Growth-form regulates the altitudinal variation of interspecific seed mass of woody plants in Mt. Dalaoling, the Three Gorges Region, China
LI Dao-Xin1, LI Guo2, SHEN Ze-Hao3, *, , XU Shen-Dong1, HAN Qing-Yu1, WANG Gong-Fang1, TIAN Feng-Lei1
1Administration of the Dalaoling National Reserve in the Three Gorges, Yichang, Hubei 443000, China2Research Center of Biodiversity, Chinese Research Academy of Environmental Sciences, Beijing 100012, China3College of Urban and Environmental Sciences, Key Laboratory Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
Aims Seed size is one of the most important characteristics of plant seeds, and has significant implications in plant ecological functions. Exploring the altitudinal pattern of seed size would help to detect environmental constraints on species distribution and understand the linkage between plant ecological function traits Methods The present study measured the quantitative features of seed size, including weight of 1 000 grain seeds, lengths of longer and shorter axes, and analyzed the relationships between seed size and altitude, as well as the influence of growth form. Seed samples were all collected from 201 locally common woody plants (belonging to 59 families and 87 genera) in the Dalaoling Natural Reserve in Yichang City, Hubei Province.Important findings Measured values of the seed mass, the longer axis, and the shorter axis of the 201 woody plant species all follow the lognormal distribution. Measurements of seed mass vary across five orders of magnitude. Significant correlation was found between seed mass, seed length of the longer and shorter axes (R2 = 0.755; 0.819; 0.630, p < 0.01). Moreover, seed mass of trees and small trees are significantly heavier than those of shrubs and woody vines. Seed mass values of evergreen broad leaved species are significantly heavier than those of deciduous broad leaved species and needle leaved species. Seed mass of all 201 species shows a slightly but statistically significant decreasing trend with the increase of altitude. In addition, altitudinal patterns of seed mass varied between species with different growth form. Our results indicated the variation of altitudinal trends of seed mass for different structural components of plant communities, implying the local community structure as a critical aspect of variation in macro-ecological patterns.
Keywords:woody plant
;
seed mass
;
elevation
;
growth-form
;
Dalaoling in the Three Gorges
LIDao-Xin, LIGuo, SHENZe-Hao, XUShen-Dong, HANQing-Yu, WANGGong-Fang, TIANFeng-Lei. Growth-form regulates the altitudinal variation of interspecific seed mass of woody plants in Mt. Dalaoling, the Three Gorges Region, China. Chinese Journal of Plant Ecology, 2017, 41(5): 539-548 https://doi.org/10.17521/cjpe.2016.0285
图1 种子质量(A)、长度(B)和厚度(C)值的频率分布直方图及3个指标的对数转换值的经验累积频率分布(ECFD)与正态分布的累积密度函数(Normal CDF)拟合曲线的比较(D, E, F)。
Fig. 1 The frequency distribution of seed mass (A), seed length (B) and thickness (C), and a comparison between the curves of empirical cumulative frequency distribution (ECFD) and cumulative density function (CDF) of normal distribution, for log10-transformed seed mass, seed length and seed thickness (D, E, F).
Fig. 2 The correlation between seed mass (mg, log10-transformed) and the length and thickness (mm, both log10-transformed) (A), and the correlation between the length and thickness (B) of seeds.
全部测量种子的长度介于0.82-34.90 mm, 平均值和中位值分别为6.81 mm和5.46 mm, 种子长度的最大值与最小值之间相差2个数量级; 种子厚度介于0.12-27.97 mm; 平均值和中位值分别为4.08 mm和3.05 mm。种子厚度的最大值与最小值之间也相差2个数量级。201种木本植物种子的长度与厚度比
Fig. 4 Altitudinal patterns of seed mass (log10-transformed) of different growth-forms of plant species. A, All species. B, Evergreen-broadleaved species. C, Deciduous-broadleaved species. D, Coniferous species. E, Tree. F, Small tree. G, Shrub. H, Liana.
Table 1 Comparison of linear regression models for seed mass (log10-transformed)
模型 Model
自变量 Independent variables
自由度 d.f.
R2
F
p
M1
Elevation, Leaf, GF
194
0.186
8.543
<0.001
M2
Elevation, Leaf, GF, Leaf : GF
191
0.192
6.218
<0.001
M3
Elevation, Leaf, GF, Elevation : GF
191
0.198
6.414
<0.001
M4
Elevation, Leaf, GF, Elevation : Leaf
192
0.216
7.815
<0.001
Elevation, elevation of mid-point of altitudinal species range; GF, growth form, including tree, small tree, shrub and aliana; Leaf, leaf features, including evergreen broad-leaved, deciduous broad-leaved, and coniferous; d.f., degree of freedom.Elevation, 物种海拔分布范围的中点; GF, 生长型, 包括乔木、小乔木、灌木和木质藤本; Leaf, 叶性状, 包括常绿阔叶、落叶阔叶和针叶。
FuSX (2001-2002). Flora of Hubei. Vol. I, II, III. Hubei Press of Science and Technology., Wuhan (in Chinese)[傅书遐 (2001-2002). 湖北植物志. 第I, II, III卷. 湖北科学技术出版社.], 武汉
[11]
GarlandT, HarveyPH, IvesAR (1992).
Procedures for the analysis of comparative data using phylogenetically independent contrasts.
Relationship Between Seed Size and Climate Along Elevational Gradient on the Eastern Qinghai-Tibetan Plateau. Master degree dissertation, Lanzhou University, Lanzhou.
JinYX, ZhengZ, ChenZL, WangYM, PengPS, ZhaoZE (1987). Studies on the strategies for the impacts of the Three Gorges Project on the valuable and rare plant species in the reservoir region. In: The Leading Group of the Chinese Academy of Sciences of the Project for the Ecology and Environment in the Three Gorges Project eds. Studies on the Strategies for the Impacts of the Three Gorges Project of the Yangtze River on the Ecology and Environment. Science Press, Beijing. 114-122. (in Chinese)[金义兴, 郑重, 陈卓良, 王映明, 彭蒲松, 赵子恩 (1987). 三峡工程对库区珍稀植物的影响及对策的研究. 见: 中国科学院三峡工程生态与环境项目领导小组编, 长江三峡工程对生态与环境影响及其对策研究. 科学出版社, 北京. 114-122.]
Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo.
Untangling interacting mechanisms of seed mass variation with elevation: Insights from the comparison of inter-specific and intra-specific studies on eastern Tibetan angiosperm species.
Effects of resource allocation and floral traits on the number and mass of
Saussurea undulate seeds from different elevations in eastern Qinghai-Xizang Plateau. Chinese Journal of Plant Ecology,38, 366-374. (in Chinese with English abstract)[王一峰, 岳永成 (2014).
Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo.
1
2002
... 海拔是山地植被分异的主导环境梯度(Körner, 2007), 也是生物多样性宏观分布格局的重要调控因素(Rahbek, 1997; Körner, 2000).海拔对植物物种的分布具有多重影响, 能量和降水都具有显著的海拔变化, 因而生态系统的复杂性、功能强度(如植被生产力)、种间相互作用, 也随着植被的海拔带谱显示了梯度变化(Suzuki, 1998; Kitayama & Aiba, 2002); 另一方面, 在山地的海拔梯度上, 各种人类活动、动物觅食和地貌、水文过程对植被产生显著的干扰(沈泽昊等, 2002; Gentili et al., 2013; Montaño-Centellas & Garitano-Zavala, 2015).物种功能性状沿海拔梯度的变化及其限制因子是理解物种海拔分布的关键.研究表明, 植物的功能性状, 如物候(Fielding et al., 1999; Walker et al., 2014)、年轮宽度(Wang et al., 2005; Sidor et al., 2015)、叶片性状(Singh et al., 1994; 罗璐等, 2011; Jiang & Ma, 2015)等, 都受到海拔梯度的环境变化影响, 并成为物种海拔分布范围阈值形成的非生物(如低温限制)和生物(如种间竞争)机制.众所周知, 种子的生产和萌发更新是植物生命史中对环境变化最为敏感的环节, 往往构成植物分布边界的限制因子.因此, 种子性状, 如大小、数量沿气候梯度的变化应与植物种分布范围存在密切的联系(Moles & Westoby, 2003; Kolb et al., 2006). ...
Determinants of local abundance and range size in forest vascular plants.
1
2006
... 海拔是山地植被分异的主导环境梯度(Körner, 2007), 也是生物多样性宏观分布格局的重要调控因素(Rahbek, 1997; Körner, 2000).海拔对植物物种的分布具有多重影响, 能量和降水都具有显著的海拔变化, 因而生态系统的复杂性、功能强度(如植被生产力)、种间相互作用, 也随着植被的海拔带谱显示了梯度变化(Suzuki, 1998; Kitayama & Aiba, 2002); 另一方面, 在山地的海拔梯度上, 各种人类活动、动物觅食和地貌、水文过程对植被产生显著的干扰(沈泽昊等, 2002; Gentili et al., 2013; Montaño-Centellas & Garitano-Zavala, 2015).物种功能性状沿海拔梯度的变化及其限制因子是理解物种海拔分布的关键.研究表明, 植物的功能性状, 如物候(Fielding et al., 1999; Walker et al., 2014)、年轮宽度(Wang et al., 2005; Sidor et al., 2015)、叶片性状(Singh et al., 1994; 罗璐等, 2011; Jiang & Ma, 2015)等, 都受到海拔梯度的环境变化影响, 并成为物种海拔分布范围阈值形成的非生物(如低温限制)和生物(如种间竞争)机制.众所周知, 种子的生产和萌发更新是植物生命史中对环境变化最为敏感的环节, 往往构成植物分布边界的限制因子.因此, 种子性状, 如大小、数量沿气候梯度的变化应与植物种分布范围存在密切的联系(Moles & Westoby, 2003; Kolb et al., 2006). ...
Why are there global gradients in species richness? Mountains might hold the answer.
1
2000
... 海拔是山地植被分异的主导环境梯度(Körner, 2007), 也是生物多样性宏观分布格局的重要调控因素(Rahbek, 1997; Körner, 2000).海拔对植物物种的分布具有多重影响, 能量和降水都具有显著的海拔变化, 因而生态系统的复杂性、功能强度(如植被生产力)、种间相互作用, 也随着植被的海拔带谱显示了梯度变化(Suzuki, 1998; Kitayama & Aiba, 2002); 另一方面, 在山地的海拔梯度上, 各种人类活动、动物觅食和地貌、水文过程对植被产生显著的干扰(沈泽昊等, 2002; Gentili et al., 2013; Montaño-Centellas & Garitano-Zavala, 2015).物种功能性状沿海拔梯度的变化及其限制因子是理解物种海拔分布的关键.研究表明, 植物的功能性状, 如物候(Fielding et al., 1999; Walker et al., 2014)、年轮宽度(Wang et al., 2005; Sidor et al., 2015)、叶片性状(Singh et al., 1994; 罗璐等, 2011; Jiang & Ma, 2015)等, 都受到海拔梯度的环境变化影响, 并成为物种海拔分布范围阈值形成的非生物(如低温限制)和生物(如种间竞争)机制.众所周知, 种子的生产和萌发更新是植物生命史中对环境变化最为敏感的环节, 往往构成植物分布边界的限制因子.因此, 种子性状, 如大小、数量沿气候梯度的变化应与植物种分布范围存在密切的联系(Moles & Westoby, 2003; Kolb et al., 2006). ...
The use of “altitude” in ecological research.
1
2007
... 海拔是山地植被分异的主导环境梯度(Körner, 2007), 也是生物多样性宏观分布格局的重要调控因素(Rahbek, 1997; Körner, 2000).海拔对植物物种的分布具有多重影响, 能量和降水都具有显著的海拔变化, 因而生态系统的复杂性、功能强度(如植被生产力)、种间相互作用, 也随着植被的海拔带谱显示了梯度变化(Suzuki, 1998; Kitayama & Aiba, 2002); 另一方面, 在山地的海拔梯度上, 各种人类活动、动物觅食和地貌、水文过程对植被产生显著的干扰(沈泽昊等, 2002; Gentili et al., 2013; Montaño-Centellas & Garitano-Zavala, 2015).物种功能性状沿海拔梯度的变化及其限制因子是理解物种海拔分布的关键.研究表明, 植物的功能性状, 如物候(Fielding et al., 1999; Walker et al., 2014)、年轮宽度(Wang et al., 2005; Sidor et al., 2015)、叶片性状(Singh et al., 1994; 罗璐等, 2011; Jiang & Ma, 2015)等, 都受到海拔梯度的环境变化影响, 并成为物种海拔分布范围阈值形成的非生物(如低温限制)和生物(如种间竞争)机制.众所周知, 种子的生产和萌发更新是植物生命史中对环境变化最为敏感的环节, 往往构成植物分布边界的限制因子.因此, 种子性状, 如大小、数量沿气候梯度的变化应与植物种分布范围存在密切的联系(Moles & Westoby, 2003; Kolb et al., 2006). ...
Does the seed size/number trade-off model determine plant community structure? An assessment of the model mechanisms and their generality.
1
2001
... 种子质量大小是影响植物扩散能力和扩散方式的关键性状, 又与物种萌发率和幼苗补给(recruitment)成功率密切相关, 也是决定物种竞争能力的关键因素(Howe & Smallwood, 1982; Westoby et al., 1992).因此种子质量大小受到多种生态与进化驱动力的影响, 包括物种竞争与繁殖能力的权衡(Harper et al., 1970; Leishman, 2001; 张世挺等, 2003).这些影响因素的作用具有不同的时空尺度, 导致即使在局部群落中, 种子质量大小的种间差异也往往达到几个数量级(Hammond & Brown, 1995; Shen et al., 2007). ...
The relationship between seed size and abundance in plant communities: Model predictions and observed patterns.
1
2001
... 植物的功能性状与其生活史策略之间的关系是植物生态与进化研究的基本问题(Howe & Smallwood, 1982; Westoby et al., 1992; Moles & Westoby, 2006).种子大小(size)或质量(mass)是植物的重要生态功能性状, 对物种扩散、种群更新以及群落动态具有关键作用(Salisbury, 1974; Leishman & Murray, 2001; Stevenson et al., 2005), 并对植物群落构建的环境筛选过程与结果具有不可替代的影响(Arssen, 2005; Díaz et al., 2016). ...
神农架海拔梯度上4种典型森林的乔木叶片功能性状特征
1
2011
... 海拔是山地植被分异的主导环境梯度(Körner, 2007), 也是生物多样性宏观分布格局的重要调控因素(Rahbek, 1997; Körner, 2000).海拔对植物物种的分布具有多重影响, 能量和降水都具有显著的海拔变化, 因而生态系统的复杂性、功能强度(如植被生产力)、种间相互作用, 也随着植被的海拔带谱显示了梯度变化(Suzuki, 1998; Kitayama & Aiba, 2002); 另一方面, 在山地的海拔梯度上, 各种人类活动、动物觅食和地貌、水文过程对植被产生显著的干扰(沈泽昊等, 2002; Gentili et al., 2013; Montaño-Centellas & Garitano-Zavala, 2015).物种功能性状沿海拔梯度的变化及其限制因子是理解物种海拔分布的关键.研究表明, 植物的功能性状, 如物候(Fielding et al., 1999; Walker et al., 2014)、年轮宽度(Wang et al., 2005; Sidor et al., 2015)、叶片性状(Singh et al., 1994; 罗璐等, 2011; Jiang & Ma, 2015)等, 都受到海拔梯度的环境变化影响, 并成为物种海拔分布范围阈值形成的非生物(如低温限制)和生物(如种间竞争)机制.众所周知, 种子的生产和萌发更新是植物生命史中对环境变化最为敏感的环节, 往往构成植物分布边界的限制因子.因此, 种子性状, 如大小、数量沿气候梯度的变化应与植物种分布范围存在密切的联系(Moles & Westoby, 2003; Kolb et al., 2006). ...
Does a latitudinal gradient in seedling survival favor larger seeds in the tropics?
2004
Latitude, seed predation and seed mass.
1
2003
... 海拔是山地植被分异的主导环境梯度(Körner, 2007), 也是生物多样性宏观分布格局的重要调控因素(Rahbek, 1997; Körner, 2000).海拔对植物物种的分布具有多重影响, 能量和降水都具有显著的海拔变化, 因而生态系统的复杂性、功能强度(如植被生产力)、种间相互作用, 也随着植被的海拔带谱显示了梯度变化(Suzuki, 1998; Kitayama & Aiba, 2002); 另一方面, 在山地的海拔梯度上, 各种人类活动、动物觅食和地貌、水文过程对植被产生显著的干扰(沈泽昊等, 2002; Gentili et al., 2013; Montaño-Centellas & Garitano-Zavala, 2015).物种功能性状沿海拔梯度的变化及其限制因子是理解物种海拔分布的关键.研究表明, 植物的功能性状, 如物候(Fielding et al., 1999; Walker et al., 2014)、年轮宽度(Wang et al., 2005; Sidor et al., 2015)、叶片性状(Singh et al., 1994; 罗璐等, 2011; Jiang & Ma, 2015)等, 都受到海拔梯度的环境变化影响, 并成为物种海拔分布范围阈值形成的非生物(如低温限制)和生物(如种间竞争)机制.众所周知, 种子的生产和萌发更新是植物生命史中对环境变化最为敏感的环节, 往往构成植物分布边界的限制因子.因此, 种子性状, 如大小、数量沿气候梯度的变化应与植物种分布范围存在密切的联系(Moles & Westoby, 2003; Kolb et al., 2006). ...
Seed size and plant strategy across the whole life cycle.
2
2006
... 植物的功能性状与其生活史策略之间的关系是植物生态与进化研究的基本问题(Howe & Smallwood, 1982; Westoby et al., 1992; Moles & Westoby, 2006).种子大小(size)或质量(mass)是植物的重要生态功能性状, 对物种扩散、种群更新以及群落动态具有关键作用(Salisbury, 1974; Leishman & Murray, 2001; Stevenson et al., 2005), 并对植物群落构建的环境筛选过程与结果具有不可替代的影响(Arssen, 2005; Díaz et al., 2016). ...
Seed weight increases with altitude in the Swiss Alps between related species but not among populations of individual species.
1
2005
... 尽管存在反例(Pluess et al., 2005), 但多数研究发现植物种子质量随海拔上升而减小(Baker, 1972; Bu et al., 2006; 郭淑青, 2007; Guo et al., 2010; Dainese & Sitzia, 2013), 并认为能量是海拔梯度上种间种子质量变化的主要限制因子(Qi et al., 2015).不过值得注意的是, 这些研究基本针对草本植物群落的物种以及同一分类群内部的物种.在仅有涉及多个生长型大量植物种的种子海拔分布研究中, 分析物种也以草本植物占绝大多数, 并且没有分生长型来分析(杜燕等, 2014; Qi et al., 2015).因此对木本植物而言, 种子质量的海拔格局及生物与非生物环境因子的相对贡献尚有待进一步研究.同时, 由于草本植物群落往往不足以覆盖研究区域的整体海拔梯度, 因而采样尺度限制有可能对结果显示的海拔格局产生影响. ...
Untangling interacting mechanisms of seed mass variation with elevation: Insights from the comparison of inter-specific and intra-specific studies on eastern Tibetan angiosperm species.
2
2015
... 尽管存在反例(Pluess et al., 2005), 但多数研究发现植物种子质量随海拔上升而减小(Baker, 1972; Bu et al., 2006; 郭淑青, 2007; Guo et al., 2010; Dainese & Sitzia, 2013), 并认为能量是海拔梯度上种间种子质量变化的主要限制因子(Qi et al., 2015).不过值得注意的是, 这些研究基本针对草本植物群落的物种以及同一分类群内部的物种.在仅有涉及多个生长型大量植物种的种子海拔分布研究中, 分析物种也以草本植物占绝大多数, 并且没有分生长型来分析(杜燕等, 2014; Qi et al., 2015).因此对木本植物而言, 种子质量的海拔格局及生物与非生物环境因子的相对贡献尚有待进一步研究.同时, 由于草本植物群落往往不足以覆盖研究区域的整体海拔梯度, 因而采样尺度限制有可能对结果显示的海拔格局产生影响. ...
... ; Qi et al., 2015).因此对木本植物而言, 种子质量的海拔格局及生物与非生物环境因子的相对贡献尚有待进一步研究.同时, 由于草本植物群落往往不足以覆盖研究区域的整体海拔梯度, 因而采样尺度限制有可能对结果显示的海拔格局产生影响. ...
The relationship among area, elevation, and regional species richness in Neotropical birds.
1
1997
... 海拔是山地植被分异的主导环境梯度(Körner, 2007), 也是生物多样性宏观分布格局的重要调控因素(Rahbek, 1997; Körner, 2000).海拔对植物物种的分布具有多重影响, 能量和降水都具有显著的海拔变化, 因而生态系统的复杂性、功能强度(如植被生产力)、种间相互作用, 也随着植被的海拔带谱显示了梯度变化(Suzuki, 1998; Kitayama & Aiba, 2002); 另一方面, 在山地的海拔梯度上, 各种人类活动、动物觅食和地貌、水文过程对植被产生显著的干扰(沈泽昊等, 2002; Gentili et al., 2013; Montaño-Centellas & Garitano-Zavala, 2015).物种功能性状沿海拔梯度的变化及其限制因子是理解物种海拔分布的关键.研究表明, 植物的功能性状, 如物候(Fielding et al., 1999; Walker et al., 2014)、年轮宽度(Wang et al., 2005; Sidor et al., 2015)、叶片性状(Singh et al., 1994; 罗璐等, 2011; Jiang & Ma, 2015)等, 都受到海拔梯度的环境变化影响, 并成为物种海拔分布范围阈值形成的非生物(如低温限制)和生物(如种间竞争)机制.众所周知, 种子的生产和萌发更新是植物生命史中对环境变化最为敏感的环节, 往往构成植物分布边界的限制因子.因此, 种子性状, 如大小、数量沿气候梯度的变化应与植物种分布范围存在密切的联系(Moles & Westoby, 2003; Kolb et al., 2006). ...