有较好的精确度, 可较准确地描述光响应曲线, 也能够准确拟合最大净光合速率、光饱和点、光补偿点以及暗呼吸速率4个关键光合参数。该结果为研究植物光合生理生态过程及其环境适应性提供了一个改进的模拟方法。
李义博, 宋贺, 周莉, 许振柱, 周广胜. C4植物玉米的光合-光响应曲线模拟研究. 植物生态学报, 2017, 41(12): 1289-1300. DOI: 10.17521/cjpe.2017.0158
Li Yi-Bo, SONG He, ZHOU Li, XU Zhen-Zhu, ZHOU Guang-Sheng. Modeling study on photosynthetic-light response curves of a C4 plant, maize. Chinese Journal of Plant Ecology, 2017, 41(12): 1289-1300. DOI: 10.17521/cjpe.2017.0158
图1 玉米净光合速率与光合有效辐射的关系。A, 拔节期至抽雄期正常处理时光响应曲线。B, 拔节期至抽雄期干旱12天处理时光响应曲线。C, 拔节期至抽雄期干旱26天处理时光响应曲线。
Fig. 1 Comparison of measured and fitted values by six light response curves for maize under different drought treatment. A, Light response curves under control treatment. B, Light responses curves under continuous 12 days drought treatment. C, Light responses curves under continuous 26 days drought treatment.
处理 Treatment | 模型 Model | 初始量子效率 α (μmol·μmol-1 ) | 最大净光合速率 Pnmax (μmol·m-2·s-1) | 光饱和点 LSP (μmol·m-2·s-1) | 光补偿点 LCP (μmol·m-2·s-1) | 暗呼吸速率 Rd (μmol·m-2·s-1) |
---|---|---|---|---|---|---|
拔节期至抽雄期正常处理 control treatment between jointing stage and tasseling stage | 直角双曲线模型 Rectangular hyperbolic model | 0.072 | 52.08 | 1 287.62 | 52.73 | 3.55 |
非直角双曲线模型 Non-rectangular hyperbolic model | 0.041 | 36.17 | 912.31 | 58.26 | 2.37 | |
直角双曲线修正模型 Modified rectangular hyperbolic model | 0.049 | 32.22 | 1 536.90 | 57.42 | 2.76 | |
指数模型 Exponential model | 0.057 | 34.74 | 161.57 | 56.43 | 2.62 | |
二次函数模型 Quadratic function model | 0.047 | 32.56 | 1 512.69 | 57.23 | 2.61 | |
改进模型 Modified model | 0.043 | 31.88 | 1 596.85 | 58.80 | 2.23 | |
实测值 Measured value | - | 31.78 | 1 775.00 | 56.05 | 2.51 | |
拔节期至抽雄期干旱12天处理 continuous 12 days drought treatment between jointing stage and tasseling stage | 直角双曲线模型 Rectangular hyperbolic model | 0.078 | 37.05 | 886.63 | 59.43 | 4.14 |
非直角双曲线模型 Non-rectangular hyperbolic model | 0.040 | 27.42 | 674.09 | 64.88 | 2.68 | |
直角双曲线修正模型 Modified rectangular hyperbolic model | 0.053 | 24.41 | 1 390.46 | 66.07 | 3.35 | |
指数模型 Exponential model | 0.055 | 25.07 | 117.81 | 21.66 | 1.15 | |
二次函数模型 Quadratic function model | 0.042 | 25.60 | 1 340.60 | 59.19 | 2.42 | |
改进模型 Modified model | 0.047 | 24.08 | 1 398.59 | 67.91 | 2.88 | |
实测值 Measured value | - | 23.94 | 1 500.00 | 68.83 | 3.12 | |
拔节期至抽雄期干旱26天处理 continuous 26 days drought treatment between jointing stage and tasseling stage | 直角双曲线模型 Rectangular hyperbolic model | 0.073 | 17.00 | 740.68 | 33.52 | 2.13 |
非直角双曲线模型 Non-rectangular hyperbolic model | 0.023 | 12.84 | 572.64 | 36.57 | 0.85 | |
直角双曲线修正模型 Modified rectangular hyperbolic model | 0.036 | 14.04 | 1 033.40 | 47.55 | 1.65 | |
指数模型 Exponential model | 0.046 | 12.43 | 58.52 | 41.03 | 1.16 | |
二次函数模型 Quadratic function model | 0.029 | 14.61 | 1 094.81 | 46.37 | 1.32 | |
改进模型 Modified model | 0.022 | 14.18 | 889.19 | 56.63 | 1.33 | |
实测值 Measured value | - | 13.90 | 800.00 | 55.27 | 1.37 |
表1 玉米拔节期至抽雄期6个光响应模型模拟的光合生理参数与实测值的比较
Table 1 Comparison between the fitted photosynthesis parameters by the models and the measured values
处理 Treatment | 模型 Model | 初始量子效率 α (μmol·μmol-1 ) | 最大净光合速率 Pnmax (μmol·m-2·s-1) | 光饱和点 LSP (μmol·m-2·s-1) | 光补偿点 LCP (μmol·m-2·s-1) | 暗呼吸速率 Rd (μmol·m-2·s-1) |
---|---|---|---|---|---|---|
拔节期至抽雄期正常处理 control treatment between jointing stage and tasseling stage | 直角双曲线模型 Rectangular hyperbolic model | 0.072 | 52.08 | 1 287.62 | 52.73 | 3.55 |
非直角双曲线模型 Non-rectangular hyperbolic model | 0.041 | 36.17 | 912.31 | 58.26 | 2.37 | |
直角双曲线修正模型 Modified rectangular hyperbolic model | 0.049 | 32.22 | 1 536.90 | 57.42 | 2.76 | |
指数模型 Exponential model | 0.057 | 34.74 | 161.57 | 56.43 | 2.62 | |
二次函数模型 Quadratic function model | 0.047 | 32.56 | 1 512.69 | 57.23 | 2.61 | |
改进模型 Modified model | 0.043 | 31.88 | 1 596.85 | 58.80 | 2.23 | |
实测值 Measured value | - | 31.78 | 1 775.00 | 56.05 | 2.51 | |
拔节期至抽雄期干旱12天处理 continuous 12 days drought treatment between jointing stage and tasseling stage | 直角双曲线模型 Rectangular hyperbolic model | 0.078 | 37.05 | 886.63 | 59.43 | 4.14 |
非直角双曲线模型 Non-rectangular hyperbolic model | 0.040 | 27.42 | 674.09 | 64.88 | 2.68 | |
直角双曲线修正模型 Modified rectangular hyperbolic model | 0.053 | 24.41 | 1 390.46 | 66.07 | 3.35 | |
指数模型 Exponential model | 0.055 | 25.07 | 117.81 | 21.66 | 1.15 | |
二次函数模型 Quadratic function model | 0.042 | 25.60 | 1 340.60 | 59.19 | 2.42 | |
改进模型 Modified model | 0.047 | 24.08 | 1 398.59 | 67.91 | 2.88 | |
实测值 Measured value | - | 23.94 | 1 500.00 | 68.83 | 3.12 | |
拔节期至抽雄期干旱26天处理 continuous 26 days drought treatment between jointing stage and tasseling stage | 直角双曲线模型 Rectangular hyperbolic model | 0.073 | 17.00 | 740.68 | 33.52 | 2.13 |
非直角双曲线模型 Non-rectangular hyperbolic model | 0.023 | 12.84 | 572.64 | 36.57 | 0.85 | |
直角双曲线修正模型 Modified rectangular hyperbolic model | 0.036 | 14.04 | 1 033.40 | 47.55 | 1.65 | |
指数模型 Exponential model | 0.046 | 12.43 | 58.52 | 41.03 | 1.16 | |
二次函数模型 Quadratic function model | 0.029 | 14.61 | 1 094.81 | 46.37 | 1.32 | |
改进模型 Modified model | 0.022 | 14.18 | 889.19 | 56.63 | 1.33 | |
实测值 Measured value | - | 13.90 | 800.00 | 55.27 | 1.37 |
处理 Treatment | 模型 Model | R2 | 拟合MSE Fitted MSE | 拟合MAE Fitted MAE | 实测MSE Test MSE | 实测MAE Test MAE |
---|---|---|---|---|---|---|
拔节期至抽雄期正常处理 control treatment between jointing stage and tasseling stage | 直角双曲线模型 Rectangular hyperbolic model | 0.991β8 | 1.68 | 1.08 | 3.74 | 1.50 |
非直角双曲线模型 Non-rectangular hyperbolic model | 0.999β6 | 0.08 | 0.24 | 0.86 | 0.81 | |
直角双曲线修正模型 Modified rectangular hyperbolic model | 0.999β4 | 0.12 | 0.29 | 1.01 | 0.82 | |
指数模型 Exponential model | 0.997β0 | 0.74 | 0.69 | 4.05 | 1.87 | |
二次函数模型 quadratic function model | 0.999β3 | 0.15 | 0.30 | 0.75 | 0.72 | |
改进模型 Modified model | 0.999β7 | 0.05 | 0.19 | 0.91 | 0.80 | |
拔节期至抽雄期干旱12天处理 continuous 12 days drought treatment between jointing stage and tasseling stage | 直角双曲线模型 Rectangular hyperbolic model | 0.984β7 | 1.52 | 1.03 | 3.19 | 1.22 |
非直角双曲线模型 Non-rectangular hyperbolic model | 0.995β8 | 0.40 | 0.52 | 0.58 | 0.49 | |
直角双曲线修正模型 Modified rectangular hyperbolic model | 0.997β3 | 0.25 | 0.45 | 0.49 | 0.61 | |
指数模型 Exponential model | 0.993β0 | 0.71 | 0.73 | 5.42 | 2.05 | |
二次函数模型 Quadratic function model | 0.992β7 | 0.74 | 0.76 | 0.71 | 0.57 | |
改进模型 Modified model | 0.997β2 | 0.26 | 0.39 | 0.39 | 0.36 | |
拔节期至抽雄期干旱26天处理 continuous 26 days drought treatment between jointing stage and tasseling stage | 直角双曲线模型 Rectangular hyperbolic model | 0.920β5 | 2.71 | 1.34 | 4.31 | 1.83 |
非直角双曲线模型 Non-rectangular hyperbolic model | 0.961β0 | 1.24 | 0.90 | 3.31 | 1.45 | |
直角双曲线修正模型 Modified rectangular hyperbolic model | 0.997β1 | 0.10 | 0.26 | 0.37 | 0.48 | |
指数模型 Exponential model | 0.950β8 | 1.73 | 1.06 | 5.20 | 1.60 | |
二次函数模型 quadratic function model | 0.992β0 | 0.31 | 0.48 | 0.61 | 0.71 | |
改进模型 Modified model | 0.999β2 | 0.03 | 0.14 | 0.14 | 0.21 |
表2 玉米拔节期至抽雄期6个光响应模型的适用性比较
Table 2 Comparison of precision of six light response curve models
处理 Treatment | 模型 Model | R2 | 拟合MSE Fitted MSE | 拟合MAE Fitted MAE | 实测MSE Test MSE | 实测MAE Test MAE |
---|---|---|---|---|---|---|
拔节期至抽雄期正常处理 control treatment between jointing stage and tasseling stage | 直角双曲线模型 Rectangular hyperbolic model | 0.991β8 | 1.68 | 1.08 | 3.74 | 1.50 |
非直角双曲线模型 Non-rectangular hyperbolic model | 0.999β6 | 0.08 | 0.24 | 0.86 | 0.81 | |
直角双曲线修正模型 Modified rectangular hyperbolic model | 0.999β4 | 0.12 | 0.29 | 1.01 | 0.82 | |
指数模型 Exponential model | 0.997β0 | 0.74 | 0.69 | 4.05 | 1.87 | |
二次函数模型 quadratic function model | 0.999β3 | 0.15 | 0.30 | 0.75 | 0.72 | |
改进模型 Modified model | 0.999β7 | 0.05 | 0.19 | 0.91 | 0.80 | |
拔节期至抽雄期干旱12天处理 continuous 12 days drought treatment between jointing stage and tasseling stage | 直角双曲线模型 Rectangular hyperbolic model | 0.984β7 | 1.52 | 1.03 | 3.19 | 1.22 |
非直角双曲线模型 Non-rectangular hyperbolic model | 0.995β8 | 0.40 | 0.52 | 0.58 | 0.49 | |
直角双曲线修正模型 Modified rectangular hyperbolic model | 0.997β3 | 0.25 | 0.45 | 0.49 | 0.61 | |
指数模型 Exponential model | 0.993β0 | 0.71 | 0.73 | 5.42 | 2.05 | |
二次函数模型 Quadratic function model | 0.992β7 | 0.74 | 0.76 | 0.71 | 0.57 | |
改进模型 Modified model | 0.997β2 | 0.26 | 0.39 | 0.39 | 0.36 | |
拔节期至抽雄期干旱26天处理 continuous 26 days drought treatment between jointing stage and tasseling stage | 直角双曲线模型 Rectangular hyperbolic model | 0.920β5 | 2.71 | 1.34 | 4.31 | 1.83 |
非直角双曲线模型 Non-rectangular hyperbolic model | 0.961β0 | 1.24 | 0.90 | 3.31 | 1.45 | |
直角双曲线修正模型 Modified rectangular hyperbolic model | 0.997β1 | 0.10 | 0.26 | 0.37 | 0.48 | |
指数模型 Exponential model | 0.950β8 | 1.73 | 1.06 | 5.20 | 1.60 | |
二次函数模型 quadratic function model | 0.992β0 | 0.31 | 0.48 | 0.61 | 0.71 | |
改进模型 Modified model | 0.999β2 | 0.03 | 0.14 | 0.14 | 0.21 |
图2 实测值与预测值之间的线性回归, 虚线表示1:1线。A、B、C、D、E、F分别表示直角双曲线模型、非直角双曲线模型、直角双曲线修正模型、指数模型、二次函数模型和改进模型, 所有模型的斜率与1无显著差异, 截距与0无显著差异。
Fig. 2 Linear regression for measured values and predicted values, the dashed line is the 1:1 line. A, B, C, D, E and F represent rectangular hyperbolic, non-rectangular hyperbolic model, modified rectangular hyperbolic model, exponential model, quadratic function model and modified model, respectively. All of these slopes are not significantly different from 1, and all of these intercepts are not significantly different from 0.
1 | Akhkha A (2010). Modelling photosynthetic light-response curve in Calotropis procera under salinity or water deficit stress using non-linear models. Journal of Taibah University for Science, 3, 49-57. |
2 | Allen RG, Pereira LS, Raes D, Smith M (1998). Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56. Food and Agriculture Organization of the United Nations, Rome. |
3 |
Atkin OK, Macherel D (2009). The crucial role of plant mitochondria in orchestrating drought tolerance.Annals of Botany, 103, 581.
DOI URL |
4 |
Baly EC (1935). The kinetics of photosynthesis.Proceedings of the Royal Society of London Series B, 117, 218-239.
DOI URL |
5 | Bassman JH, Zwier JC (1991). Gas exchange characteristics of Populus trichocarpa, Populus deltoides and Populus trichocarpa × P. deltoides clones. Tree Physiology, 8, 145-159. |
6 |
Beer C, Reichstein M, Tomelleri E, Ciais P, Jung M, Carvalhais N, Rodenbeck C, Arain MA, Baldocchi D, Bonan GB (2010). Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate.Science, 329, 834-838.
DOI URL PMID |
7 |
Boyer JS (1982). Plant productivity and environment.Science, 218, 443-448.
DOI URL |
8 | Chen WY, Chen ZY, Luo FY, Peng ZS, Yu MQ (2012). Comparison between modified exponential model and common models of light-response curve.Chinese Journal of Plant Ecology, 36, 1277-1285.(in Chinese with English abstract) [陈卫英, 陈真勇, 罗辅燕, 彭正松, 余懋群 (2012). 光响应曲线的指数改进模型与常用模型比较. 植物生态学报, 36, 1277-1285.] |
9 | Chen ZY, Peng ZS, Yang J, Chen WY, Ouyang ZM (2011). A mathematical model for describing light-response curves in Nicotiana tabacum L. Photosynthetica, 49, 467-471. |
10 |
Coley PD (1983). Herbivory and defensive characteristics of tree species in a lowland tropical forest.Ecological Monographs, 53, 209-229.
DOI URL |
11 |
Duan AG, Zhang JG, He CY, Zeng YF (2010). Characteristic parameters of light response of photosynthesis of main tree species for vegetation restoration in dry season in Dry-Hot River Valley. Scientia Silvae Sinicae, 46(3), 68-73.(in Chinese with English abstract) [段爱国, 张建国, 何彩云, 曾艳飞 (2010). 干热河谷主要植被恢复树种干季光合光响应生理参数. 林业科学, 46(3), 68-73.]
DOI |
12 |
Edwards EJ, Osborne CP, Str?mberg CAE, Smith SA, Consortium CG (2010). The origins of C4 grasslands: Integrating evolutionary and ecosystem science.Science, 328, 587-591.
DOI URL |
13 |
Friedlingstein P, Meinshausen M, Arora VK, Jones CD, Anav A, Liddicoat SK, Knutti R (2014). Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks.Journal of Climate, 27, 511-526.
DOI URL |
14 | Gao ZK, Gao RF, He JP, Wang M, Zhong CF (2007). Analysis of photosynthetic simulation by a biochemical model or mathematical model in greenhouse eggplants.Acta Ecologica Sinica, 27, 2265-2271.(in Chinese with English abstract) [高志奎, 高荣孚, 何俊萍, 王梅, 钟传飞 (2007). 温室茄子(Solanum melongena L.)光合数学模型光合生化模型模拟分析. 生态学报, 27, 2265-2271.] |
15 | Guo SL, Fang F, Huang H, Qiang S (2004). Studies on the reproduction and photosynthetic ecophysiology of the exotic invasive plant,Plantago virginica. Acta Phytoecologica Sinica, 28, 787-793.(in Chinese with English abstract) [郭水良, 方芳, 黄华, 强胜 (2004). 外来入侵植物北美车前繁殖及光合生理生态学研究. 植物生态学报, 28, 787-793.] |
16 | Han G, Zhang Z (2010). Light response characteristics of photosynthesis of four xerophilous shrubs under different soil moistures.Acta Ecologica Sinica, 30, 4019-4026.(in Chinese with English abstract) [韩刚, 赵忠 (2010). 不同土壤水分下4种沙生灌木的光合光响应特性. 生态学报, 30, 4019-4026.] |
17 |
Huang HY, Dou XY, Sun BY, Deng B, Wu GJ, Peng CL (2009). Comparison of photosynthetic characteristics in two ecotypes of Jatropha curcas in summer. Acta Ecologica Sinica, 29, 2861-2867.(in Chinese with English abstract) [黄红英, 窦新永, 孙蓓育, 邓斌, 吴国江, 彭长连 (2009). 两种不同生态型麻疯树夏季光合特性的比较. 生态学报, 29, 2861-2867.]
DOI URL |
18 | Ji RP, Che YS, Zhu YN, Liang T, Feng R, Yu WY, Zhang YS (2012). Impacts of drought stress on the growth and development and grain yield of spring maize in Northeast China.Chinese Journal of Applied Ecology, 23, 3021-3026.(in Chinese with English abstract) [纪瑞鹏, 车宇胜, 朱永宁, 梁涛, 冯瑞, 于文颖, 张玉书 (2012). 干旱对东北春玉米生长发育和产量的影响. 应用生态学报, 23, 3021-3026.] |
19 | Jiao NY, Zhao C, Ning TY, Hou LT, Fu GZ, Li ZJ, Chen MC (2008). Effects of maize-peanut intercropping on economic yield and light response of photosynthesis.Chinese Journal of Applied Ecology, 19, 981-985.(in Chinese with English abstract) [焦念元, 赵春, 宁堂原, 侯连涛, 付国占, 李增嘉, 陈明灿 (2008). 玉米-花生间作对作物产量和光合作用光响应的影响. 应用生态学报, 19, 981-985.] |
20 |
Kirschbaum MU, Farquhar GD (1987). Investigation of the CO2 dependence of quantum yield and respiration inEucalyptus pauciflora. Plant Physiology, 83, 1032-1036.
DOI URL PMID |
21 |
Kumar DP, Murthy SD (2007). Photoinhibition induced alterations in energy transfer process in phycobilisomes of PSII in the cyanobacterium, Spirulina platensis. Journal of Biochemistry and Molecular Biology, 40, 644-648.
DOI URL PMID |
22 | Lang Y, Zhang GC, Zhang ZK, Liu SS, Liu DH, Hu XL (2011). Light response of photosynthesis and its simulation in leaves of Prunus sibirica L. under different soil water conditions. Acta Ecologica Sinica, 31, 4499-4509.(in Chinese with English abstract) [郎莹, 张光灿, 张征坤, 刘顺生, 刘德虎, 胡小兰 (2011). 不同土壤水分下山杏光合作用光响应过程及其模拟. 生态学报, 31, 4499-4509.] |
23 | Larcher W (1997). (Translated by Zhai ZX (翟志席), Guo YH (郭玉海), Ma YZ (马永泽)). Plant Eco-physiology (植物生态生理学), China Agricultural University Press, Beijing. (in Chinese) |
24 |
Larocque GR (2002). Coupling a detailed photosynthetic model with foliage distribution and light attenuation functions to compute daily gross photosynthesis in sugar maple ( Acer saccharum Marsh.) stands. Ecological Modelling, 148, 213-232.
DOI URL |
25 |
Leakey AD, Uribelarrea M, Ainsworth EA, Naidu SL, Rogers A, Ort DR, Long SP (2006). Photosynthesis, productivity, and yield of maize are not affected by open-air elevation of CO2 concentration in the absence of drought.Plant Physiology, 140, 779-790.
DOI URL PMID |
26 | Li L, Zhang XX, Zheng R, Guo JQ (2016). Photosynthetic characteristics and photosynthesis-light response curve models of summer maize.Chinese Journal of Plant Ecology, 40, 1310-1318.(in Chinese with English abstract) [李力, 张祥星, 郑睿, 郭建青 (2016). 夏玉米光合特性及光响应曲线拟合. 植物生态学报, 40, 1310-1318.] |
27 | Liang WB, Nie DL, Wu SZ, Bai WF, Shen SZ (2014). Photosynthetic light response curves of Macropanax rosthornii and their model fitting. Nonwood Forest Research, 32(4),38-44.(in Chinese with English abstract) [梁文斌, 聂东伶, 吴思政, 柏文富, 沈素贞 (2014). 短梗大参光合作用光响应曲线及模型拟合. 经济林研究, 32(4), 38-44.] |
28 |
Liu GH, Wang FS, Ding YL, Lin SY (2009). Study on the photosynthetic dynamic variation of 4 dwarf bamboos.Journal of Fujian College of Forestry, 29, 258-263.(in Chinese with English abstract) [刘国华, 王福升, 丁雨龙, 林树燕 (2009). 4种地被竹光合作用日变化及光合光响应曲线. 福建林学院学报, 29, 258-263.]
DOI URL |
29 | Liu YF, Xiao LT, Tong JH, Li XB (2005). Primary application on the non-rectangular hyperbola model for photosynthetic light-response curve.Chinese Agricultural Science Bulletin, 21(8), 76-79.(in Chinese with English abstract) [刘宇锋, 萧浪涛, 童建华, 李晓波 (2005). 非直线双曲线模型在光合光响应曲线数据分析中的应用. 中国农学通报, 21(8), 76-79.] |
30 |
Lobell DB, Schlenker W, Costaroberts J (2011). Climate trends and global crop production since 1980.Science, 333, 616-620.
DOI URL PMID |
31 |
Lobo FDA, Barros MPD, Dalmagro HJ, Dalmolin ?C (2013). Fitting net photosynthetic light-response curves with Microsoft Excel—A critical look at the models.Photosynthetica, 51, 445-456.
DOI URL |
32 |
Long SP, Humphries AS, Falkowski PG (2003). Photoinhibition of photosynthesis in nature.Annual Review of Plant Biology, 45, 633-662.
DOI URL |
33 | Luo FY, Chen WY, Chen ZY (2013). Applicability of modified exponential model in photosynthetic-CO2 response curve of barley.Chinese Journal of Plant Ecology, 37, 650-655.(in Chinese with English abstract) [罗辅燕, 陈卫英, 陈真勇 (2013). 指数改进模型在大麦光合-CO2响应曲线中的适用性. 植物生态学报, 37, 650-655.] |
34 | Mi N, Cai F, Zhang YS, Ji RP, Yu WY, Zhang SJ, Fang Y (2017). Effects of continuous drought during different growth stages on maize and its quantitative relationship.Chinese Journal of Applied Ecology, 28, 1563-1570.(in Chinese with English abstract) [米娜, 蔡福, 张玉书, 纪瑞鹏, 于文颖, 张淑杰, 方缘 (2017). 不同生育期持续干旱对玉米的影响及其与减产率的定量关系. 应用生态学报, 28, 1563-1570.] |
35 | Moore PD (1994). High hopes for C4 plants.Nature, 367, 322-323. |
36 | Pinto H, Powell JR, Sharwood RE, Tissue DT, Ghannoum O (2016). Variations in nitrogen use efficiency reflect the biochemical subtype while variations in water use efficiency reflect the evolutionary lineage of C4 grasses at interglacial CO2.Plant, Cell & Environment, 39, 514-526. |
37 |
Prado CH, Moraes JAPVD (1997). Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field conditions.Photosynthetica, 33, 103-112.
DOI URL |
38 |
Prioul JL, Chartier P (1977). Partitioning of transfer and carboxylation components of intracellular resistance to photosynthetic CO2 fixation: A critical analysis of the methods used.Annals of Botany, 41, 789-800.
DOI URL |
39 |
Raschke K (1975) Stomatal action.Annual Review of Plant Physiology, 26, 309-340.
DOI URL |
40 |
Sharp RE, Matthews MA, Boyer JS (1984). Kok effect and the quantum yield of photosynthesis.Plant Physiology, 75, 95-101.
DOI URL |
41 | Shi M, Cheng LX, Zhu ZL (2014). Model fitting and application of light response curves of Carpinus betulus. Journal of Fujian College of Forestry, 34, 349-355.(in Chinese with English abstract) [施曼, 程龙霞, 祝遵凌 (2014). 欧洲鹅耳枥光响应曲线模型拟合与应用. 福建林学院学报, 34, 349-355.] |
42 |
Smith SD, Human TE, Zitzer SF, Charlet TN, Housman DC, Coleman JS, Fenstermaker LK, Seemann JR, Nowak RS (2000). Elevated CO2 increases productivity and invasive species success in an arid ecosystem.Nature, 408, 79-82.
DOI URL PMID |
43 |
Stratonovitch P, Semenov MA (2015). Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change.Journal of Experimental Botany, 66, 3599-3609.
DOI URL |
44 |
Taylor SH, Ripley BS, Martin T, De-Wet LA, Woodward FI, Osborne CP (2014). Physiological advantages of C4 grasses in the field: A comparative experiment demonstrating the importance of drought.Global Change Biology, 20, 1992-2003.
DOI URL PMID |
45 | Thornley JHM (1976). Mathematical Models in Plant Physiology. Academic Press, London. |
46 | Wang RR, Xia JB, Yang JH, Zhao YY, Liu JT, Sun JK (2013). Comparison of light response models of photosynthesis in leaves of Periploca sepium under drought stress in sand habitat formed from seashells. Chinese Journal of Plant Ecology, 37, 111-121.(in Chinese with English abstract) [王荣荣, 夏江宝, 杨吉华, 赵艳云, 刘京涛, 孙景宽 (2013). 贝壳砂生境干旱胁迫下杠柳叶片光合光响应模型比较. 植物生态学报, 37, 111-121.] |
47 | Wang SJ, Huang DZ, Yan HX, Xu XH, Ma XC (2011). Applicability of four empirical models on photosynthesis light response of Populous szechuanica Schneid. Journal of Beihua University (Natural Science), 12, 208-212.(in Chinese with English abstract) [王圣杰, 黄大庄, 闫海霞, 徐学华, 马向超 (2011). 4种经验模型在藏川杨光响应研究中的适用性. 北华大学学报: 自然科学版, 12, 208-212.] |
48 |
Ward JK, Tissue DT, Thomas RB, Strain BB (1999). Comparative responses of model C3 and C4 plants to drought in low and elevated CO2.Global Change Biology, 5, 857-867.
DOI URL |
49 |
White AJ, Critchley C (1999). Rapid light curves: A new fluorescence method to assess the state of the photosynthetic apparatus. Photosynthesis Research, 59, 63-72.
DOI URL |
50 | Wu AJ, Xu WZ, Guo YL, Chen J, Li S, Xu BC (2015). Photosynthetic light-response curves of Lespedeza davurica under different water and fertilization conditions. Acta Agrestia Sinica, 23, 785-792.(in Chinese with English abstract) [吴爱姣, 徐伟洲, 郭亚力, 陈吉, 李帅, 徐炳成 (2015). 不同水肥条件下达乌里胡枝子的光合-光响应曲线特征. 草地学报, 23, 785-792.] |
51 | Wu Q, Zhang GC, Pei B, Xu ZQ, Zhao Y, Fang LD (2011). CO2 response process and its simulation of Prunus sibirica photosynthesis under different soil moisture conditions. Chinese Journal of Applied Ecology, 31, 1517-1524.(in Chinese with English abstract) [吴芹, 张光灿, 裴斌, 徐志强, 赵瑜, 方立东 (2011). 不同土壤水分下山杏光合作用CO2响应过程及其模拟. 应用生态学报, 31, 1517-1524.] |
52 | Wu W, Jing YS, Ma YP, E YH, Sun LL, Zheng TF (2013). Light response characteristics of summer maize at different growth stages under drought.Journal of Applied Meteorological Science, 6, 723-730.(in Chinese with English abstract) [吴玮, 景元书, 马玉平, 俄有浩, 孙琳丽, 郑腾飞 (2013). 干旱环境下夏玉米各生育时期光响应特征. 应用气象学报, 6, 723-730.] |
53 | Xu DQ (2002). Efficiency of Photosynthesis. Shanghai Science and Technology Press, Shanghai. 13-15, 33.(in Chinese) [许大全 (2002). 光合作用效率. 上海科学技术出版社, 上海. 13-15, 33.] |
54 |
Xu ZZ, Shimizu H, Ito S, Yagasaki Y, Zou CJ, Zhou GS, Zheng YR (2014). Effects of elevated CO2, warming and precipitation change on plant growth, photosynthesis and peroxidation in dominant species from North China grassland. Planta, 239, 421-435.
DOI URL |
55 | Yan XH, Yin JH, Duan SH, Zhou B, Hu WH, Liu S (2013). Photosynthesis light response curves of four rice varieties and model fitting.Chinese Journal of Ecology, 32, 604-610.(in Chinese with English abstract) [闫小红, 尹建华, 段世华, 周兵, 胡文海, 刘帅 (2013). 四种水稻品种的光合光响应曲线及其模型拟合. 生态学杂志, 32, 604-610.] |
56 | Yao HS, Zhang YL, Yi XY, Zuo WQ, Lei ZY, Sui LL, Zhang WF (2107). Characters in light-response curves of canopy photosynthetic use efficiency of light and N in responses to plant density in field-grown cotton.Field Crops Research, 203, 192-200. |
57 |
Ye ZP (2007). A new model for relationship between irradiance and the rate of photosynthesis in Oryza sativa. Photosynthetica, 45, 637-640.
DOI URL |
58 | Ye ZP (2007). Application of light-response model in estimating the photosynthesis of super-hybrid rice combination-II Youming 86.Chinese Journal of Ecology, 26, 1323-1326.(in Chinese with English abstract) [叶子飘 (2007). 光响应模型在超级杂交稻组合-II优明86中的应用. 生态学杂志, 26, 1323-1326.] |
59 | Ye ZP (2010). A review on modeling of responses of photosynthesis to light and CO2.Journal of Plant Ecology (Chinese Version), 34, 727-740.(in Chinese with English abstract) [叶子飘 (2010). 光合作用对光和CO2响应模型的研究进展. 植物生态学报, 34, 727-740.] |
60 |
Ye ZP, Yu Q (2008). Comparison of new and several classical models of photosynthesis in response to irradiance.Journal of Plant Ecology (Chinese Version), 32, 1356-1361.(in Chinese with English abstract) [叶子飘, 于强 (2008). 光合作用光响应模型的比较. 植物生态学报, 32, 1356-1361.]
DOI URL |
61 |
Ye ZP, Yu Q, Kang HJ (2012). Evaluation of photosynthetic electron flow using simultaneous measurements of gas exchange and chlorophyll fluorescence under photorespiratory conditions.Photosynthetica, 50, 472-476.
DOI URL |
62 | Yu WY, Ji RP, Feng R, Zhao XL, Zhang YS (2015). Response of water stress on photosynthetic characteristics and water use efficiency of maize leaves in different growth stage.Acta Ecologica Sinica, 9, 2902-2909.(in Chinese with English abstract) [于文颖, 纪瑞鹏, 冯锐, 赵先丽, 张玉书 (2015). 不同生育期玉米叶片光合特性及水分利用效率对水分胁迫的响应. 生态学报, 9, 2902-2909.] |
63 |
Yuan WP, Liu SG, Zhou GS, Zhou GY, Tieszen LL, Baldocchi D, Bernhofer C, Gholz H, Goldstein AH, Goulden ML, Hollinger DY, Hu YM, Law BE, Stoy PC, Vesala T, Wofsy SC (2007). Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes.Agricultural and Forest Meteorology, 143, 189-207.
DOI URL |
64 |
Zhang LY, Wen GS, Wang SJ, Liu ZL (2011). Four light-response models to estimate photosynthesis ofPhyllostachys pubescens. Journal of Zhejiang A & F University, 28(2), 188-193.(in Chinese with English abstract) [张利阳, 温国胜, 王圣杰, 刘兆玲 (2011). 毛竹光响应模型适用性分析. 浙江农林大学学报, 28(2), 188-193.]
DOI URL |
65 |
Zheng JP, Wang CY (2006). Impact of chilling temperature and drought on maize physiological process in seedling stage.Journal of Applied Meteorological Science, 17, 119-122.(in Chinese with English abstract) [郑江平, 王春乙 (2006). 低温、干旱并发对玉米苗期生理过程的影响. 应用气象学报, 17, 119-122.]
DOI URL |
66 |
Zhong C, Zhu Y (2013). Applicability analysis about different photosynthetic light-response models for tobacco.Chinese Journal of Agrometeorology, 34, 74-80.(in Chinese with English abstract) [钟楚, 朱勇 (2013). 几种光合作用光响应模型对烟草的适用性分析. 中国农业气象, 34, 74-80.]
DOI URL |
67 |
Zhu XG, Ort DR, Whitmarsh J, Long SP (2004). The slow reversibility of photosystem II thermal energy dissipation on transfer from high to low light may cause large losses in carbon gain by crop canopies: A theoretical analysis.Journal of Experimental Botany, 55, 1167-1175.
DOI URL |
[1] | 程可心, 杜尧, 李凯航, 王浩臣, 杨艳, 金一, 何晓青. 玉米与叶际微生物组的互作遗传机制[J]. 植物生态学报, 2024, 48(2): 215-228. |
[2] | 刘建新, 刘瑞瑞, 刘秀丽, 贾海燕, 卜婷, 李娜. 外源硫化氢对盐碱胁迫下裸燕麦光合碳代谢的调控[J]. 植物生态学报, 2023, 47(3): 374-388. |
[3] | 周洁, 杨晓东, 王雅芸, 隆彦昕, 王妍, 李浡睿, 孙启兴, 孙楠. 梭梭和骆驼刺对干旱的适应策略差异[J]. 植物生态学报, 2022, 46(9): 1064-1076. |
[4] | 林雍, 陈智, 杨萌, 陈世苹, 高艳红, 刘冉, 郝彦宾, 辛晓平, 周莉, 于贵瑞. 中国干旱半干旱区生态系统光合参数的时空变异及其影响因素[J]. 植物生态学报, 2022, 46(12): 1461-1472. |
[5] | 赵文赛, 孙永林, 刘西平. 干旱-复水-再干旱处理对玉米光合能力和生长的影响[J]. 植物生态学报, 2016, 40(6): 594-603. |
[6] | 孟凡超, 张佳华, 姚凤梅. CO2浓度升高和降水增加协同作用对玉米产量及生长发育的影响[J]. 植物生态学报, 2014, 38(10): 1064-1073. |
[7] | 罗辅燕,陈卫英,陈真勇. 指数改进模型在大麦光合-CO2响应曲线中的适用性[J]. 植物生态学报, 2013, 37(7): 650-655. |
[8] | 王艳哲, 邵立威, 刘秀位, 张小雨, 张喜英. 小麦和玉米根系取样位置优化确定及根系分布模拟[J]. 植物生态学报, 2013, 37(4): 365-372. |
[9] | 王荣荣, 夏江宝, 杨吉华, 赵艳云, 刘京涛, 孙景宽. 贝壳砂生境干旱胁迫下杠柳叶片光合光响应模型比较[J]. 植物生态学报, 2013, 37(2): 111-121. |
[10] | 李涛, 陈保冬. 丛枝菌根真菌通过上调根系及自身水孔蛋白基因表达提高玉米抗旱性[J]. 植物生态学报, 2012, 36(9): 973-981. |
[11] | 王慧, 周广胜, 蒋延玲, 石耀辉, 许振柱. 降水与CO2浓度协同作用对短花针茅光合特性的 影响[J]. 植物生态学报, 2012, 36(7): 597-606. |
[12] | 杨斌, 谢甫绨, 温学发, 孙晓敏, 王建林. 华北平原农田土壤蒸发δ18O的日变化特征及其影响因素[J]. 植物生态学报, 2012, 36(6): 539-549. |
[13] | 陈卫英, 陈真勇, 罗辅燕, 彭正松, 余懋群. 光响应曲线的指数改进模型与常用模型比较[J]. 植物生态学报, 2012, 36(12): 1277-1285. |
[14] | 时鹏, 王淑平, 贾书刚, 高强, 孙晓强. 三种种植方式对土壤微生物群落组成的影响[J]. 植物生态学报, 2011, 35(9): 965-972. |
[15] | 王红丽, 张绪成, 宋尚有. 半干旱区旱地不同覆盖种植方式玉米田的土壤水分和产量效应[J]. 植物生态学报, 2011, 35(8): 825-833. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 11668
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 5646
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19 51La