植物生态学报, 2018, 42(5): 562-572 doi: 10.17521/cjpe.2017.0270

研究论文

黔中喀斯特木本植物功能性状变异及其适应策略

钟巧连1,2,3, 刘立斌1,2,4, 许鑫1,2,3, 杨勇1,2,3, 郭银明1,2,3, 许海洋1,2,3, 蔡先立1,2,3, 倪健,,1,2,4,*

1 中国科学院地球化学研究所环境地球化学国家重点实验室, 贵阳 550081

2 中国科学院普定喀斯特生态系统观测研究站, 贵州普定 562100

3 中国科学院大学, 北京 100049

4 浙江师范大学化学与生命科学学院, 浙江金华 321004

Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China

ZHONG Qiao-Lian1,2,3, LIU Li-Bin1,2,4, XU Xin1,2,3, YANG Yong1,2,3, GUO Yin-Ming1,2,3, XU Hai-Yang1,2,3, CAI Xian-Li1,2,3, NI Jian,,1,2,4,*

1 State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

2 Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding, Guizhou 562100, China

3 University of Chinese Academy of Sciences, Beijing 100049, China

4 College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China

通讯作者: nijian@zjnu.edu.cn

编委: 阎恩荣

责任编辑: 王崴

收稿日期: 2017-10-29   修回日期: 2018-03-27   网络出版日期: 2018-05-20

基金资助: 国家自然科学基金(41471049)
国家全球变化重大科学研究计划项目(2013CB956704)

Received: 2017-10-29   Revised: 2018-03-27   Online: 2018-05-20

Fund supported: Supported by the National Natural Science Foundation(41471049)
the National Key Basic Research Program for Global Change(2013CB956704)

摘要

性状变异反映了植物的生活史对策。该研究以贵州普定县天龙山10种木本植物为对象, 通过分析枝叶和根系9个功能性状的种间与种内变异, 揭示植物对喀斯特生境的适应策略。结果表明: (1) 9个性状变异程度不同, 细根组织密度的种间和种内变异系数最大, 分别达96.47%和51.44%, 小枝干物质含量的种间与种内变异最小, 分别为11.67%和6.83%。(2)种间水平的细根组织密度在不同物种中没有显著的差异, 比根长、叶厚度、叶面积、比叶面积、叶干物质含量、叶组织密度、小枝干物质含量和小枝组织密度均表现出显著的差异。在种内, 比叶面积差异显著, 其他性状差异不显著。(3)绝大多数叶和枝性状间显著相关, 比根长与比叶面积显著负相关, 其他根系性状与枝叶性状相关性不显著。总之, 与同纬度非喀斯特地区植物相比, 普定喀斯特地区植物具有较小的叶面积和比根长度, 较大的叶干物质含量、叶组织密度等一系列有利于减小蒸腾和储存养分的功能性状组合, 这可能是其适应干旱贫瘠的喀斯特环境的主要生态策略。

关键词: 喀斯特森林; 生活型; 生长型; 性状组合; 种内变异; 种间变异

Abstract

Aims The aims are to characterize key plant functional traits and their interactions of woody species growing in special and harsh karst habitats, and to explore their potential ways in adapting harsh karst habitats.

Methods A comprehensive survey of nine plant functional traits (including above- and below-ground ones) was conducted in a 100 m × 30 m permanent plot in the Tianlongshan Mountain of Puding County, central Guizhou Province, southwestern China in the summer 2016. Five dominant tree species (Carpinus pubescens, Machilus cavaleriei, Itea yunnanensis, Platycarya strobilacea, Lithocarpus confinis), three shrubs (Zanthoxylum ovalifolium, Stachyurus obovatus, Rhamnus heterophylla) and two vines (Rosa cymosa and Dalbergia hancei) in an evergreen and deciduous broadleaved mixed forest were chosen as target species. Nine traits of leaf, stem, branch and root were investigated and measured. Key features of these nine functional traits of ten woody species were numerically characterized. Traits variations among plant species, life form and leaf phenology group were further investigated. Relationships among key functional traits and between above- and below-ground traits were statistically analyzed.

Important findings (1) Nine traits varied in varying degrees. The maximum and minimum coefficient of interspecific variation were the fine root tissue density (FRTD) and twig dry-matter content (TDMC), 96.47% and 11.67%, respectively. Similarly, the largest and smallest coefficients of intraspecific variation were also FRTD and TDMC, 51.44% and 6.83%, respectively; (2) At the interspecific level, among different species FRTD had no significant difference, but other traits including specific root length (SRL), leaf thickness (LT), leaf area (LA), specific leaf area (SLA), leaf dry-matter content (LDMC), leaf tissue density (LTD), TDMC and twig tissue density (TTD) showed significant differences (p < 0.01). At the intraspecific level, however, SLA showed significant difference, and differences of other traits were not significant. (3) There was a significant correlation between most leaf and branch traits, and SRL vs. SLA were negatively correlated. However, there was no significant correlation among other root traits and leaf and twig traits. In a word, compared to the functional traits in tree species of non-karst evergreen broad-leaved forests in the same latitude, karst woody plants in Puding had a series of functional traits, such as smaller LA, SLA and larger LDMC and LTD and so on, which are beneficial to reducing transpiration and storing nutrient. This may be its main ecological strategy for adapting to arid and poor karst environments.

Keywords: karst forest; life form; growth form; trait combination; intraspecific variation; interspecific variation

PDF (1103KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

引用本文

钟巧连, 刘立斌, 许鑫, 杨勇, 郭银明, 许海洋, 蔡先立, 倪健. 黔中喀斯特木本植物功能性状变异及其适应策略. 植物生态学报, 2018, 42(5): 562-572. DOI: 10.17521/cjpe.2017.0270

ZHONG Qiao-Lian, LIU Li-Bin, XU Xin, YANG Yong, GUO Yin-Ming, XU Hai-Yang, CAI Xian-Li, NI Jian. Variations of plant functional traits and adaptive strategy of woody species in a karst forest of central Guizhou Province, southwestern China. Chinese Journal of Plant Ecology, 2018, 42(5): 562-572. DOI: 10.17521/cjpe.2017.0270

功能性状是指与植物对资源的吸收、利用和保持有关的生理生态指标, 它反映植物对不同环境的适应及植物内部不同功能之间的生理或进化的权衡, 是联系植物、环境和生态系统功能的桥梁(Reich et al., 2003; Díaz et al., 2004, 2016; 孟婷婷等, 2007; Violle et al., 2007)。叶片、枝干和根系性状及其组合反映了植物对资源的利用和对环境的响应与生存对策(Eissenstat et al., 2000; Lavorel & Garnier, 2002; Westoby et al., 2002; Wright et al., 2004; Chave et al., 2009)。

植物性状间既有关联(Wright et al., 2004; Walker et al., 2014)又有分离(Albert et al., 2010; Violle et al., 2012; Díaz et al., 2016)。作为植物光合作用的叶片性状与作为吸收水分和养分的根系性状是密切相关的(Craine et al., 2005), 作为植物生长重要构件的枝干性状与叶片、根系性状间也相关(Messier et al., 2017)。这些相互关联的植物性状在适应环境的过程中会表现出不同的权衡策略, 比如“投资-收益”的权衡(Laughlin, 2014; Verheijen et al., 2016; Messier et al., 2017)。

另一方面, 植物功能性状在种间和种内的变异是物种共存、群落构建的重要前提(Díaz et al., 2004; Violle et al., 2012), 对植物个体、功能群、群落和生态系统水平以及区域和全球尺度的研究发现, 不同群落间、群落内乃至功能群内的种内与种间性状变异可更真实地反映物种对环境变化和资源竞争的响应(Wright et al., 2004; Albert et al. 2010), 而且种内变异与种间变异同等重要(Auger & Shipley, 2013; Bu et al., 2017), 这对基于性状的群落与生态系统研究具有重大的实践指导意义(Siefert et al., 2015)。因此, 植物各器官性状之间表现出普遍的相关性与变异性, 进化背景和环境变化驱动植物的性状变异, 并通过一系列功能性状组合和权衡来适应环境, 从而决定植物的生长对策(Reich et al., 2003; Stahl et al., 2013)。

喀斯特植被是一种具有特殊结构和功能的生态系统, 生态敏感度高, 环境容纳量低, 稳定性差(王世杰等, 2003), 在我国南方连续、成片分布的石灰岩和白云岩地区表现最为典型, 以贵州、广西和云南最具代表性。由于喀斯特地貌和石灰土的独特性, 导致该地区的代表性植被不是气候顶极的亚热带常绿阔叶林, 而是隐域性、土壤顶极的常绿与落叶阔叶混交林, 且在强烈的、不同方式人类活动干扰下, 次生林、藤刺灌丛和灌草丛植被占据优势。适应于喀斯特生境的植物表现出独特的喜钙性、耐瘠性、岩生性等生理学和生态学特性(郭柯等, 2011)。

在贵州中部、重庆中梁山、桂林等喀斯特地区开展的植物叶片性状研究发现, 不同地区植物叶性状在种间和种内均存在较大差异(习新强等, 2011; 刘宏伟等, 2014, 2015; Jiang et al., 2016), 喀斯特地区植物普遍呈现出比叶面积(SLA)和叶面积(LA)低、叶干物质含量(LDMC)高的性状组合。这种性状组合意味着, 植物为适应喀斯特土层浅薄、土壤水分渗漏等生境特征所造成的生理干旱, 趋向于发展一套干旱性状组合。另外, 干旱地区的研究表明, 植物通常以较厚的叶片适应水分胁迫, 例如叶片革质, 比叶面积小, 叶片体积也随之减小, 导致叶组织密度(LTD)增大, 并且通常有较大的比根长(SRL), 表明在同等投资的情况下, 比根长大的植物对养分的利用效率较高(Reich et al., 1998; Ohashi et al., 2006)。但是, 以上植物在适应干旱瘠薄生境过程中所形成的叶片、枝干和根系器官间的性状组合是否也存在于喀斯特地区的植物? 对这个问题尚需深入探索。

本文选取贵州省典型喀斯特地区的代表性常绿与落叶阔叶混交林的优势乔木、灌木和藤本为研究对象, 测定其枝干、叶片和根系性状, 研究喀斯特优势种地上和地下性状的特征及其种间与种内变异, 以及地上和地下性状的相互关系, 以期探讨两个科学问题: 喀斯特地区植物采取何种干旱性状组合及生存对策来适应严酷的喀斯特生境? 地上和地下性状及其相互关系是否与地带性常绿阔叶林植物存在差异?

1 研究方法

1.1 研究地概况

研究地位于贵州中部的普定县马关镇下坝村天龙山(26.24° N, 105.76° E, 海拔1 550 m), 为中国科学院地球化学研究所普定喀斯特生态系统定位观测研究站所在地, 属长江与珠江分水岭处的高原面型喀斯特地貌。该地属中亚热带季风湿润性气候, 据普定县气象站1961-2013年的记录, 年平均气温为15.2 ℃, 1月平均气温5.2 ℃, 7月平均气温23.0 ℃, 年降水量1341 mm, 年日照时间仅1189 h, 全年日照百分率低至26%。母岩为石灰岩, 岩石裸露率平均达34.7%。土壤以棕色石灰土为主。

植被类型为次生性但保存相对较好的常绿和落叶阔叶混交林。乔木层高度6-10 m, 平均胸径5.4 cm, 盖度73.1%左右, 优势树种包括窄叶石栎(Lithocarpus confinis)、化香树(Platycarya strobilacea)、云南鼠刺(Itea yunnanensis)、安顺润楠(Machilus cavaleriei)和云贵鹅耳枥(Carpinus pubescens), 常见树种还有短萼海桐(Pittosporum brevicalyx)和香叶树(Lindera communis)等。灌木层一般3 m以下, 盖度30%左右, 常见种有倒卵叶旌节花(Stachyurus obovatus)、异叶鼠李(Rhamnus heterophylla)、铁仔(Myrsine africana)以及多种花椒属(Zanthoxylum)植物。草本层高度一般50 cm以下, 盖度20%左右, 主要物种有矛叶荩草(Arthraxon lanceolatus)和千里光(Senecio scandens)等。群落层间植物发达, 某些藤本植物如藤黄檀(Dalbergia hancei)胸径可超过10 cm, 长度可达40 m (Liu et al., 2016)。

2016年7-9月, 在天龙山山腰至山顶设置一块30 m × 100 m的样地, 划分为30个10 m × 10 m的小样方, 调查并记录样方中胸径大于1 cm的所有木本植物的相对位置、胸径、高度和冠幅等指标。

1.2 植物性状测定

选择优势乔木5种、灌木3种和藤本植物2种, 每种20-25株作为研究对象(表1)。在每株树冠外层的东南西北4个方向, 采集全光照条件下无病虫害与附生植物的完整枝条4根。在每根枝条上采集叶片5-6个, 保证每株乔木取20-30个叶片, 每株灌木和藤本植株取20-60个叶片。利用WinFOLIA多用途叶面积仪(Regent Instruments, Québec, Canada)扫描叶片, 获得其面积、长宽比等指标。将叶片置入烘箱中, 先在105 ℃下杀青20 min, 然后在85 ℃下烘干48 h, 称取干质量。截取4根小枝末端20-30 cm称取鲜质量, 烘干后再称干质量。截取小枝2-3 cm, 去掉树皮, 用排水法测定其体积。

表1   黔中喀斯特常绿与落叶阔叶混交林的10种优势木本植物

Table 1  The selected ten dominant woody species in a karst evergreen and deciduous broad-leaved mixed forest in central Guizhou Province, China

物种
Species
生长型
Growth form
生活型
Life form
采样株数
Sample individuals
叶质地
Leaf texture
安顺润楠 Machilus cavaleriei乔木 Tree常绿 Evergreen20革质 Leathery
云南鼠刺 Itea yunnanensis乔木 Tree常绿 Evergreen20薄革质 Thinly leathery
窄叶石栎 Lithocarpus confinis乔木 Tree常绿 Evergreen21厚纸质 Thickly papery
化香树 Platycarya strobilacea乔木 Tree落叶 Deciduous25纸质 Papery
云贵鹅耳枥 Carpinus pubescens乔木 Tree落叶 Deciduous20厚纸质 Thickly papery
刺异叶花椒 Zanthoxylum ovalifolium灌木 Shrub常绿 Evergreen20革质 Leathery
倒卵叶旌节花 Stachyurus obovatus灌木 Shrub常绿 Evergreen20革质或亚革质 Leathery or subcoriaceous
异叶鼠李 Rhamnus heterophylla灌木 Shrub常绿 Evergreen20纸质 Papery
小果蔷薇 Rosa cymosa藤本 Liana常绿 Evergreen20薄纸质 Thinly papery
藤黄檀 Dalbergia hancei藤本 Liana落叶 Deciduous20膜质 Membranous

新窗口打开| 下载CSV


选取乔木和藤本植株的一条主根, 以及灌木的整个根系, 全部挖出。按照细根(根径≤ 2 mm)、中根(2 mm <根径< 10 mm)、粗根(≥ 10 mm)进行分类, 洗净晾干后称取鲜质量。利用相同扫描仪扫描细根, 获得根系长度、表面积、总体积、平均直径等指标。各取不同根径级根系, 利用排水法测定其体积。最后, 将根系在85 ℃恒温下烘干称取干质量。

植物枝干、叶片和根系的性状指标按照以下公式(Cornelissen et al., 2003)计算:

SLA =新鲜叶片面积/叶片干质量。

避开中间大叶脉, 利用精度为0.01 mm的游标卡尺测量叠在一起的5个叶片厚度。叶片厚度(LT) = 5个叶片总厚度/5。

LDMC =叶干质量/鲜质量。

SRL =根长/根干质量。

小枝干物质含量(TDMC) =小枝干质量/鲜质量。

组织密度(TD) =干质量/体积。LTD =叶干质量/叶体积, 其中, 叶体积=叶面积×叶厚度; 细根组织密度(FRTD) =细根干质量/细根体积; 小枝组织密度(TTD) =小枝干质量/小枝体积。

1.3 数据分析

对各个性状求算术平均值和标准偏差, 采用独立样本t检验比较不同生长型各性状的差异。利用变异系数(CV)计算各个功能性状的变异程度。利用单因素方差分析方法检测生长型、生活型、物种对性状变异的影响。以一般线性模型(GLM)检测单因子作用的效应以及双因子和多因子交互作用的效应。采用Pearson相关检验分析种间和种内各个功能性状的相关性。所有统计分析在SPSS 20软件中完成。

2 结果

2.1 植物性状总体变异特征

喀斯特地区10种优势木本植物的性状总特征见表2, 其中FRTDLASRLLT的变化范围最大。

在物种水平, 不同植物间的同一性状值大小差别较大, 且不同性状有不同的权衡(图1)。在枝叶性状中, 安顺润楠的LT最大, 倒卵叶旌节花次之, 异叶鼠李和小果蔷薇最小, 但SLALTD却是前两者最小, 后两者最大。云南鼠刺的LA最大, 异叶鼠李的最小。窄叶石栎的LDMC最大, 倒卵叶旌节花的最小。云贵鹅耳枥的TDMC和异叶鼠李的TTD分别最大, 但这两种性状却是倒卵叶旌节花最小。物种水平的叶性状组合中, 随着LTD升高, LTLA降低, SLALDMC却升高。LA越大, SLA越小, 但TTD越大, TDMC也越大。根系性状中, 刺异叶花椒SRL最大, 云南鼠刺最小, 化香树的FRTD最大, 而安顺润楠最小。除FRTD外, 其他各性状值的大小在物种间均表现出显著差异(图1)。

表2   喀斯特森林优势木本植物的功能性状特征

Table 2  Characteristics of dominant woody plant functional traits in the karst forest

性状
Trait
平均值±标准偏差
Mean ± SD
最小值
Minimum
最大值
Maximum
变异系数
Coefficient of variation (%)
叶片厚度 Leaf thickness (mm)0.17 ± 0.070.030.3339.41
叶面积 Leaf area (cm2)17.74 ± 10.442.1569.2858.85
比叶面积 Specific leaf area (cm2•g-1)134.44 ± 45.8055.35281.3434.07
叶干物质含量 Leaf dry-matter content (g•g-1)0.40 ± 0.060.280.6914.79
叶组织密度 Leaf tissue density (g•cm-3)0.54 ± 0.130.271.0724.07
小枝干物质含量 Twig dry-matter content of branchlets (g•g-1)0.48 ± 0.060.370.6411.67
小枝组织密度 Twig tissue density (g•cm-3)0.69 ± 0.190.282.5027.53
比根长 Specific root length (cm•g-1)251.91 ± 128.7954.56987.4151.12
细根组织密度 Fine root tissue density (g•cm-3)0.85 ± 0.820.127.3396.47

新窗口打开| 下载CSV


图1

图1   喀斯特地区优势木本植物功能性状值。箱线图上的圆圈指示异常值; 图中百分数据为变异系数; 纵坐标的1-10代表物种; 1, 安顺润楠; 2, 云南鼠刺; 3, 窄叶石栎; 4, 化香树; 5, 云贵鹅耳枥; 6, 刺异叶花椒; 7, 倒卵叶旌节花; 8, 异叶鼠李; 9, 小果蔷薇; 10, 藤黄檀。A, 叶片厚度(LT)。B, 叶面积(LA)。C, 比叶面积(SLA)。D, 叶片干物质含量(LDMC)。E, 叶片组织密度(LTD)。F, 小枝干物质含量(TDMC)。G , 小枝组织密度(TTD)。H, 比根长(SRL)。I, 细根组织密度(FRTD)。

Fig. 1   Functional traits value of dominant woody species in the karst forest. The circle in the box plot indicates the abnormal value; the percentage of data in the figure is the coefficient of variation; 1-10 represent species in the ordinate; the species number 1, Machilus cavaleriei; 2, Itea yunnanensis; 3, Lithocarpus confinis; 4, Carpinus pubescens; 5, Platycarya strobilacea; 6, Zanthoxylum ovalifolium; 7, Rhamnus heterophylla; 8, Stachyurus obovatus; 9, Rosa cymosa; 10, Dalbergia hancei. A, leaf thickness (LT). B, leaf area (LA). C, specific leaf area (SLA). D, leaf dry-matter content (LDMC). E, leaf tissue density (LTD). F, twig dry-matter content of branchlets (TDMC). G , twig tissue density (TTD). H, specific root length (SRL). I, fine root tissue density (FRTD).


在生长型水平, 所有叶片性状在乔木、灌木和藤本植物间差异显著(仅乔木与灌木的LTD除外), 但小枝与根系性状在3种生长型间却无显著差异(表3)。LALTTTDFRTD从乔木到灌木和藤本植物逐渐减小, SLA却相反。灌木植物的LDMCLTD最小, TDMCSRL最大, 但乔木的LDMCTDMC大于藤本植物, LTDSRL却相反(表3)。对常绿和落叶植物而言, 除LTD之外的所有叶性状及小枝性状TDMC均差异显著, 但叶与小枝组织密度和2种根系性状均无显著差异。常绿植物的LTLASRL大于落叶植物, 其他6种性状则是落叶大于常绿植物(表3)。

表3   不同生长型和生活型的植物性状(平均值±标准偏差)及(种间/种内)变异系数

Table 3  Plant functional traits in different growth and life forms (mean ± SD) and (interspecific-intraspecific) coefficient of variation

LT (mm)LA (cm2)SLA (cm2•g-1)LDMC (g•g-1)LTD (g•cm-3)TDMC (g•g-1)TTD (g•cm-3)SRL (cm•g-1)FRTD (g•cm-3)
乔木 Tree0.19 ± 0.06a (33.25%/
16.52%)
24.66 ± 9.02a (36.59%/
22.63%)
115.64 ± 44.16a (28.18%/
19.33%)
0.42 ± 0.05a (11.59%/
6.26%)
0.53 ± 0.10a (19.19%/
10.05%)
0.48 ± 0.06a (11.48%/
6.36%)
0.71 ± 0.11a (15.50%/
12.52%)
237.89 ± 89.59a (37.66%/
32.72%)
0.90 ± 0.93a (102.97%/
68.94%)
灌木 Shrub0.16±0.06b
(41.51%/
14.41%)
12.3 ± 6.62b (53.85%/
20.10%)
143.49 ± 35.369b (24.64%/
11.73%)
0.35 ± 0.05b (14.31%/
6.11%)
0.50 ± 0.15a (30.47%/
13.83%)
0.49 ± 0.06a (12.66%/
7.01%)
0.68 ± 0.17a (24.70%/
13.26%)
271.09 ± 179.73a (66.30%/
62.05%)
0.88 ± 0.89a (100.61%/
31.27%)
藤本 Liana0.11 ± 0.04c (35.94%/
24.26%)
7.43 ± 1.48c (19.95%/
17.33%)
169.689 ± 40.13c (23.65%/
23.17%)
0.41 ± 0.06c (13.86%/
12.77%)
0.61 ± 0.15b (24.52%/
15.23%)
0.46 ± 0.04b (9.80%/
7.70%)
0.63 ± 0.32a (50.94%/
43.33%)
255.17 ± 110.55a (43.32%/
37.93%)
0.69 ± 0.21a (30.37%/
25.04%)
常绿植物
Evergreen
0.17 ± 0.07d (39.34%/
14.81%)
18.15 ± 10.18d (56.12%/
17.12%)
131.19 ± 43.38d (34.47%/
13.99%)
0.39 ± 0.06d (16.29%/
7.06%)
0.54 ± 0.13d (27.98%/
12.12%)
0.48 ± 0.05d (11.73%/
7.17%)
0.71 ± 0.14d (20.81%/
13.38%)
238.14 ± 145.15d (60.95%/
45.90%)
0.88 ± 0.92d (93.11%/
59.18%)
落叶植物
Deciduous
0.14 ± 0.04e (29.49%/
23.57%)
16.84 ± 11.08e (65.79%/
29.42%)
145.85 ± 41.79e (30.12%/
26.66%)
0.43 ± 0.04e (9.60%/
8.56%)
0.55 ± 0.08d (16.58%/
12.52%)
0.50 ± 0.05e (10.65%/
6.02%)
0.72 ± 0.27d (36.91%/
31.61%)
237.66 ± 94.71d (34.61%/
34.23%)
0.91 ± 0.963d (102.4%2/
52.96%)

Different letters indicate significant differences. FRTD, fine root tissue density; LA, leaf area; LDMC, leaf dry-matter content; LT, leaf thickness; LTD, leaf tissue density; SLA, specific leaf area; SRL, specific root length; TDMC, twig dry-matter content of branchlets; TTD, twig tissue density.

不同字母的数值间差异显著。FRTD, 细根组织密度; LA, 叶面积; LDMC, 叶片干物质含量; LT, 叶片厚度; LTD, 叶片组织密度; SLA, 比叶面积; SRL, 比根长; TDMC, 小枝干物质含量; TTD, 小枝组织密度。

新窗口打开| 下载CSV


2.2 植物性状的种内与种间变异

喀斯特地区木本植物功能性状的种内、种间变化较大, 且不同性状间存在差异(表3)。其中, 云贵鹅耳枥的LT变异最大(变异系数29.27%), 化香树的LA (42.65%)、藤黄檀的SLA (28.43%)和TTD (71.06%)、小果蔷薇的LDMC (15.17%)和LTD (18.32%)、刺异叶花椒的TDMC (9.33%)、异叶鼠李的SRL (64.3%)和窄叶石栎的FRTD (112.12%)变异最大。

从物种平均来看, 除了藤本植物的TTD, 无论是物种还是生长型与生活型, 根系性状种内变异最高, 且种间差异较大, 叶大小及叶片与小枝组织密度的种内变异中等, 唯有TTD在不同物种间差异较大, 干物质含量的种内变异最低、物种间差异很小(表3)。生长型间各性状的种内变异差异较大, LTSLALDMC是藤本>乔木>灌木, 枝性状和组织密度是藤本>灌木>乔木, 根系性状的SRL是灌木>藤本>乔木, FRTD是乔木>灌木>藤本。在不同生活型间, 枝叶性状除TDMC外都是常绿>落叶植物, 而根系性状则相反(表3)。

植物性状种间变异普遍高于种内变异。除了藤本植物有特例外, 根系性状的种间变异最大, 叶片大小与组织密度性状次之, 干物质含量性状最低(表2)。在不同生长型中, 灌木的叶片、小枝和根系性状的种间变异通常较大, 尤其叶片与根系性状; 藤本植物除了LTLTDTTDSRL的种间变异高于乔木植物外, 其他性状都较低(表3)。对不同生活型来说, 常绿植物的种间变异通常高于落叶植物, 但在不同性状间有差别; LATTDFRTD的种间变异是常绿低于落叶植物, 尽管二者间的差异不很显著, 其他性状却都是常绿高于落叶植物(表3)。

单因子方差分析(表4)表明物种差异对除TTD之外的叶片与小枝性状变异的解释度均很高, 但对根系性状与TTD变异的解释度较低。不同生长型对性状变异的影响程度都较小, 只对LALDMC两个叶性状的影响相对较大。不同生活型对所有性状变异几乎没有影响。生活型和生长型的交互作用对多数性状变异的影响大于生活型和生长型的单独影响(表4), 但是对LTTDMCFRTD的影响不大。

表4   物种、生长型和生活型对性状变异的影响(R2值)

Table 4  Effects of species, growth form and life form on trait variations (R2 value)

变量 VariablesLT (mm)LA (cm2)SLA (cm2•g-1)LDMC (g•g-1)LTD (g•cm-3)TDMC (g•g-1)TTD (g•cm-3)SRL (cm•g-1)FRTD (g•cm-3)
物种 Species0.860.780.670.750.740.640.190.180.08
生长型 Growth form0.130.500.160.310.020.060.030.020.01
生活型 Life form0.080.010.030.120.010.040.000.020.00
生长型×生活型
Growth form × Life form
0.070.550.490.350.190.020.170.370.04

FRTD, fine root tissue density; LA, leaf area; LDMC, leaf dry-matter content; LT, leaf thickness; LTD, leaf tissue density; SLA, specific leaf area; SRL, specific root length; TDMC, twig dry-matter content of branchlets; TTD, twig tissue density.

FRTD, 细根组织密度; LA, 叶面积; LDMC, 叶片干物质含量; LT, 叶片厚度; LTD, 叶片组织密度; SLA, 比叶面积; SRL, 比根长; TDMC, 小枝干物质含量; TTD, 小枝组织密度。

新窗口打开| 下载CSV


2.3 木本植物性状间的关联性

相关性检验(表5)表明, 除LALDMC之间外, 4个叶性状间显著正或负相关, 小枝性状间也显著正相关, 根系性状间却无相关性。除LASLATTD外, 叶性状与枝性状间也大都显著相关。根系与枝叶性状间只有SRLSLAFRTDLA显著负相关。叶片与小枝间的组织密度和干物质含量显著正相关(表5)。

表5   喀斯特森林10种优势木本植物功能性状之间的相关系数

Table 5  Correlation coefficient between plant functiolal traits of ten dominant woody species in the karst forest

LTLASLALDMCLTDTDMCTTDSRL
LA0.65**
SLA-0.83**-0.56**
LDMC-0.21**0.01-0.22**
LTD-0.70**-0.47**0.34**0.64**
TDMC -0.38**0.41**0.17*0.43**0.45**
TTD-0.17*0.10-0.020.28**0.29**0.34**
SRL0.12-0.00-0.18*0.12-0.130.090.04
FRTD 0.02-0.31**-0.090.100.120.02-0.01-0.00

FRTD, fine root tissue density; LA, leaf area; LDMC, leaf dry-matter content; LT, leaf thickness; LTD, leaf tissue density; SLA, specific leaf area; SRL, specific root length; TDMC, twig dry-matter content of branchlets; TTD, twig tissue density.

*, p < 0.05; **, p < 0.01. FRTD, 细根组织密度; LA, 叶面积; LDMC, 叶片干物质含量; LT, 叶片厚度; LTD, 叶片组织密度; SLA, 比叶面积; SRL, 比根长; TDMC, 小枝干物质含量; TTD, 小枝组织密度。

新窗口打开| 下载CSV


3 讨论和结论

3.1 喀斯特地区植物功能性状的变异特性

本研究发现, 黔中10种木本植物的9个功能性状在种内与种间均存在不同程度的变异。很多研究表明, 种间变异在植物功能性状变异中占据主导地位, 但越来越多的证据表明种内变异也是不可忽视的, 可达总性状变异的28%-52% (Albert et al., 2010; Auger & Shipley, 2013; Jiang et al., 2016; 唐青青等, 2016)。黔中喀斯特地区植物性状的种内变异平均达21%, 相较于其他植被类型, 其性状种内变异幅度较低, 这可能反映了严酷生境条件下较小形态可塑性(Auger & Shipley, 2013)。

本研究还发现, 喀斯特地区植物功能性状的种间变异, 尤其是枝叶性状, 主要受到物种类群(遗传背景)的影响, 其次是生活型和生长型的交互作用(表4), 但后者的生态学背景也是物种的分类单元, 因此, 植物系统发育, 亦即其进化与分类背景对性状分异的影响很大, 有时候甚至超过环境因子的影响(Figueroa & Armesto, 2001; 陈林等, 2014; 苏文华等, 2015; 陈文等, 2016)。然而, 物种类群对根系性状变异的解释度较低, 这应该与喀斯特生境的高度异质性密切相关(Ni et al., 2015; Liu et al., 2016), 其影响机制需要进一步研究。

3.2 喀斯特地区植物不同器官功能性状的耦合

植物生长和长期适应环境过程中受生理、系统发育、环境等因素的综合作用, 各性状呈一定的相关性(Kerkhoff et al., 2006; Wright et al., 2007), 最终形成一系列适应特定环境的最佳功能性状组合(Westoby et al., 2002)。本研究发现, 喀斯特地区植物枝叶与根系性状的相关性较小, 枝叶性状间的相关性显著。例如, LTSLA的负相关表明, 在干旱贫瘠的环境, 更多的叶片光合产物用于构建保卫组织或增加叶肉密度, 以防止高温对叶片的损伤或水分的丧失, 从而提高水分利用效率, 结果导致SLA减小和LT的增加(Comstock & Mencuccini, 1998)。

研究表明, 干旱地区的物种通常有较厚的叶片以适应水分胁迫, SLA减小, 叶片体积也随之减小, 导致LTD增大(Ohashi et al., 2006), 但是, 本研究结果正好相反, 表现为LTLTDLDMC负相关, SLALTD正相关, LDMCLTD正相关。LDMC高和LTD大的叶片相对坚韧, 对物理胁迫的抵抗力更强(Cornelissen et al., 2003)。同时, TD反映植物器官中生物量的累积状况(Reich et al., 1998), 本研究中LDMCLTD正相关, 意味着对于喀斯特地区植物而言, 更多的叶片光合产物被用来积累干物质, 从而增强其对干旱生境的适合度(Niinemets, 2001)。

枝与叶大小紧密关联, 枝大小变化可解释80%以上的叶大小变异(Corner, 1949; Westoby & Wright, 2003)。本研究中, TDMCLASLALDMCLTD, TTDLDMCLTD均显著正相关, 这是由枝叶间的权衡关系决定的, 其普遍存在于自然界。也有研究发现, SRLSLA的相关性较弱, 并不存在于所有物种中(Withington et al., 2006; 詹书侠等, 2016)。值得提及的是, 本研究发现根系性状SRL与叶性状SLA显著负相关, 表明在喀斯特干旱环境下, 植物需提高对水分和资源的吸收效率, 因此投入大量的生物量用于生长根系, 而不是投入到叶片面积的扩展上, 这在喀斯特地区森林表现尤为突出(Ni et al., 2015)。

3.3 喀斯特地区植物的环境适应策略

本研究植物来自同一地点, 具有相似的生境和资源, 但结果表明, 除了FRTD, 其他8个性状在不同物种中表现出显著差异。这不仅反映了不同种类对局域环境的适应策略不同, 而且反映了共存物种间由于竞争排斥导致的功能策略趋异(Zhang et al., 2010; 尧婷婷等, 2010)。

不同环境条件、相似功能群的植物功能性状也具有不同的特征。桂林喀斯特地区灌丛植被的优势灌木具有较高的LTLALDMC, 但SLA显著低于本研究(Jiang et al., 2016), 两地区的LTSLA存在显著的差异(p < 0.05), LALDMC差异不显著。两地同属于喀斯特地貌, 但植被类型不同, 桂林是常绿和落叶阔叶灌丛, 本研究对象是常绿与落叶阔叶林, 且灌木种不同, 林下环境也不同。桂林是灌丛中的灌木处于上木层, 本研究的灌木则为林下层。除此之外, 气候因素也是两地区植物叶性状存在差异的主要原因。与普定相比, 桂林纬度偏南, 海拔低, 年平均气温高于普定4 ℃左右, 年降水量高600 mm左右。普定地区云量大, 植物通过增大SLA来增强光合作用以适应光照少的环境条件, 高SLA体现了较强的捕获光资源能力(陈文等, 2016)。重庆喀斯特地区常绿植物的LDMCLT大于本研究中的植物, SLA小于本研究植物, 而落叶植物的3个性状相反; 乔木树种的LDMCSLA大于本研究, 灌木树种的LDMC大于本研究, SLA相反(刘宏伟等, 2014)。两地区气候相近, 但重庆属低山峰丛, 贵州属高原型喀斯特地貌, 且所研究树种不同, 植物性状也不同。

与同纬度的非喀斯特地区, 如浙江天童山(许洺山等, 2016)、湖北星斗山(唐青青等, 2016)、广西尧山(马姜明等, 2012)、云南和四川(苏文华等, 2015)相比, 喀斯特地区和非喀斯特地区植物SLALALDMC均表现出显著的差异性。普定喀斯特地区植物的SLALA小于非喀斯特地区植物, 而LTDLDMCTTDTDMC大于非喀斯特地区植物。桂林喀斯特地区植物的LT显著高于同纬度非喀斯特地区植物(Jiang et al., 2016), 而普定和重庆喀斯特地区(刘宏伟等, 2015)的LT稍小。非喀斯特地区植物具有较大的SLALA, 体现了较强的捕获光能资源能力, 能很好地适应资源丰富的环境。喀斯特土壤水分季节性亏缺大, 严重影响了喀斯特地区植物的生长发育, 因此经过长期干旱环境筛选, 喀斯特地区植物形成了一套适应于干旱环境, 具有较小SLALA和较大LDMCLTD的叶性状组合。较小的SLALA有利于植物减小蒸腾作用, 保持水分, 从而保持较低的生长速率, 而较大的LDMCLTD有利于植物储存营养物质(Wilson et al., 1999)。喀斯特地区植物的LT虽然不如干旱环境植物的LT厚, 但叶片大多数为革质叶或是较厚的纸质叶, 均有利于植物保持水分。另外, 喀斯特地区植物SLA低, 比叶质量大, 对枝条的机械需求高, 因而拥有高的TTDTDMC

研究表明, 干旱或贫瘠环境中的植物通常有较大的SRL和较高的FRTD (Kramer-Walter et al., 2016), 表明在同等投资的情况下, 植物对养分和水分的吸收能力较高(Bauhus et al., 2000)。相对于江西大岗山的刨花楠(Machilus pauhoi)、山矾(Symplocos sumuntia)等(邹斌等, 2015)和武夷山的台湾松(Pinus taiwanensis) (郭炳桥, 2016), 喀斯特地区植物的SRL显著较小, FRTD则显著较大。不言而喻, 喀斯特生境中岩石裸露率高, 土层浅、土量少, 储水能力弱, 严重影响根系生长, 植物根系大多为浅根系类型, 因此, SRL显著小于其他地区。由于岩石挤压等因素, 喀斯特地区植物以增大FRTD的方式来满足根系对水分和养分的需求。

本研究结果表明, 普定喀斯特木本植物功能性状既相互联系又存在较大的种内与种间差异, 与其他类型的喀斯特地区植物, 尤其与同纬度地带的非喀斯特地区植物相比, 普定喀斯特地区植物在枝叶和根系器官发育形成了小LASLASRL, 大LDMCTTDTDMCFRTD等一系列减小蒸腾和储存养分的功能性状组合, 从而提高其对干旱贫瘠的喀斯特环境的选择优势。

致谢

本研究得到中国科学院地球化学研究所环境地球化学国家重点实验室开放课题(SKLEG2017911)资助。感谢广西师范学院钟琳、梁传锋、庄世煊、钟家坚等4位同学在野外和室内实验中提供的帮助,感谢3位审稿人对本稿件的大力斧正。

参考文献

Ackerly DD, Reich PB ( 1999).

Convergence and correlations among leaf size and function in seed plants: A comparative test using independent contrasts

American Journal of Botany, 86, 1272-1281.

DOI:10.2307/2656775      URL     PMID:10487815410300123000530007300     

Prior studies of a broad array of seed plants have reported strong correlations among leaf life span, specific leaf area, nitrogen concentration, and carbon assimilation rates, which have been interpreted as evidence of coordinated leaf physiological strategies. However, it is not known whether these relationships reflect patterns of evolutionary convergence, or whether they are due to contrasting characteristics of major seed plant lineages. We reevaluated a published data set for these seven traits measured in over 100 species, using phylogenetic independent contrasts calculated over a range of alternative seed plant phylogenies derived from recent molecular systematic analyses. In general, pairwise correlations among these seven traits were similar with and without consideration of phylogeny, and results were robust over a range of alternative phylogenies. We also evaluated relationships between these seven traits and lamina area, another important aspect of leaf function, and found moderate correlations with specific leaf area (0.64), mass-based photosynthesis (0.54), area-based nitrogen (-0.56), and leaf life span (-0.42). However, several of these correlations were markedly reduced using independent contrasts; for example, the correlation between leaf life span and lamina area was reduced to close to zero. This change reflects the large differences in both these traits between conifers and angiosperms and the absence of a relationship between the traits within these groups. This analysis illustrates that most interspecific relationships among leaf functional traits, considered across a broad range of seed plant taxa, reflect significant patterns of correlated evolutionary change, lending further support to the adaptive interpretation of these relationships.

Albert CH, Thuiller W, Yoccoz NG, Soudant A, Boucher F, Saccone P, Lavorel S ( 2010).

Intraspecific functional variability: Extent, structure and sources of variation

Journal of Ecology, 98, 604-613.

DOI:10.1111/j.1365-2745.2010.01651.x      URL     [本文引用: 3]

Summary 1. Functional traits are increasingly used to investigate community structure, ecosystem functioning or to classify species into functional groups. These functional traits are expected to be variable between and within species. Intraspecific functional variability is supposed to influence and modulate species responses to environmental changes and their effects on their environment. However, this hypothesis remains poorly tested and species are mostly described by mean trait values without any consideration of variability in individual trait values. 2. In this study, we quantify the extent of intraspecific plant functional trait variability, its spatial structure and its response to environmental factors. Using a sampling design structured along two direct and orthogonal climatic gradients in an alpine valley, we quantified and analysed the intraspecific variability for three functional traits (height, leaf dry matter content and leaf nitrogen content) measured on sixteen plant species with contrasting life histories. 3. Results showed a large variability of traits within species with large discrepancies between functional traits and species. This variability did not appear to be structured within populations. Between populations, the overall variability was partly explained by the selected gradients. Despite the strong effects of temperature and radiation on trait intraspecific variability, the response curves of traits along gradients were partly idiosyncratic. 4. Synthesis . Giving a comprehensive quantification of intraspecific functional variability through the analysis of an original data set, we report new evidence that using a single trait value to describe a given species can hide large functional variation for this species along environmental gradients. These findings suggest that intraspecific functional variability should be a concern for ecologists and its recognition opens new opportunities to better understand and predict ecological patterns in a changing environment. Further analyses are, however, required to compare inter- and intraspecific variability.

Auger S, Shipley B ( 2013).

Inter-specific and intra-specific trait variation along short environmental gradients in an old-growth temperate forest

Journal of Vegetation Science, 24, 419-428.

DOI:10.1111/jvs.2013.24.issue-3      URL     [本文引用: 3]

Bauhus J, Khanna PK, Menden N ( 2000).

Aboveground and belowground interactions in mixed plantations of Eucalyptus globulus and Acacia mearnsii

Canadian Journal of Forest Research, 30, 1886-1894.

[本文引用: 1]

Bu WS, Schmid B, Liu XJ, Li Y, Hardtle W, von Oheimb G, Liang Y, Sun ZK, Huang YY, Bruelheide H, Ma KP ( 2017).

Interspecific and intraspecific variation in specific root length drives aboveground biodiversity effects in young experimental forest stands

Journal of Plant Ecology, 10, 158-169.

DOI:10.1093/jpe/rtw096      URL     [本文引用: 1]

Chave J, Coomes D, Jansen S, Lewis SL, Swenson NG, Zanne AE ( 2009).

Towards a worldwide wood economics spectrum

Ecology Letters, 12, 351-366.

DOI:10.1111/j.1461-0248.2009.01285.x      URL     PMID:19243406      [本文引用: 1]

Abstract Wood performs several essential functions in plants, including mechanically supporting aboveground tissue, storing water and other resources, and transporting sap. Woody tissues are likely to face physiological, structural and defensive trade-offs. How a plant optimizes among these competing functions can have major ecological implications, which have been under-appreciated by ecologists compared to the focus they have given to leaf function. To draw together our current understanding of wood function, we identify and collate data on the major wood functional traits, including the largest wood density database to date (8412 taxa), mechanical strength measures and anatomical features, as well as clade-specific features such as secondary chemistry. We then show how wood traits are related to one another, highlighting functional trade-offs, and to ecological and demographic plant features (growth form, growth rate, latitude, ecological setting). We suggest that, similar to the manifold that tree species leaf traits cluster around the 'leaf economics spectrum', a similar 'wood economics spectrum' may be defined. We then discuss the biogeography, evolution and biogeochemistry of the spectrum, and conclude by pointing out the major gaps in our current knowledge of wood functional traits.

Chen L, Yang XG, Song NP, Yang XM, Xiao XP, Wang X ( 2014).

A study on variations in leaf trait of 35 plants in the arid region of middle Ningxia, China

Acta Prataculturae Sinica, 23, 41-49.

DOI:10.11686/cyxb20140106      URL     [本文引用: 1]

以宁夏中部干旱带35种植物9种叶性状为研究对象,分析其变异特征、相关性以及不同科、功能类群间的关系,探讨该地区植物对环境的适应性,为该地区生态系统植被的恢复和重建提供理论依据。结果表明,叶性状特征存在种间差异,按照变异系数,可划分为3类:高变异系数(叶片厚度和叶片单位面积吸水量)、中变异系数(叶片含水量增加率、叶组织密度、叶片肉质化程度和比叶面积)和低变异系数(叶绿素含量、叶片干物质含量和叶片水分饱和亏)。一年生植物叶组织密度、叶绿素含量和叶片干物质含量的平均值极显著低于多年生植物,而比叶面积则极显著的高于多年生植物。叶组织密度、叶片厚度、叶片肉质化程度、叶片干物质含量和叶片单位面积吸水量在不同科类群之间存在极显著差异,而比叶面积、叶片水分饱和亏、叶绿素含量和叶片含水量增加率之间则差异不显著。因此,可以将叶组织密度、叶片厚度、叶片肉质化程度、叶片干物质含量和叶片单位面积吸水量用作不同科类群植物间相比较的研究因子。

[ 陈林, 杨新国, 宋乃平杨明秀, 肖绪培, 王兴 ( 2014).

宁夏中部干旱带主要植物叶性状变异特征研究

草业学报, 23, 41-49.]

DOI:10.11686/cyxb20140106      URL     [本文引用: 1]

以宁夏中部干旱带35种植物9种叶性状为研究对象,分析其变异特征、相关性以及不同科、功能类群间的关系,探讨该地区植物对环境的适应性,为该地区生态系统植被的恢复和重建提供理论依据。结果表明,叶性状特征存在种间差异,按照变异系数,可划分为3类:高变异系数(叶片厚度和叶片单位面积吸水量)、中变异系数(叶片含水量增加率、叶组织密度、叶片肉质化程度和比叶面积)和低变异系数(叶绿素含量、叶片干物质含量和叶片水分饱和亏)。一年生植物叶组织密度、叶绿素含量和叶片干物质含量的平均值极显著低于多年生植物,而比叶面积则极显著的高于多年生植物。叶组织密度、叶片厚度、叶片肉质化程度、叶片干物质含量和叶片单位面积吸水量在不同科类群之间存在极显著差异,而比叶面积、叶片水分饱和亏、叶绿素含量和叶片含水量增加率之间则差异不显著。因此,可以将叶组织密度、叶片厚度、叶片肉质化程度、叶片干物质含量和叶片单位面积吸水量用作不同科类群植物间相比较的研究因子。

Chen W, Wang JH, Ma RJ, Qi W, Liu K, Zhang LN, Chen XL ( 2016).

Variance in leaf functional traits of 89 species from the eastern Guangdong of China

Chinese Journal of Ecology, 35, 2101-2109.

DOI:10.13292/j.1000-4890.201608.033      URL     [本文引用: 2]

叶功能性状体现了植物为获得最大化碳收获所采取的生存适应策略。本文研究了粤东89种常见植物叶功能性状包括叶面积(LA)、比叶面积(SLA)、叶干物质含量(LDMC)、叶氮含量(LNC)的变异特征及其与科类群、生活史属性和生境的关系。89种植物的LA、SLA、LDMC、LNC平均值分别为20.59 cm2、300.149 cm2·g-1、0.2213 g·g-1、2.55%;变异幅度依次是:LA(145.06%)SLA(97.21%)LDMC(36.40%)LNC(27%)。LMDC与SLA呈极显著负相关关系(P0.001)。不同科类群间SLA、LDMC差异显著(P0.05),禾本科植物LDMC最大(0.359 g·g-1)、SLA最小(163.749 cm2·g-1),伞形科植物LDMC最小(0.136 g·g-1)、SLA最大(1091.42 cm2·g-1);藤本和灌木LA显著大于草本植物(P0.01);科类群能解释LA、SLA、LDMC和LNC变异的26.3%、30.2%、40.9%和13.8%,其次是植物高度和生活型;科类群、植物高度和生活型三者交互作用能解释LA、SLA、LDMC、LNC变异的82.5%、80.9%、79.4%和56.7%;植物分布区、原产地及生境对叶性状均无显著影响(P0.05)。粤东89种植物叶性状的种间变异主要受物种系统发育史和生活史特征的影响。

[ 陈文, 王桔红, 马瑞君, 齐威, 刘坤, 张丽娜, 陈学林 ( 2016).

粤东89种常见植物叶功能性状变异特征

生态学杂志, 35, 2101-2109.]

DOI:10.13292/j.1000-4890.201608.033      URL     [本文引用: 2]

叶功能性状体现了植物为获得最大化碳收获所采取的生存适应策略。本文研究了粤东89种常见植物叶功能性状包括叶面积(LA)、比叶面积(SLA)、叶干物质含量(LDMC)、叶氮含量(LNC)的变异特征及其与科类群、生活史属性和生境的关系。89种植物的LA、SLA、LDMC、LNC平均值分别为20.59 cm2、300.149 cm2·g-1、0.2213 g·g-1、2.55%;变异幅度依次是:LA(145.06%)SLA(97.21%)LDMC(36.40%)LNC(27%)。LMDC与SLA呈极显著负相关关系(P0.001)。不同科类群间SLA、LDMC差异显著(P0.05),禾本科植物LDMC最大(0.359 g·g-1)、SLA最小(163.749 cm2·g-1),伞形科植物LDMC最小(0.136 g·g-1)、SLA最大(1091.42 cm2·g-1);藤本和灌木LA显著大于草本植物(P0.01);科类群能解释LA、SLA、LDMC和LNC变异的26.3%、30.2%、40.9%和13.8%,其次是植物高度和生活型;科类群、植物高度和生活型三者交互作用能解释LA、SLA、LDMC、LNC变异的82.5%、80.9%、79.4%和56.7%;植物分布区、原产地及生境对叶性状均无显著影响(P0.05)。粤东89种植物叶性状的种间变异主要受物种系统发育史和生活史特征的影响。

Comas LH, Eissenstat DM ( 2004).

Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species

Functional Ecology, 18, 388-397.

DOI:10.1111/j.0269-8463.2004.00835.x      URL    

Summary 1 There is limited understanding of patterns of variation that exist among root traits of different species, especially under field conditions. We contrasted 11 fast- and slow-growing species paired within five evolutionary lineages to investigate whether root traits associated with soil resource acquisition were related to species potential growth rate. 2 Measurements of root morphology, architecture, nitrogen and phenolic concentration, respiration and phosphorus uptake were taken on fine, non-woody roots sampled from forest stands in central Pennsylvania, USA. 3 Across all five contrasts, roots of fast-growing species generally had higher specific root length, smaller diameters, greater degree of branching, and lower phenolic concentrations than those of slow-growing species. This suggests differences in potential soil exploration and root defences among species differing in potential growth rate. 4 There were no significant differences between fast- and slow-growing species in root tissue density, respiration or P uptake. Lack of root physiological differences between species differing in growth rate contrasted with previous research on chamber-grown seedlings. 5 These results imply that, while roots of fast-growing species may be constructed for more rapid soil exploration and shorter life span than those of slow-growing species, root physiology is either more closely tied to overall plant physiology, which is more similar among mature trees, or masked by variation in soil microsites, root age or interactions with mycorrhizal fungi.

Comstock J, Mencuccini M ( 1998).

Control of stomatal conductance by leaf water potential in Hymenoclea salsola(T. & G.), a desert subshrub

Plant, Cell & Environment, 21, 1029-1038.

[本文引用: 1]

Cornelissen JHC, Lavorel S, Garnier E, Diaz S, Buchmann N, Gurvich DE, Reich PB, ter Steege H, Morgan HD, van der Heijden MGA, Pausas JG, Poorter H ( 2003).

A handbook of protocols for standardised and easy measurement of plant functional traits worldwide

Australian Journal of Botany, 51, 335-380.

DOI:10.1071/BT02124      URL     [本文引用: 2]

Corner EJH ( 1949).

The durian theory or the origin of the modern tree

Annals of Botany, 13, 367-414.

DOI:10.1093/oxfordjournals.aob.a083225      URL     [本文引用: 1]

Craine JM, Lee WG, Bond WJ, Williams RJ, Johnson LC ( 2005).

Environmental constraints on a global relationship among leaf and root traits of grasses

Ecology, 86, 12-19.

DOI:10.1890/04-1075      URL     [本文引用: 1]

Uncertainties regarding the relationships between leaf and root traits have impeded an integrated understanding of plant evolution and the efficient parameterization of ecosystem models. We measured key root and leaf traits of grasses from 77 sites in four grassland regions of the world (New Zealand, Australia, South Africa, North America). Within each region, the relationships among leaf traits paralleled those among root traits. Plants with low root or leaf N concentrations had roots or leaves with high tissue density, high lignin concentrations, low amount of mass that was soluble in a neutral detergent solution, large diameter/thickness, and were less enriched in15N. Yet, whether comparing plants within a region or among all four regions, there was little relationship between root traits and leaf traits, except for a positive relationship between root and leaf N concentration and between root and leaf 15N. At the global scale, factors such as soil freezing and the type of nutrient limitation appear to determine relationships among leaves and roots. C4grasses not only had lower leaf N concentrations than C3grasses but also lower root N concentrations. When compared at the same root N concentration, C4grasses had greater leaf N concentrations than C3grasses.

Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y, Band SR, Basconcelo S, Castro-Díez P, Hamzehee GFB, Khoshnevi M, Pérez-Harguindeguy N, Pérez-Rontomé MC, Shirvany A, Vendramini F, Yazdani S, Abbas-Azimi R, Bogaard A, Boustani S, Charles M, Dehghan M, de Torres-Espuny L, Falczuk V, Guerrero-‌Campo J, Thompson K, Hynd A, Jones G, Kowsary E, Kazemi-Saeed F, Maestro-Martínez M, Romo-Díez A, Shaw S, Siavash B, Villar-Salvador P, Zak MR ( 2004).

The plant traits that drive ecosystems: Evidence from three continents

Journal of Vegetation Science, 15, 295-304.

DOI:10.1111/j.1654-1103.2004.tb02266.x      URL     [本文引用: 2]

Abstract Question: A set of easily-measured (‘soft’) plant traits has been identified as potentially useful predictors of ecosystem functioning in previous studies. Here we aimed to discover whether the screening techniques remain operational in widely contrasted circumstances, to test for the existence of axes of variation in the particular sets of traits, and to test for their links with ‘harder’ traits of proven importance to ecosystem functioning. Location: central-western Argentina, central England, northern upland Iran, and north-eastern Spain. Recurrent patterns of ecological specialization: Through ordination of a matrix of 640 vascular plant taxa by 12 standardized traits, we detected similar patterns of specialization in the four floras. The first PCA axis was identified as an axis of resource capture, usage and release. PCA axis 2 appeared to be a size-related axis. Individual PCA for each country showed that the same traits remained valuable as predictors of resource capture and utilization in all of them, despite their major differences in climate, biogeography and land-use. The results were not significantly driven by particular taxa: the main traits determining PCA axis 1 were very similar in eudicotyledons and monocotyledons and Asteraceae, Fabaceae and Poaceae. Links between recurrent suites of ‘soft’ traits and ‘hard’ traits: The validity of PCA axis 1 as a key predictor of resource capture and utilization was tested by comparisons between this axis and values of more rigorously established predictors (‘hard’ traits) for the floras of Argentina and England. PCA axis 1 was correlated with variation in relative growth rate, leaf nitrogen content, and litter decomposition rate. It also coincided with palatability to model generalist herbivores. Therefore, location on PCA axis 1 can be linked to major ecosystem processes in those habitats where the plants are dominant. Conclusion: We confirm the existence at the global scale of a major axis of evolutionary specialization, previously recognised in several local floras. This axis reflects a fundamental trade-off between rapid acquisition of resources and conservation of resources within well-protected tissues. These major trends of specialization were maintained across different environmental situations (including differences in the proximate causes of low productivity, i.e. drought or mineral nutrient deficiency). The trends were also consistent across floras and major phylogenetic groups, and were linked with traits directly relevant to ecosystem processes.

Díaz S, Kattge J, Cornelissen JH, Wright IJ, Lavorel S, Dray B, Reu B, Kleyer M, Wirth C, Prentice IC, Garnier E, Bonisch G, Westoby M, Poorter H, Reich PB, Moles AT, Dickie J, Gillison AN, Zanne AE, Chave J, Wright SJ, Sheremetev SN, Jactel H, Baraloto C, Cerabolini B, Pierce S, Shipley B, Kirkup D, Casanoves F, Joswig JS, Günther A, Falczuk V, Rüger N, Mahecha MD, Gorné L ( 2016).

The global spectrum of plant form and function

Nature, 529, 167-171.

DOI:10.1038/nature16489      URL     PMID:26700811      [本文引用: 2]

Abstract Earth is home to a remarkable diversity of plant forms and life histories, yet comparatively few essential trait combinations have proved evolutionarily viable in today's terrestrial biosphere. By analysing worldwide variation in six major traits critical to growth, survival and reproduction within the largest sample of vascular plant species ever compiled, we found that occupancy of six-dimensional trait space is strongly concentrated, indicating coordination and trade-offs. Three-quarters of trait variation is captured in a two-dimensional global spectrum of plant form and function. One major dimension within this plane reflects the size of whole plants and their parts; the other represents the leaf economics spectrum, which balances leaf construction costs against growth potential. The global plant trait spectrum provides a backdrop for elucidating constraints on evolution, for functionally qualifying species and ecosystems, and for improving models that predict future vegetation based on continuous variation in plant form and function.

Eissenstat DM, Wells CE, Yanai RD, Whitbeck JL ( 2000).

Building roots in a changing environment: Implications for root longevity

New Phytologist, 147, 33-42.

DOI:10.1046/j.1469-8137.2000.00686.x      URL     [本文引用: 1]

Root turnover is important to the global carbon budget as well as to nutrient cycling in ecosystems and to the success of individual plants. Our ability to predict the effects of environmental change on root turnover is limited by the difficulty of measuring root dynamics, but emerging evidence suggests that roots, like leaves, possess suites of interrelated traits that are linked to their life span. In graminoids, high tissue density has been linked to increased root longevity. Other studies have found root longevity to be positively correlated with mycorrhizal colonization and negatively correlated with nitrogen concentration, root maintenance respiration and specific root length. Among fruit trees, apple roots (which are of relatively small diameter, low tissue density and have little lignification of the exodermis) have much shorter life spans than the roots of citrus, which have opposite traits. Likewise, within the branched network of the fine root system, the finest roots with no daughter roots tend to have higher N concentrations, faster maintenance respiration, higher specific root length and shorter life spans than secondary and tertiary roots that bear daughter roots. Mycorrhizal colonization can enhance root longevity by diverse mechanisms, including enhanced tolerance of drying soil and enhanced defence against root pathogens. Many variables involved in building roots might affect root longevity, including root diameter, tissue density, N concentration, mycorrhizal fungal colonization and accumulation of secondary phenolic compounds. These root traits are highly plastic and are strongly affected by resource supply (CO 2 , N, P and water). Therefore the response of root longevity to altered resource availability associated with climate change can be estimated by considering how changes in resource availability affect root construction and physiology. A cost benefit approach to predicting root longevity assumes that a plant maintains a root only until the efficiency of resource acquisition is maximized. Using an efficiency model, we show that reduced tissue Nconcentration and reduced root maintenance respiration, both of which are predicted to result from elevated CO 2 , should lead to slightly longer root life spans. Complex interactions with soil biota and shifts in plant defences against root herbivory and parasitism, which are not included in the present efficiency model, might alter the effects of future climate change on root longevity in unpredicted ways.

Figueroa JA, Armesto JJ ( 2001).

Community-wide germination strategies in a temperate rainforest of Southern Chile: Ecological and evolutionary correlates

Australian Journal of Botany, 49, 411-425.

DOI:10.1071/bt00013      URL     [本文引用: 1]

ABSTRACT Delayed seed germination (‘dispersal in time’), as a component of a plant’s germination strategy, was studied in dicotyledoneous species of a temperate rainforest flora in Chiloé Island (42°30′S), southern Chile. The objective of this investigation was to assess, for this temperate rainforest flora, what proportion of interspecific variation in the time of seed germination—measured in days since the onset of seed dispersal in space—could be attributed to the plants’ historical and phylogenetic background and what proportion was associated with life history and ecological attributes such as seed mass, life form, dispersal syndromes and dispersal periods. To characterise germination times for 44 species from Chiloé forests (n = 150 seeds sowed per species in laboratory assays), we computed the mean germination time (GT), in days since sowing, for all seeds germinated of each species. Seeds were taken from the plants at the onset of dispersal and germinated in Petri dishes at 10/20°C. Considering all species, GTs varied between 3 and 385 days and presented an L-shaped frequency distribution. One-way ANOVAs measured the effects of each factor across all other variables. Two-way ANOVAs were used to assess significant interactions between factors. Multifactorial ANOVAs were used to evaluate the independent effects of each of six historical, phylogenetic and ecological factors on GT and to detect associations between factors. In one-way ANOVAs, phylogenetic grouping (at or above order) explained 12% of the variance in GT; dispersal period (summer v. mainly autumn dissemination of ripe seeds), biogeographic element (endemic, austral, neotropical or cosmopolitan) and dispersal syndrome (fleshy v. dry propagules) explained 7, 6 and 5% of the variance in GT, respectively. The factors life form (trees, shrub and woody vines combined, herbs and non-woody epiphytes) and seed mass (light v. heavy) explained the 4 and 2% of the variance in GT, respectively. Taxa related to Ranunculales presented the longest mean GT (148 days). Endozoochorous species had a more delayed germination than species with other dispersal syndromes. Herbs and non-woody epiphyte species showed mean GT (41 days) significantly shorter than trees and shrubs plus woody vines combined (86 and 85 days, respectively). All interactions in two-way ANOVAs were significant. Multifactorial ANOVAs revealed that the three major factors contributing to differences in GT in this temperate rainforest flora were phylogenetic relatedness, dispersal syndromes and life form (7, 6 and 6% of the interspecific variation, respectively). In this analysis, biogeographic element, dispersal period and seed mass were not significantly related to GT. For the factors examined, failure-time analysis, which takes into account all viable seeds not germinating in laboratory assays, confirmed results from multifactorial ANOVAs.

Garnier E, Laurent G, Bellmann A, Debain S, Berthelier P, Ducout B, Roumet C, Navas ML ( 2001).

Consistency of species ranking based on functional leaf traits

New Phytologist, 152, 69-83.

DOI:10.1046/j.0028-646x.2001.00239.x      URL    

Summary 6168 Specific leaf area (leaf area to dry mass ratio), leaf dry matter content (leaf dry mass to saturated fresh mass ratio) and leaf nitrogen concentration (LNC) have been proposed as indicators of plant resource use in data bases of plant functional traits. 6168 We tested whether species ranking based on these traits was repeatable by studying spatio-temporal variations in specific leaf area and leaf dry matter content of water-saturated leaves (SLA SAT and LDMC SAT ), as well as in LNC, for 57 herbaceous and woody species (or subsets thereof) growing under the Mediterranean climate of southern France. 6168 Interseason and intersite variations were more pronounced than interannual variations, but species ranking for a given trait remained mostly consistent in space and time. Classifications based on LDMC SAT were generally more repeatable across years and sites, whereas those based on SLA SAT were more stable over seasons. LNC usually gave the least repeatable classifications. 6168 Species rankings were not completely similar for the three traits. Discussion of reproducibility, ease of trait measurement, as well as trait–function relationships led us to propose that measurements of the leaf traits, SLA SAT and/or LDMC SAT , were the most suitable in large screening programmes.

Guo BQ ( 2016).

Study on the Adaptation of Main Functional Fine Root Traits to the Altitude Gradient of Pinus taiwanensis.

Master degree dissertation, Fujian Normal University,Fuzhou.

URL     [本文引用: 1]

论文以江西省武夷山自然保护区黄岗山黄山松天然林为研究对象,根据黄山松实际的分布情况,共设置1200m、1400m、1600m、1800m、2000m五个海拔梯度,对黄山松细根生物量、碳(C)、氮(N)、磷(P)、碳氮比(C:N)、比根长(SRL)、比根面积(SRA)、根组织密度(RTD)、细根平均直径(AvgDiam)与海拔梯度、季节变化、土壤养分及比叶面积的关系进行了研究。主要研究结果如下:(1)不同海拔黄山松细根生物量存在显著差异,其中1800m样地的黄山松细根平均生物量最高(222.63g/m2),而2000m样地细根的生物量的最少(118.3 g/m2);黄山松细根生物量在1200m-2000m海拔梯度上出现了先降低后增加再降低的趋势;各海拔梯度上黄山松细根生物量在6月和9月要高于12月和3月,但各季节间差异不显著(P0.05)。(2)黄山松细根功能性状存在显著的海拔梯度差异:各海拔黄山松细根SRL在829.21g/cm-1128.05g/cm之间变动,其中2000m海拔梯度SRL最低而1600m最高。除1400m和1600m外,其余海拔3月、6月、9月的黄山松细根SRL显著高于12月(P0.05)。SRA在不同海拔间具有显著差异(P0.05),其中,1800m最低(234.11g/cm2),1600m最高(330.97g/cm2),各海拔梯度9月黄山松细根SRA显著高于12月(P0.05);RTD在不同海拔间也具有显著差异,表现为2000m最高(0.21g/cm3),而1600m最低(0.14g/cm2);各海拔间黄山松细根AvgDiam差异显著,在1.13mm-0.86mm之间变动,在1200m和1800m海拔在12月和其他月份间存在显著差异(P0.05);SRL和SRA随海拔梯度变化出现了先增加后减少的趋势,RTD随海拔梯度变化出现了先降低后升高再降低的过程(3)细根生物量、SRL、SRA、RTD、AvgDiam之间存在密切相关关系,其中,细根生物量与SRL、SRA极显著负相关(P0.01),与RTD极显著正相关(P0.01),SRL和SRA极显著正相关(P0.01),SRA与RTD极显著负相关(P0.01)。(4)黄山松细根平均C、N、P、C:N、N:P分别为488.89mg/g、9.29mg/g、0.39mg/g、54.53%与24.55%。双因素方差分析表明,海拔梯度、季节、海拔梯度季节对细根C、N、P、C:N、N:P影响均达到极显著水平(P0.01)。细根C含量与N含量极显著正相关(P0.01),与C:N极显著负相关(P0.01), C、C:N和P含量之间并无显著的相关关系(P0.05)。(5)土壤C与细根C、P、N:P之间无显著相关关系(P0.05),但与细根的N存在显著的正相关关系(P0.05);土壤N与细根C、P之间不存在显著的相关关系(P0.05),与细根N、C:N的关系密切,对细根N、C:N变异的解释分别达到27%和26%;土壤P与细根C、N、C:N之间无显著相关关系,但与细根P、N:P间有显著相关关系(P0.05);土壤C:N与细根C、N、C:N之间没有显著的相关关系(P0.05),与细根P、N:P呈显著的相关关系(P0.05);土壤C、N、P、CN和pH与SRL、SRA、RTD、AvgDiam之间无显著相关关系(P0.05)(6)细根C、C:N与SRR显著负相关(P0.05),细根N、P、N:P与SRR无显著相关关系;SRR与RTD、AvgDiam存在显著的相关关系(P0.05),但与SRA、 SRL无显著相关关系;黄山松细根和叶功能性状表现出不同程度的联系,细根N、N:P与叶N、P、C:N都存在显著相关关系,细根N对叶N、P、C:N变异的解释分别达到33%、22%、35%;SLA与SRL、SRA、RTD、AvgDiam都不存在显著相关关系(P0.05)。

[ 郭炳桥 ( 2016).

黄山松细根主要功能性状对海拔梯度的适应规律研究

硕士学位论文, 福建师范大学, 福州.]

URL     [本文引用: 1]

论文以江西省武夷山自然保护区黄岗山黄山松天然林为研究对象,根据黄山松实际的分布情况,共设置1200m、1400m、1600m、1800m、2000m五个海拔梯度,对黄山松细根生物量、碳(C)、氮(N)、磷(P)、碳氮比(C:N)、比根长(SRL)、比根面积(SRA)、根组织密度(RTD)、细根平均直径(AvgDiam)与海拔梯度、季节变化、土壤养分及比叶面积的关系进行了研究。主要研究结果如下:(1)不同海拔黄山松细根生物量存在显著差异,其中1800m样地的黄山松细根平均生物量最高(222.63g/m2),而2000m样地细根的生物量的最少(118.3 g/m2);黄山松细根生物量在1200m-2000m海拔梯度上出现了先降低后增加再降低的趋势;各海拔梯度上黄山松细根生物量在6月和9月要高于12月和3月,但各季节间差异不显著(P0.05)。(2)黄山松细根功能性状存在显著的海拔梯度差异:各海拔黄山松细根SRL在829.21g/cm-1128.05g/cm之间变动,其中2000m海拔梯度SRL最低而1600m最高。除1400m和1600m外,其余海拔3月、6月、9月的黄山松细根SRL显著高于12月(P0.05)。SRA在不同海拔间具有显著差异(P0.05),其中,1800m最低(234.11g/cm2),1600m最高(330.97g/cm2),各海拔梯度9月黄山松细根SRA显著高于12月(P0.05);RTD在不同海拔间也具有显著差异,表现为2000m最高(0.21g/cm3),而1600m最低(0.14g/cm2);各海拔间黄山松细根AvgDiam差异显著,在1.13mm-0.86mm之间变动,在1200m和1800m海拔在12月和其他月份间存在显著差异(P0.05);SRL和SRA随海拔梯度变化出现了先增加后减少的趋势,RTD随海拔梯度变化出现了先降低后升高再降低的过程(3)细根生物量、SRL、SRA、RTD、AvgDiam之间存在密切相关关系,其中,细根生物量与SRL、SRA极显著负相关(P0.01),与RTD极显著正相关(P0.01),SRL和SRA极显著正相关(P0.01),SRA与RTD极显著负相关(P0.01)。(4)黄山松细根平均C、N、P、C:N、N:P分别为488.89mg/g、9.29mg/g、0.39mg/g、54.53%与24.55%。双因素方差分析表明,海拔梯度、季节、海拔梯度季节对细根C、N、P、C:N、N:P影响均达到极显著水平(P0.01)。细根C含量与N含量极显著正相关(P0.01),与C:N极显著负相关(P0.01), C、C:N和P含量之间并无显著的相关关系(P0.05)。(5)土壤C与细根C、P、N:P之间无显著相关关系(P0.05),但与细根的N存在显著的正相关关系(P0.05);土壤N与细根C、P之间不存在显著的相关关系(P0.05),与细根N、C:N的关系密切,对细根N、C:N变异的解释分别达到27%和26%;土壤P与细根C、N、C:N之间无显著相关关系,但与细根P、N:P间有显著相关关系(P0.05);土壤C:N与细根C、N、C:N之间没有显著的相关关系(P0.05),与细根P、N:P呈显著的相关关系(P0.05);土壤C、N、P、CN和pH与SRL、SRA、RTD、AvgDiam之间无显著相关关系(P0.05)(6)细根C、C:N与SRR显著负相关(P0.05),细根N、P、N:P与SRR无显著相关关系;SRR与RTD、AvgDiam存在显著的相关关系(P0.05),但与SRA、 SRL无显著相关关系;黄山松细根和叶功能性状表现出不同程度的联系,细根N、N:P与叶N、P、C:N都存在显著相关关系,细根N对叶N、P、C:N变异的解释分别达到33%、22%、35%;SLA与SRL、SRA、RTD、AvgDiam都不存在显著相关关系(P0.05)。

Guo K, Liu CC, Dong M ( 2011).

Ecological adaptation of plants and control of rocky-desertification on karst region of Southwest China

Chinese Journal of Plant Ecology, 35, 991-999.

DOI:10.3724/SP.J.1258.2011.00991      URL     [本文引用: 1]

我国西南喀斯特地区生态脆弱,石漠化问题严重,植被恢复/重建的难度极大。为此,近年来开展了许多基础性研究,以求为石漠化治理提供科技支撑。该文概略介绍了该地区喀斯特生境的特点,回顾和评述了喀斯特生境中植物适应性、植物种群、植物群落和生态系统生态学方面取得的主要研究进展,并结合石漠化综合治理的现状,提出了喀斯特植物生态学研究的几点期望。

[ 郭柯, 刘长成, 董鸣 ( 2011).

我国西南喀斯特植物生态适应性与石漠化治理

植物生态学报, 35, 991-999.]

DOI:10.3724/SP.J.1258.2011.00991      URL     [本文引用: 1]

我国西南喀斯特地区生态脆弱,石漠化问题严重,植被恢复/重建的难度极大。为此,近年来开展了许多基础性研究,以求为石漠化治理提供科技支撑。该文概略介绍了该地区喀斯特生境的特点,回顾和评述了喀斯特生境中植物适应性、植物种群、植物群落和生态系统生态学方面取得的主要研究进展,并结合石漠化综合治理的现状,提出了喀斯特植物生态学研究的几点期望。

Jiang Y, Chen XB, Ma JM, Liang SC, Huang J, Liu RH, Pan YF ( 2016).

Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broadleaved mixed forests in karst topography, Guilin, Southwest China

Tropical Conservation Science, 9(4). DOI:10.1177/1940082916680211.

[本文引用: 4]

Kerkhoff AJ, Fagan WF, Elser JJ, Enquist BJ ( 2006).

Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants

The American Naturalist, 168, E103-E122.

DOI:10.1086/507879      URL     PMID:17004214      [本文引用: 1]

Abstract Plant biomass and nutrient allocation explicitly links the evolved strategies of plant species to the material and energy cycles of ecosystems. Allocation of nitrogen (N) and phosphorus (P) is of particular interest because N and P play pivotal roles in many aspects of plant biology, and their availability frequently limits plant growth. Here we present a comparative scaling analysis of a global data compilation detailing the N and P contents of leaves, stems, roots, and reproductive structures of 1,287 species in 152 seed plant families. We find that P and N contents (as well as N : P) are generally highly correlated both within and across organs and that differences exist between woody and herbaceous taxa. Between plant organs, the quantitative form of the scaling relationship changes systematically, depending on whether the organs considered are primarily structural (i.e., stems, roots) or metabolically active (i.e., leaves, reproductive structures). While we find significant phylogenetic signals in the data, similar scaling relationships occur in independently evolving plant lineages, which implies that both the contingencies of evolutionary history and some degree of environmental convergence have led to a common set of rules that constrain the partitioning of nutrients among plant organs.

Kramer-Walter KR, Bellingham PJ, Millar TR, Smissen RD, Richardson SJ, Laughlin DC ( 2016).

Root traits are multidimensional: Specific root length is independent from root tissue density and the plant economic spectrum

Journal of Ecology, 104, 1299-1310.

DOI:10.1111/1365-2745.12562      URL     [本文引用: 1]

Summary Root, stem and leaf traits are thought to be functionally coordinated to maximize the efficiency of acquiring and using limited resources. However, evidence is mixed for consistent whole-plant trait coordination among woody plants, and we lack a clear understanding of the adaptive value of root traits along soil resource gradients. If fine roots are the below-ground analogue to leaves, then low specific root length (SRL) and high tissue density should be common on infertile soil. Here, we test the prediction that root, stem and leaf traits and relative growth rate respond in unison with soil fertility gradients. We measured fine root, stem and leaf traits and relative growth rate on individual seedlings of 66 tree species grown in controlled conditions. Our objectives were (i) to determine whether multiple root traits align with growth rate, leaf and stem traits and with each other and (ii) to quantify the relationships between community-weighted mean root traits and two strong soil fertility gradients that differed in spatial extent and community composition. At the species level, fast growth rates were associated with low root and stem tissue density and high specific leaf area. SRL and root diameter were not clearly related to growth rate and loaded on a separate principal component from the plant economic spectrum. At the community level, growth rate was positively related to soil fertility, and root tissue density (RTD) and branching were negatively related to soil fertility. SRL was negatively related and root diameter was positively related to soil fertility on the large-scale gradient that included ectomycorrhizal angiosperms. Synthesis . Root, stem and leaf tissue traits of tree seedlings are coordinated and influence fitness along soil fertility gradients. RTD responds in unison with above-ground traits to soil fertility gradients; however, root traits are multidimensional because SRL is orthogonal to the plant economic spectrum. In contrast to leaves, trees are not constrained in the way they construct fine roots: plants can construct high or low SRL roots of any tissue density. High RTD is the most consistent below-ground trait that reflects adaptation to infertile soil.

Laughlin DC ( 2014).

The intrinsic dimensionality of plant traits and its relevance to community assembly

Journal of Ecology, 102, 186-193.

DOI:10.1111/1365-2745.12187      URL     [本文引用: 1]

Plants are multifaceted organisms that have evolved numerous solutions to the problem of establishing, growing and reproducing with limited resources. The intrinsic dimensionality of plant traits is the minimum number of independent axes of variation that adequately describes the functional variation among plants and is therefore a fundamental quantity in comparative plant ecology. Given the large number of functional traits that are measured on plants, the dimensionality of plant form and function is potentially vast.A variety of linear and nonlinear methods were used to estimate the intrinsic dimensionality of three large trait data sets. The results of these analyses indicate that while the dimensionality of plant traits is generally larger than we have admitted in the past, it does not exceed six in the most comprehensive data set.The dimensionality of plant form and function is a blessing, not a curse. The higher the intrinsic dimension of traits in an analysis, the more easily our models will be able to accurately discriminate species in trait space and therefore be able to predict species distributions and abundances. Recent analyses indicate that the ability to predict community composition increases rapidly with additional traits, but reaches a plateau after four to eight traits.Synthesis. There appears to be a tractable upper limit to the dimensionality of plant traits. To optimize research efficiency for advancing our understanding of trait-based community assembly, ecologists should minimize the number of traits while maximizing the number of dimensions, because including multiple correlated traits does not yield dividends and including more than eight traits leads to diminishing returns. It is recommended to measure traits from multiple organs whenever possible, especially leaf, stem, root and flowering traits, given their consistent performance in explaining community assembly across different ecosystems.

Lavorel S, Garnier E ( 2002).

Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail

Functional Ecology, 16, 545-556.

DOI:10.1046/j.1365-2435.2002.00664.x      URL     [本文引用: 1]

Liu HW, Liu WD, Wang W, Chai J, Tao JP ( 2015).

Leaf traits and nutrient resorption of major woody species in the karst limestone area of Chongqing

Acta Ecologica Sinica, 35, 4071-4080.

DOI:10.5846/stxb201310262584      URL     [本文引用: 2]

以重庆石灰岩地区15种常绿木本植物和14种落叶木本植物为研究对象,对两种生活型植物叶片衰老前后叶干物质含量(LDMC)、比叶面积(SLA)和叶片厚度(LT)进行了比较,并采用不同的计算方法(单位质量叶片养分含量、单位面积叶片养分含量)分析了两类植物叶片衰老前后养分含量及再吸收特征,最后对养分再吸收效率与其他叶性状因子之间的关系进行了相关分析。结果表明:常绿植物成熟叶LDMC、LT及衰老叶LT显著低于落叶植物,落叶植物成熟叶和衰老叶SLA均显著高于常绿植物(P〈0.05);基于单位质量叶片计算的养分含量,常绿植物成熟和衰老叶N、P量均低于落叶植物,而基于单位面积叶片计算的N、P含量则表现出相反的趋势;基于不同方法计算的N、P再吸收效率差异不明显,其中常绿植物基于单位质量叶片养分含量计算的N、P平均再吸收效率为39.42%、43.79%,落叶植物的为24.08%、33.59%;常绿和落叶植物N、P再吸收效率与LDMC、SLA、LT和成熟叶N、P含量之间没有显著相关性,但与衰老叶养分含量存在显著负相关(P〈0.05)。研究发现,无论是常绿植物还是落叶植物,衰老叶N、P含量均较低,表明石灰岩地区植物具有较高的养分再吸收程度。

[ 刘宏伟, 刘文丹, 王微, 柴捷, 陶建平 ( 2015).

重庆石灰岩地区主要木本植物叶片性状及养分再吸收特征

生态学报, 35, 4071-4081.]

DOI:10.5846/stxb201310262584      URL     [本文引用: 2]

以重庆石灰岩地区15种常绿木本植物和14种落叶木本植物为研究对象,对两种生活型植物叶片衰老前后叶干物质含量(LDMC)、比叶面积(SLA)和叶片厚度(LT)进行了比较,并采用不同的计算方法(单位质量叶片养分含量、单位面积叶片养分含量)分析了两类植物叶片衰老前后养分含量及再吸收特征,最后对养分再吸收效率与其他叶性状因子之间的关系进行了相关分析。结果表明:常绿植物成熟叶LDMC、LT及衰老叶LT显著低于落叶植物,落叶植物成熟叶和衰老叶SLA均显著高于常绿植物(P〈0.05);基于单位质量叶片计算的养分含量,常绿植物成熟和衰老叶N、P量均低于落叶植物,而基于单位面积叶片计算的N、P含量则表现出相反的趋势;基于不同方法计算的N、P再吸收效率差异不明显,其中常绿植物基于单位质量叶片养分含量计算的N、P平均再吸收效率为39.42%、43.79%,落叶植物的为24.08%、33.59%;常绿和落叶植物N、P再吸收效率与LDMC、SLA、LT和成熟叶N、P含量之间没有显著相关性,但与衰老叶养分含量存在显著负相关(P〈0.05)。研究发现,无论是常绿植物还是落叶植物,衰老叶N、P含量均较低,表明石灰岩地区植物具有较高的养分再吸收程度。

Liu HW, Wang W, Zuo J, Tao JP ( 2014).

Leaf traits of main plants on limestone area in Zhongliang Mountain

Journal of Southwest China Normal University (Natural Science Edition), 39, 50-55.

DOI:10.13718/j.cnki.xsxb.2014.09.010      URL     [本文引用: 2]

为探讨生长在喀斯特石灰岩山地植物叶片性状适应特征,在重庆中梁山海石公园选取乔、灌、草三种生活型植物共30种,分别测定其叶干质量(mLDMC)、比叶面积(SLA)、叶pH、叶碳质量(mLCC)、叶氮质量(mLNC)和叶碳氮比等六个叶片性状因子.结果表明:不同叶片性状因子变异系数不同,其中,植物mLDMC、SLA和mLNC变异较大,分别为28.7%,50.8%和21.4%;mLDMC和SLA在不同生活型植物中存在显著差异,与乔木和灌木相比,草本具有较低的mLDMC和较大的SLA,而乔木和灌木在两者之间差异不显著;所有叶片性状因子中,植物mLDMC和SLA呈显著负相关,其他因子间没有显著相关性.可见,mLDMC和SLA是植物资源利用分类轴上划分植物类群的最佳指标,石灰岩地区不同生活型植物叶片性状不同,这是植物和环境相互选择综合作用的结果.

[ 刘宏伟, 王微, 左娟, 陶建平 ( 2014).

中梁山石灰岩山地30种主要植物叶片性状研究

西南大学学报(自然科学版), 39, 50-55.]

DOI:10.13718/j.cnki.xsxb.2014.09.010      URL     [本文引用: 2]

为探讨生长在喀斯特石灰岩山地植物叶片性状适应特征,在重庆中梁山海石公园选取乔、灌、草三种生活型植物共30种,分别测定其叶干质量(mLDMC)、比叶面积(SLA)、叶pH、叶碳质量(mLCC)、叶氮质量(mLNC)和叶碳氮比等六个叶片性状因子.结果表明:不同叶片性状因子变异系数不同,其中,植物mLDMC、SLA和mLNC变异较大,分别为28.7%,50.8%和21.4%;mLDMC和SLA在不同生活型植物中存在显著差异,与乔木和灌木相比,草本具有较低的mLDMC和较大的SLA,而乔木和灌木在两者之间差异不显著;所有叶片性状因子中,植物mLDMC和SLA呈显著负相关,其他因子间没有显著相关性.可见,mLDMC和SLA是植物资源利用分类轴上划分植物类群的最佳指标,石灰岩地区不同生活型植物叶片性状不同,这是植物和环境相互选择综合作用的结果.

Liu LB, Wu YY, Hu G, Zhang ZH, Cheng AY, Wang SJ, Ni J ( 2016).

Biomass of karst evergreen and deciduous broad-leaved mixed forest in central Guizhou Province, southwestern China: A comprehensive inventory of a 2 ha plot

Silva Fennica, 50, 1492. DOI: 10.14214/sf.1492.

DOI:10.14214/sf.1492      URL     [本文引用: 2]

Abstract The biomass of a secondary evergreen and deciduous broad-leaved mixed forest was comprehensively inventoried in a permanent 2 ha plot in southwestern China. Biomass models, sub-sampling, soil pit method, and published data were utilized to determine the biomass of all components. Results showed that the total biomass of the forest was 158.1 Mg ha-1; the total biomass included the major aboveground (137.7 Mg ha-1) and belowground (20.3 Mg ha-1) biomass components of vascular plants as well as the minor biomass components of bryophytes (0.078 Mg ha-1) and lichens (0.043 Mg ha-1). The necromass was 17.6 Mg ha-1 and included woody debris (9.0 Mg ha-1) and litter (8.6 Mg ha-1). The spatial pattern of the aboveground biomass was determined by the spatial distribution of dominant trees with large diameter, tall height, and dense wood. The belowground biomass differed in terms of root diameter and decreased with increasing soil depth. The belowground biomass in each soil pit in local habitats was not related to the spatial distribution of woody plants and soil pit depth. The karst forest presented lower biomass compared than the nonkarst forests in the subtropical zone. Biomass carbon in the karst terrains would increase substantially if degraded karst vegetation could be successfully restored to the forest. Comprehensive site-based biomass inventory of karst vegetation will contribute not only to provide data for benchmarking global and regional vegetation and carbon models but also for regional carbon inventory and vegetation restoration. 2016, Finnish Society of Forest Science. All rights reserved.

Ma JM, Zhang XZ, Liang SC, Chen T, Huang QJ ( 2012).

Leaf traits of common plants in Yaoshan Mountain of Guilin, China

Journal of Guangxi Normal University (Natural Science Edition), 30, 77-82.

DOI:10.3969/j.issn.1001-6600.2012.01.016      URL     [本文引用: 1]

选择桂林尧山14种常见植物为研究对象,通过测定其叶干质量(DW)、叶面积(AR)、叶干物质含量(LDMC)、叶厚度(TH)和比叶面积(SLA)等叶片性状因子,探讨不同植物适应土山生境所表现出的叶性状特征.结果表明:14种常见植物的5个叶性状因子之间存在显著差异.Pearson相关性分析表明,DW与LDMC、AR、TH呈显著的正相关关系.DW与SLA呈显著的负相关关系;LDMC与AR、TH、SLA呈显著的负相关关系;AR与TH、SLA呈显著的正相关关系,TH与SLA呈显著的负相关关系.5个叶性状因子中,反映叶片性状权重的大小依次为:AR>LDMC>TH>DW>SLA.与桂林岩溶石山相比,作为土山的桂林尧山生境植物具有相对较小的DW、LDMC、AR、TH和相对较大的SLA,研究结果较好地反映了植物适应土山和石山不同生境的策略.

[ 马姜明, 张秀珍, 梁士楚, 陈婷, 黄秋菊 ( 2012).

桂林尧山常见植物叶片性状研究

广西师范大学学报(自然科学版), 30, 77-82.]

DOI:10.3969/j.issn.1001-6600.2012.01.016      URL     [本文引用: 1]

选择桂林尧山14种常见植物为研究对象,通过测定其叶干质量(DW)、叶面积(AR)、叶干物质含量(LDMC)、叶厚度(TH)和比叶面积(SLA)等叶片性状因子,探讨不同植物适应土山生境所表现出的叶性状特征.结果表明:14种常见植物的5个叶性状因子之间存在显著差异.Pearson相关性分析表明,DW与LDMC、AR、TH呈显著的正相关关系.DW与SLA呈显著的负相关关系;LDMC与AR、TH、SLA呈显著的负相关关系;AR与TH、SLA呈显著的正相关关系,TH与SLA呈显著的负相关关系.5个叶性状因子中,反映叶片性状权重的大小依次为:AR>LDMC>TH>DW>SLA.与桂林岩溶石山相比,作为土山的桂林尧山生境植物具有相对较小的DW、LDMC、AR、TH和相对较大的SLA,研究结果较好地反映了植物适应土山和石山不同生境的策略.

Meng TT, Ni J, Wang GH ( 2007).

Plant functional traits, environments and ecosystem functioning

Journal of Plant Ecology(Chinese Version), 31, 150-165.

DOI:10.17521/cjpe.2007.0019      URL     [本文引用: 1]

植物性状反映了植物对生长环境的响应和适应,将环境、植物个体和生态系统结构、过程与功能联系起来(所谓的“植物功能性状”)。该文介绍了植物功能性状的分类体系,综述了国内外植物功能性状与气候(包括气温、降水、光照)、地理空间变异(包括地形地貌、生态梯度、海拔)、营养、干扰(包括火灾、放牧、生物入侵、土地利用)等环境因素,以及与生态系统功能之间关系的研究进展,探讨了全球变化(气候变化和CO2浓度升高)对个体和群落植物功能性状的影响。植物功能性状的研究已经取得很多成果,并应用于全球变化、古植被恢复和古气候定量重建、环境监测与评价、生态保护和恢复等研究中,但大尺度、多生境因子下的植物功能性状研究仍有待于加强,同时需要改进性状的测量手段;我国的植物功能性状研究还需要更加 明朗化和系统化。

[ 孟婷婷, 倪健, 王国宏 ( 2007).

植物功能性状与环境和生态系统功能

植物生态学报, 31, 150-165.]

DOI:10.17521/cjpe.2007.0019      URL     [本文引用: 1]

植物性状反映了植物对生长环境的响应和适应,将环境、植物个体和生态系统结构、过程与功能联系起来(所谓的“植物功能性状”)。该文介绍了植物功能性状的分类体系,综述了国内外植物功能性状与气候(包括气温、降水、光照)、地理空间变异(包括地形地貌、生态梯度、海拔)、营养、干扰(包括火灾、放牧、生物入侵、土地利用)等环境因素,以及与生态系统功能之间关系的研究进展,探讨了全球变化(气候变化和CO2浓度升高)对个体和群落植物功能性状的影响。植物功能性状的研究已经取得很多成果,并应用于全球变化、古植被恢复和古气候定量重建、环境监测与评价、生态保护和恢复等研究中,但大尺度、多生境因子下的植物功能性状研究仍有待于加强,同时需要改进性状的测量手段;我国的植物功能性状研究还需要更加 明朗化和系统化。

Messier J, Lechowicz MJ, McGill BJ, Violle C, Enquist BJ ( 2017).

Interspecific integration of trait dimensions at local scales: The plant phenotype as an integrated network

Journal of Ecology, 105, 1775-1790.

DOI:10.1111/1365-2745.12755      URL     [本文引用: 2]

Abstract 1. Plant phenotypic diversity is shaped by the interplay of trade-offs and constraints in evolution. Closely integrated groups of traits (i.e. trait dimensions) are used to classify plant phenotypic diversity into plant strategies, but we do not know the degree of interdependence among trait dimensions. To assess how selection has shaped the phenotypic space, we examine whether trait dimensions are independent. 2. We gathered data on saplings of 24 locally coexisting tree species in a temperate forest, and examined the correlation structure of 20 leaf, branch, stem and root traits. These traits fall into three well-established trait dimensions (the leaf economic spectrum, the wood spectrum, and Corner Rules) that characterize vital plant functions: resource acquisition, sap transport, mechanical support and canopy architecture. Using ordinations, network analyses and Mantel tests, we tested whether the sapling phenotype of these tree species is organized along independent trait dimensions. 3. Across species, the sapling phenotype is not structured into clear trait dimensions. The trait relationships defining the trait dimensions are weak and do not dominate the correlation structure of the sapling phenotype as a whole. Instead traits from the three commonly recognized trait dimensions are organized into an integrated trait network. The effect of phylogeny on trait correlations is minimal. 4. Our results indicate that trait dimensions apparent in broad-based interspecific surveys do not hold up among locally coexisting species. Furthermore, architectural traits appear central to the phenotypic network, suggesting a pivotal role for branching architecture in linking resource acquisition, mechanical support and hydraulic functions. 5. Synthesis. Our study indicates that local and global patterns of phenotypic integration differ and calls into question the use of trait dimensions at local scales. We propose that a network approach to assessing plant function more effectively reflects the multiple trade-offs and constraints shaping the phenotype in locally co-occurring species.

Ni J, Luo DH, Xia J, Zhang ZH, Hu G ( 2015).

Vegetation in karst terrain of southwestern China allocates more biomass to roots

Solid Earth, 6, 799-810.

DOI:10.5194/sed-7-1209-2015      URL     [本文引用: 2]

In mountainous areas of southwestern China, especially Guizhou province, continuous, broadly distributed karst landscapes with harsh and fragile habitats often lead to land degradation. Research indicates that vegetation located in karst terrains has low aboveground biomass and land degradation that reduces vegetation biomass, but belowground biomass measurements are rarely reported. Using the soil pit method, we investigated the root biomass of karst vegetation in five land cover types: grassland, grass–scrub tussock, thorn–scrub shrubland, scrub–tree forest, and mixed evergreen and deciduous forest in Maolan, southern Guizhou province, growing in two different soil-rich and rock-dominated habitats. The results show that roots in karst vegetation, especially the coarse roots, and roots in rocky habitats are mostly distributed in the topsoil layers (89 % on the surface up to 20 cm depth). The total root biomass in all habitats of all vegetation degradation periods is 18.77 Mg ha611, in which roots in rocky habitat have higher biomass than in earthy habitat, and coarse root biomass is larger than medium and fine root biomass. The root biomass of mixed evergreen and deciduous forest in karst habitat (35.83 Mg ha611) is not greater than that of most typical, non-karst evergreen broad-leaved forests in subtropical regions of China, but the ratio of root to aboveground biomass in karst forest (0.37) is significantly greater than the mean ratio (0.26 ± 0.07) of subtropical evergreen forests. Vegetation restoration in degraded karst terrain will significantly increase the belowground carbon stock, forming a potential regional carbon sink.

Niinemets Ü ( 2001).

Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shurbs

Ecology, 82, 453-469.

DOI:10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2      URL     [本文引用: 1]

Leaf dry mass per unit area (LMA) is a product of leaf thickness (T) and of density (D). Greater T is associated with greater foliar photosynthetic rates per unit area because of accumulation of photosynthetic compounds; greater D results in decreased foliage photosynthetic potentials per unit dry mass because of lower concentrations of assimilative leaf compounds and decreases in intercellular transfer conductance to CO2. To understand the considerable variation in T and D at the global scale, literature data were analyzed for 558 broad-leaved and 39 needle-leaved shrubs and trees from 182 geographical locations distributed over all major earth biomes with woody vegetation. Site climatic data were interpolated from long-term world climatologies (monthly precipitation, surface temperature) or modeled using the Canadian Climate Center Model (monthly global solar radiation). Influences of total annual precipitation (WT), precipitation of the driest month (Wmin), monthly mean precipitation of the three driest months in the year (W3 min), highest monthly precipitation (Wmax), precipitation index ([Wmax- Wmin]/WT), mean, minimum, and maximum annual monthly temperatures, and daily annual mean global solar radiation (R) on LMA, D, and T were tested by simple and multiple linear and log-linear regression analyses. In broad-leaved species, LMA and T increased with increasing R and mean temperature and scaled weakly and negatively with precipitation variables, but D was negatively related only to precipitation. Similar relationships were also detected in needle-leaved species, except that, in multiple regression analysis, precipitation did not significantly influence leaf thickness, and R was positively related to D. Given that increases in LMA and T are compatible with enhanced photosynthetic capacities per unit leaf area, but also with greater costs for construction of unit surface area, positive effects of solar irradiance and surface temperature on these variables are indicative of shorter leaf pay-back times in conditions of higher irradiance and temperature allowing construction of leaves with higher photosynthetic potential. To gain insight into the scaling of leaf density with site aridity, correlations of D with the leaf elastic modulus close to full turgor ( ) and with the leaf osmotic potentials ( ) at full and zero turgor were analyzed. Both low , which is compatible with low leaf water potential, and high , which permits large adjustment of leaf water potential with small changes in leaf water content, may facilitate water uptake from drying soil. Leaf elastic modulus was independent of T and was weakly related to LMA; but there were close positive associations of with D and leaf dry to fresh mass ratio, which is an estimate of apoplastic leaf fraction. Consequently, changes in D bring about modifications in leaf elasticity and allow tolerance of water limitations. Across all the data, and the estimates of were negatively related. However, given that varied only fourfold, but 10-fold, I conclude that osmotic adjustment of leaf water relations is inherently limited, and that elastic adjustment resulting from changes in leaf structure may be a more important and general way for plants to adapt to water-limited environments.

Ohashi Y, Nakayama N, Saneoka H, Fujita K ( 2006).

Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants

Biologia Plantarum, 50, 138-141.

DOI:10.1007/s10535-005-0089-3      URL     [本文引用: 2]

Changes in plant growth, photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean [Glycine max (L.) Merr.] plants under drought stress were studied. Total plant dry mass was reduced by 30% compared to well-watered control plants. Leaf water potential was slightly decreased by water stress. Water stress induced daytime shrinkage and reduced night-time expansion of stem. Photosynthetic rate, stomatal conductance and transpiration rate were significantly declined by water stress, while the intercellular CO2 concentration was changed only slightly at the initiation of stress treatment. The maximum photochemical efficiency of photosystem 2 and apparent photosynthetic electron transport rate were not changed by water stress..

Reich PB, Walters MB, Ellsworth DS, Vose JM, Gresham C, Bowman WD ( 1998).

Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: A test across biomes and functional group

Oecologia, 114, 471-482.

DOI:10.1007/s004420050471      URL     [本文引用: 2]

Reich PB, Wright IJ, Cavender-Bares J, Craine JM, Oleksyn J, Westoby M, Walters MB ( 2003).

The evolution of plant functional variation: Traits, spectra, and strategies

Internatinal Journal of Plant Sciences, 164, S143-S164.

DOI:10.1086/374368      URL     [本文引用: 2]

Variation in plant functional traits results from evolutionary and environmental drivers that operate at a variety of different scales, which makes it a challenge to differentiate among them. In this article we describe patterns of functional trait variation and trait correlations within and among habitats in relation to several environmental and trade-off axes. We then ask whether such patterns reflect natural selection and can be considered plant strategies. In so doing we highlight evidence that demonstrates that (1) patterns of trait variation across resource and environmental gradients (light, water, nutrients, and temperature) probably reflect adaptation, (2) plant trait variation typically involves multiple-correlated traits that arise because of inevitable trade-offs among traits and across levels of whole-plant integration and that must be understood from a whole-plant perspective, and (3) such adaptation may be globally generalizable for like conditions; i. e., the set of traits (collections of traits in syndromes) of taxa can be considered as "plant strategies." [References: 166]

Siefert A, Violle C, Chalmandrier L, Albert CH, Taudiere A, Fajardo A, Aarssen LW, Baraloto C, Carlucci MB, Cianciaruso MV, Dantas VD, DeBello F, Duarte LDS, Fonseca CR, Freschet GT, Gaucherand S, Gross N, Hikosaka K, Jackson B, Jung V, Kamiyama C, Katabuchui M, Kembel SW, Kichenin E, Kraft NJB, Lagerstrom A, Le Bagousse- Pinguer Y, Li YZ, Mason N, Messier J, Nakashizuka T, McC Overton J, Peltzer DA, Perez-Ramos IM, Pillar VD, Prentice HC, Richardson S, Sasaki T, Schamp BS, Vandewalle M, Wardle DA ( 2015).

A global meta-analysis of the relative extent of intraspecific trait variation in plant communities

Ecology Letters, 18, 1406-1419.

DOI:10.1111/ele.12508      URL     PMID:26415616      [本文引用: 1]

Abstract Recent studies have shown that accounting for intraspecific trait variation (ITV) may better address major questions in community ecology. However, a general picture of the relative extent of ITV compared to interspecific trait variation in plant communities is still missing. Here, we conducted a meta-analysis of the relative extent of ITV within and among plant communities worldwide, using a data set encompassing 629 communities (plots) and 36 functional traits. Overall, ITV accounted for 25% of the total trait variation within communities and 32% of the total trait variation among communities on average. The relative extent of ITV tended to be greater for whole-plant (e.g. plant height) vs. organ-level traits and for leaf chemical (e.g. leaf N and P concentration) vs. leaf morphological (e.g. leaf area and thickness) traits. The relative amount of ITV decreased with increasing species richness and spatial extent, but did not vary with plant growth form or climate. These results highlight global patterns in the relative importance of ITV in plant communities, providing practical guidelines for when researchers should include ITV in trait-based community and ecosystem studies. 2015 John Wiley & Sons Ltd/CNRS.

Stahl U, Kattge J, Reu B, Voigt W, Ogle K, Dickie J, Wirth C ( 2013).

Whole-plant trait spectra of North American woody plant species reflect fundamental ecological strategies

Ecosphere, 4, 128.

DOI:10.1890/ES13-00143.1      URL     [本文引用: 1]

The adaptation of plant species to their biotic and abiotic environment is manifested in their traits. Suites of correlated functional traits may reflect fundamental tradeoffs and general plant strategies and hence represent trait spectra along which plant species can vary according to their respective strategies. However, the functional interpretation of these trait spectra requires the inspection of their relation to plant performance. We employed principle coordinate analysis (PCoA) to quantify fundamental whole-plant trait spectra based on 23 traits for 305 North American woody species that span boreal to subtropical climates. We related the major axes of PCoA to five measures of plant performance (i.e., growth rate, and tolerance to drought, shade, water-logging and fire) for all species and separately for gymnosperms and angiosperms. Across all species a unified gymnosperm-angiosperm trait spectrum (wood density, seed mass, rooting habit) is identified, which is correlated with drought tolerance. Apart from this, leaf type and specific leaf area (SLA) strongly separate gymnosperms from angiosperms. For gymnosperms, one trait spectrum emerges (seed mass, rooting habit), which is positively correlated with drought tolerance and inversely with shade tolerance, reflecting a tradeoff between these two strategies due to opposing trait characteristics. Angiosperms are functionally more diverse. The trait spectra related to drought tolerance and shade tolerance are decoupled and three distinct strategies emerge: high drought tolerance (low SLA, dense wood, heavy seeds, taproot), high shade tolerance (high SLA, shallow roots, high toxicity, opposite arranged leaves), and fast growth/stress intolerance (large maximum heights, soft wood, light seeds, high seed spread rate). In summary, our approach reveals that complex suits of traits and potential tradeoffs underlie fundamental performance strategies in forests. Studies relying on small sets of plant traits may not be able to reveal such underlying strategies. Read More: http://www.esajournals.org/doi/abs/10.1890/ES13-00143.1

Su WH, Shi Z, Yang B, Yang JJ, Zhao GH, Zhou R ( 2015).

Intraspecific functional trait variation in a tree species (Lithocarpus dealbatus) along latitude

Plant Diversity and Resources, 37, 309-317.

[本文引用: 2]

[ 苏文华, 施展, 杨波, 杨建军, 赵冠华, 周睿 ( 2015).

滇石栎沿纬度梯度叶片功能性状的种内变化

植物分类与资源学报, 37, 309-317.]

[本文引用: 2]

Tang QQ, Huang YT, Ding Y, Zang RG ( 2016).

Interspecific and intraspecific variation in functional traits of subtropical evergreen and deciduous broad-leaved mixed forests

Biodiversity Science, 24, 262-270.

[本文引用: 2]

[ 唐青青, 黄永涛, 丁易, 臧润国 ( 2016).

亚热带常绿落叶阔叶混交林植物功能性状的种间和种内变异

生物多样性, 24, 262-270.]

[本文引用: 2]

Verheijen LM, Aerts R, Bonisch G, Kattge J, van Bodegom PM ( 2016).

Variation in trait trade-offs allows differentiation among predefined plant functional types: Implications for predictive ecology

New Phytologist, 209, 563-575.

DOI:10.1111/nph.13623      URL     PMID:26352461      [本文引用: 1]

Summary Plant functional types (PFTs) aggregate the variety of plant species into a small number of functionally different classes. We examined to what extent plant traits, which reflect species’ functional adaptations, can capture functional differences between predefined PFTs and which traits optimally describe these differences. We applied Gaussian kernel density estimation to determine probability density functions for individual PFTs in an n -dimensional trait space and compared predicted PFTs with observed PFTs. All possible combinations of 1–6 traits from a database with 18 different traits (total of 1802287 species) were tested. A variety of trait sets had approximately similar performance, and 4–5 traits were sufficient to classify up to 85% of the species into PFTs correctly, whereas this was 80% for a bioclimatically defined tree PFT classification. Well-performing trait sets included combinations of correlated traits that are considered functionally redundant within a single plant strategy. This analysis quantitatively demonstrates how structural differences between PFTs are reflected in functional differences described by particular traits. Differentiation between PFTs is possible despite large overlap in plant strategies and traits, showing that PFTs are differently positioned in multidimensional trait space. This study therefore provides the foundation for important applications for predictive ecology.

Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E ( 2007).

Let the concept of trait be functional!

Oikos, 116, 882-892.

DOI:10.1111/oik.2007.116.issue-5      URL     [本文引用: 1]

Violle C, Enquist BJ, McGill BJ, Jiang L, Albert CH, Huishof C, Jung V, Messier J ( 2012).

The return of the variance: Intraspecific variability in community ecology

Trends in Ecology & Evolution, 27, 244-252.

DOI:10.1016/j.tree.2011.11.014      URL     PMID:22244797      [本文引用: 2]

Abstract Despite being recognized as a promoter of diversity and a condition for local coexistence decades ago, the importance of intraspecific variance has been neglected over time in community ecology. Recently, there has been a new emphasis on intraspecific variability. Indeed, recent developments in trait-based community ecology have underlined the need to integrate variation at both the intraspecific as well as interspecific level. We introduce new T-statistics ('T' for trait), based on the comparison of intraspecific and interspecific variances of functional traits across organizational levels, to operationally incorporate intraspecific variability into community ecology theory. We show that a focus on the distribution of traits at local and regional scales combined with original analytical tools can provide unique insights into the primary forces structuring communities. Copyright 2011 Elsevier Ltd. All rights reserved.

Walker AP, Beckerman AP, Gu LH, Kattge J, Cermusak LA, Domingues TF, Scales JC, Wohlfahrt G, Wullschleger SD, Woodward FI ( 2014).

The relationship of leaf photosynthetic traits—Vcmax and Jmax—to leaf nitrogen, leaf phosphorus, and specific leaf area: A meta-analysis and modeling study

Ecology and Evolution, 4, 3218-3235.

DOI:10.1002/ece3.1173      URL     PMID:4222209      [本文引用: 1]

Abstract Great uncertainty exists in the global exchange of carbon between the atmosphere and the terrestrial biosphere. An important source of this uncertainty lies in the dependency of photosynthesis on the maximum rate of carboxylation ( V cmax) and the maximum rate of electron transport ( J max). Understanding and making accurate prediction of C fluxes thus requires accurate characterization of these rates and their relationship with plant nutrient status over large geographic scales. Plant nutrient status is indicated by the traits: leaf nitrogen (N), leaf phosphorus (P), and specific leaf area (SLA). Correlations between V cmax and J max and leaf nitrogen (N) are typically derived from local to global scales, while correlations with leaf phosphorus (P) and specific leaf area (SLA) have typically been derived at a local scale. Thus, there is no global-scale relationship between V cmax and J max and P or SLA limiting the ability of global-scale carbon flux models do not account for P or SLA. We gathered published data from 24 studies to reveal global relationships of V cmax and J max with leaf N, P, and SLA. V cmax was strongly related to leaf N, and increasing leaf P substantially increased the sensitivity of V cmax to leaf N. J max was strongly related to V cmax, and neither leaf N, P, or SLA had a substantial impact on the relationship. Although more data are needed to expand the applicability of the relationship, we show leaf P is a globally important determinant of photosynthetic rates. In a model of photosynthesis, we showed that at high leaf N (3 gm 2), increasing leaf P from 0.05 to 0.22 gm 2 nearly doubled assimilation rates. Finally, we show that plants may employ a conservative strategy of J max to V cmax coordination that restricts photoinhibition when carboxylation is limiting at the expense of maximizing photosynthetic rates when light is limiting.

Wang SJ, Li YB, Li RL ( 2003).

Karst rocky desertification: Formation background, evolution and comprehensive taming

Quaternary Sciences, 23, 657-666.

[本文引用: 1]

[ 王世杰, 李阳兵, 李瑞玲 ( 2003).

喀斯特石漠化的形成背景、演化与治理

第四纪研究, 23, 657-666.]

[本文引用: 1]

Westoby M, Falster DS, Moles AT, Vesk PA, Wright IJ ( 2002).

Plant ecological strategies: Some leading dimensions of variation between species

Annual Review of Ecology and Systematics, 33, 125-159.

DOI:10.1146/annurev.ecolsys.33.010802.150452      URL     [本文引用: 2]

An important aim of plant ecology is to identify leading dimensions of ecological variation among species and to understand the basis for them. Dimensions that can readily be measured would be especially useful, because they might offer a path towards improved worldwide synthesis across the thousands of field experiments and ecophysiological studies that use just a few species each. Four dimensions are reviewed here. The leaf mass per area-leaf lifespan (LMA-LL) dimension expresses slow turnover of plant parts (at high LMA and long LL), long nutrient residence times, and slow response to favorable growth conditions. The seed mass-seed output (SM-SO) dimension is an important predictor of dispersal to establishment opportunities (seed output) and of establishment success in the face of hazards (seed mass). The LMA-LL and SM-SO dimensions are each underpinned by a single, comprehensible tradeoff, and their consequences are fairly well understood. The leaf size-twig size (LS-TS) spectrum has obvious consequences for the texture of canopies, but the costs and benefits of large versus small leaf and twig size are poorly understood. The height dimension has universally been seen as ecologically important and included in ecological strategy schemes. Nevertheless, height includes several tradeoffs and adaptive elements, which ideally should be treated separately. Each of these four dimensions varies at the scales of climate zones and of site types within landscapes. This variation can be interpreted as adaptation to the physical environment. Each dimension also varies widely among coexisting species. Most likely this within-site variation arises because the ecological opportunities for each species depend strongly on which other species are present, in other words, because the set of species at a site is a stable mixture of strategies.

Westoby M, Wright IJ ( 2003).

The leaf size-twig size spectrum and its relationship to other important spectra of variation among species

Oecologia, 135, 621-628.

DOI:10.1007/s00442-003-1231-6      URL     PMID:16228258      [本文引用: 1]

There is a spectrum from species with narrow, frequently branched twigs carrying small leaves and other appendages, to species with thick twigs carrying large leaves and appendages. Here we investigate the allometry of this spectrum and its relationship to two other important spectra of ecological variation between species, the seed mass-seed output spectrum and the specific leaf area-leaf lifespan spectrum. Our main dataset covered 33 woody dicotyledonous species in sclerophyll fire-prone vegetation on low nutrient soil at 1,200 mm annual rainfall near Sydney, Australia. These were phylogenetically selected to contribute 32 evolutionary divergences. Two smaller datasets, from 390 mm annual rainfall, were also examined to assess generality of cross-species patterns. There was two to three orders of magnitude variation in twig cross-sectional area, individual leaf size and total leaf area supported on a twig across the study species. As expected, species with thicker twigs had larger leaves and branched less often than species with thin twigs. Total leaf area supported on a twig was mainly driven by leaf size rather than by the number of leaves. Total leaf area was strongly correlated with twig cross-section area, both across present-day species and across evolutionary divergences. The common log-log slope of 1.45 was significantly steeper than 1. Thus on average, species with tenfold larger leaves supported about threefold more leaf area per twig cross-section, which must have considerable implications for other aspects of water relations. Species at the low rainfall site on loamy sand supported about half as much leaf area, at a given twig cross-section, as species at the low rainfall site on light clay, or at the high rainfall site. Within sites, leaf and twig size were positively correlated with seed mass, and negatively correlated with specific leaf area. Identifying and understanding leading spectra of ecological variation among species is an important challeng

Westoby M, Wright IJ ( 2006).

Land-plant ecology on the basis of functional traits

Trends in Ecology & Evolution, 21, 261-268.

DOI:10.1016/j.tree.2006.02.004      URL     PMID:16697912     

Abstract The tissue traits and architectures of plant species are important for land-plant ecology in two ways. First, they control ecosystem processes and define habitat and resources for other taxa; thus, they are a high priority for understanding the ecosystem at a site. Second, knowledge of trait costs and benefits offers the most promising path to understanding how vegetation properties change along physical geography gradients. There exists an informal shortlist of plant traits that are thought to be most informative. Here, we summarize recent research on correlations and tradeoffs surrounding some traits that are prospects for the shortlist. By extending the list and by developing better models for how traits influence species distributions and interactions, a strong foundation of basic ecology can be established, with many practical applications.

Wilson PJ, Thompson K, Hodgson JG ( 1999).

Specific leaf area and leaf dry matter content as alternative predictors of plant strategies

New Phytologist, 143, 155-162.

DOI:10.1046/j.1469-8137.1999.00427.x      URL     [本文引用: 1]

A key element of most recently proposed plant strategy schemes is an axis of resource capture, usage and availability. In the search for a simple, robust plant trait (or traits) that will allow plants to be located on this axis, specific leaf area is one of the leading contenders. Using a large new unpublished database, we examine the variability of specific leaf area and other leaf traits, the relationships between them, and their ability to predict position on the resource use axis. Specific leaf area is found to suffer from a number of drawbacks; it is both very variable between replicates and much influenced by leaf thickness. Leaf dry-matter content (sometimes referred to as tissue density) is much less variable, largely independent of leaf thickness and a better predictor of location on an axis of resource capture, usage and availability. However, it is not clear how useful dry matter content will be outside northwest Europe, and in particular in dry climates with many succulents.

Withington JM, Reich PB, Oleksyn J, Eissenstat DM ( 2006).

Comparisons of structure and life span in roots and leaves among temperate trees

Ecological Monographs, 76, 381-397.

DOI:10.1890/0012-9615(2006)076[0381:COSALS]2.0.CO;2      URL     [本文引用: 1]

Global data sets provide strong evidence of convergence for leaf structure with leaf longevity such that species having thick leaves, low specific leaf area, low mass-based nitrogen concentrations, and low photosynthetic rates typically exhibit long leaf life span. Leaf longevity and corresponding leaf structure have also been widely linked to plant potential growth rate, plant competition, and nutrient cycling. We hypothesized that selection forces leading to variation in leaf longevity and leaf structure have acted simultaneously and in similar directions on the longevity and structure of the finest root orders. Our four-year study investigated the links between root and leaf life span and root and leaf structure among 11 north-temperate tree species in a common garden in central Poland. Study species included the hardwoods Acer pseudoplatanus L., Acer platanoides L., Fagus sylvatica L., Quercus robur L., and Tilia cordata Mill.; and the conifers Abies alba Mill., Larix decidua Mill., Picea abies (L.) Karst., Pinus nigra Arnold, Pinus sylvestris L., and Pseudotsuga menziesii (Mirbel) Franco. Leaf life span, estimated by phenological observations and needle cohort measurements, ranged from 0.5 to 8 yr among species. Median fine-root life span, estimated using minirhizotron images of individual roots, ranged from 0.5 to 2.5 yr among species. Root life span was not correlated with leaf life span, but specific root length was significantly correlated with specific leaf area. Root nitrogen: carbon ratio was negatively correlated with root longevity, which corroborates previous research that has suggested a trade-off between organ life span and higher organ N concentrations. Specific traits such as thickened outer tangential walls of the exodermis were better predictors of long-lived roots than tissue density or specific root length, which have been correlated with life span in previous studies. Although theories linking organ structure and function suggest that similar root and leaf traits should be linked to life span and that root and leaf life span should be positively correlated, our results suggest that tissue structure and longevity aboveground (leaves) can contrast markedly with that belowground (roots).

Wright IJ, Ackerly DD, Bongers F, Harms KE, Ibarra-‌Manriquez G, Martine-Ramos M, Mazer SJ, Muller-‌Landau HC, Paz H, Pitman NCA, Poorter L, Silman MR, Vriesendrop CF, Webb CO, Westoby M, Wright SJ ( 2007).

Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests

Annals of Botany, 99, 1003-1015.

DOI:10.1093/aob/mcl066      URL     PMID:28029050663      [本文引用: 1]

61 Background and Aims When ecologically important plant traits are correlated they may be said to constitute an ecological 'strategy' dimension. Through identifying these dimensions and understanding their inter-relationships we gain insight into why particular trait combinations are favoured over others and into the implications of trait differences among species. Here we investigated relationships among several traits, and thus the strategy dimensions they represented, across 2134 woody species from seven Neotropical forests. 61 Methods Six traits were studied: specific leaf area (SLA), the average size of leaves, seed and fruit, typical maximum plant height, and wood density (WD). Trait relationships were quantified across species at each individual forest as well as across the dataset as a whole. 'Phylogenetic' analyses were used to test for correlations among evolutionary trait-divergences and to ascertain whether interspecific relationships were biased by strong taxonomic patterning in the traits. 61 Key Results The interspecific and phylogenetic analyses yielded congruent results. Seed and fruit size were expected, and confirmed, to be tightly related. As expected, plant height was correlated with each of seed and fruit size, albeit weakly. Weak support was found for an expected positive relationship between leaf and fruit size. The prediction that SLA and WD would be negatively correlated was not supported. Otherwise the traits were predicted to be largely unrelated, being representatives of putatively independent strategy dimensions. This was indeed the case, although WD was consistently, negatively related to leaf size. 61 Conclusions The dimensions represented by SLA, seed/fruit size and leaf size were essentially independent and thus conveyed largely independent information about plant strategies. To a lesser extent the same was true for plant height and WD. Our tentative explanation for negative WD-leaf size relationships, now also known from other habitats, is that the traits are indirectly linked via plant hydraulics.

Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, Flexas J, Garnier E, Groom PK, Gulias J, Hikosaka K, Lamont BB, Lee T, Lee W, Lusk C, Midgley JJ, Navas ML, Niinemets U, Oleksyn J, Osada N, Poorter H, Poot P, Prior L, Pyankov VI, Roumet C, Thonmas SC, Tjoelker MG, Veneklass EJ, Villar R ( 2004).

The worldwide leaf economics spectrum

Nature, 428, 821-827.

DOI:10.1038/nature02403      URL     [本文引用: 3]

Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients and dry mass in leaves, and operates largely independently of growth form, plant functional type or biome. Categories along the spectrum would, in general, describe leaf economic variation at the global scale better than plant functional types, because functional types overlap substantially in their leaf traits. Overall, modulation of leaf traits and trait relationships by climate is surprisingly modest, although some striking and significant patterns can be seen. Reliable quantification of the leaf economics spectrum and its interaction with climate will prove valuable for modelling nutrient fluxes and vegetation boundaries under changing land-use and climate.

Xi XQ, Zhao YJ, Liu YG, Wang X, Gao XM ( 2011).

Variation and correlation of plant functional traits in karst area of central Guizhou Province, China

Chinese Journal of Plant Ecology, 35, 1000-1008.

[本文引用: 1]

[ 习新强, 赵玉杰, 刘玉国, 王欣, 高贤明 ( 2011).

黔中喀斯特山区植物功能性状的变异与关联

植物生态学报, 35, 1000-1008.]

[本文引用: 1]

Xu MS, Zhao YT, Yang XD, Shi QR, Zhou LL, Zhang QQ, Arshad A, Yan ER ( 2016).

Geostatistical analysis of spatial variations in leaf traits of woody plants in Tiantong, Zhejiang Province

Chinese Journal of Plant Ecology, 40, 48-59.

DOI:10.17521/cjpe.2015.0246      URL     [本文引用: 1]

探究叶片性状的空间变异性和环境关联性有助于我们理解植物对环境的适应策略和群落建构机制.该研究以浙江 天童5 hrn2大型动态样地所有胸径≥1 cm的木本植物为对象,测定了20 253株个体的单叶面积、比叶面积和叶片干物质含量,土壤总氮、总磷、总碳、pH值、体积含水率、容重和腐殖质,以及海拔、坡度和凹凸度等;并用地统计学 等方法分析了叶片性状的空间变异性及其与环境因子的相关性.结果表明:1)单叶面积的空间变异最大,比叶面积次之,叶片干物质含量最小.三者在 0-5.16m空间范围内表现出较弱的空间自相关,其半变异函数的最优模型分别为高斯模型、指数模型和指数模型.2)叶片性状空间变异具有方向性,单叶面 积空间变异在东北-西南方向上最大,在西北-东南方向上最小;比叶面积和叶片干物质含量的空间变异均在西北-东南方向最大,在东北-西南方向最小.3)单 叶面积与地形因子显著负相关(r=-0.12,p<0.000 1);比叶面积与土壤养分显著负相关(r=-0.16,p<0.000 1),叶片干物质含量与土壤养分显著正相关(r=0.13,p<0.000 1).4)东北-西南方向上,地形因子对单叶面积、比叶面积和叶片干物质含量空间变异的影响大于土壤养分;西北-东南方向上,地形因子对单叶面积空间变异 的影响相对较大,而土壤养分对比叶面积和叶片干物质含量空间变异的影响较大.总之,在研究样地内,植物叶片性状随空间距离和方向存在很大的变异性,叶片性 状与地形因子、土壤养分的关联性间接表明了环境过滤对群落构建的影响.

[ 许洺山, 赵延涛, 杨晓东, 史青茹, 周刘丽, 张晴晴, Arshad A, 阎恩荣 ( 2016).

浙江天童木本植物叶片性状空间变异的地统计学分析

植物生态学报, 40, 48-59.]

DOI:10.17521/cjpe.2015.0246      URL     [本文引用: 1]

探究叶片性状的空间变异性和环境关联性有助于我们理解植物对环境的适应策略和群落建构机制.该研究以浙江 天童5 hrn2大型动态样地所有胸径≥1 cm的木本植物为对象,测定了20 253株个体的单叶面积、比叶面积和叶片干物质含量,土壤总氮、总磷、总碳、pH值、体积含水率、容重和腐殖质,以及海拔、坡度和凹凸度等;并用地统计学 等方法分析了叶片性状的空间变异性及其与环境因子的相关性.结果表明:1)单叶面积的空间变异最大,比叶面积次之,叶片干物质含量最小.三者在 0-5.16m空间范围内表现出较弱的空间自相关,其半变异函数的最优模型分别为高斯模型、指数模型和指数模型.2)叶片性状空间变异具有方向性,单叶面 积空间变异在东北-西南方向上最大,在西北-东南方向上最小;比叶面积和叶片干物质含量的空间变异均在西北-东南方向最大,在东北-西南方向最小.3)单 叶面积与地形因子显著负相关(r=-0.12,p<0.000 1);比叶面积与土壤养分显著负相关(r=-0.16,p<0.000 1),叶片干物质含量与土壤养分显著正相关(r=0.13,p<0.000 1).4)东北-西南方向上,地形因子对单叶面积、比叶面积和叶片干物质含量空间变异的影响大于土壤养分;西北-东南方向上,地形因子对单叶面积空间变异 的影响相对较大,而土壤养分对比叶面积和叶片干物质含量空间变异的影响较大.总之,在研究样地内,植物叶片性状随空间距离和方向存在很大的变异性,叶片性 状与地形因子、土壤养分的关联性间接表明了环境过滤对群落构建的影响.

Yao TT, Meng TT, Ni J, Yan S, Feng XH, Wang GH ( 2010).

Leaf functional trait variation and its relationship with plant phylogenic background and the climate in Xinjiang Junggar Basin, NW China

Biodiversity Science, 18, 201-211.

[本文引用: 1]

[ 尧婷婷, 孟婷婷, 倪健, 阎顺, 冯晓华, 王国宏 ( 2010).

新疆准噶尔荒漠植物叶片功能性状的进化和环境驱动机制初探

生物多样性, 18, 201-211.]

[本文引用: 1]

Zhan SX, Zhen SX, Wang Y, Bai YF ( 2016).

Response and correlation of above- and below-ground functional traits of Leymus chinensis to nitrogen and phosphorus additions

Chinese Journal of Plant Ecology, 40, 36-47.

DOI:10.17521/cjpe.2015.0164      URL     [本文引用: 1]

羊草(Leymus chinensis)是我国北方典型草原群落的主要建群种和优势种,由于长期的过度放牧,羊草草原生态系统的结构和功能严重退化。养分添加作为恢复草地生态系统的一种管理措施,其应用目前还处于实验性研究阶段。关于羊草的地上-地下功能性状对养分添加,尤其是P添加的响应研究较少,相关机制尚不十分清楚。为此,该文以羊草为研究对象,通过温室栽培进行N(50,100,250 mg N·kg–1)和P(5,10,25 mg P·kg–1)各3个水平的养分添加实验,研究羊草的地上-地下功能性状对N、P添加的响应及适应机制。主要研究结果表明:1)羊草的地上生物量和总生物量主要受N添加的影响,N添加显著提高了羊草的地上生物量,而地下生物量主要受P添加的影响,尤其在中N和高N水平,P添加显著降低了羊草的地下生物量。羊草的根冠比受N、P添加的共同影响,随着N、P添加梯度加大,根冠比显著降低,N、P添加促进了羊草生物量向地上部分的分配和N、P向叶片的分配。2)在低N和高N水平,羊草对P添加的响应与适应机制不同。低N水平,羊草主要通过增加光合速率和比根长(SRL),提高光合能力和根系对N的获取能力促进地上部分的生长,而根系对P的吸收有利于地下部分的生长;在高N水平,P添加对羊草的个体生长无明显促进作用,甚至地下生物量明显受到P素抑制,羊草主要通过保持较高的比叶面积(SLA)和SRL,提高对光资源的截获能力和根系对N的获取和吸收能力,维持地上部分的生长。3)相对于地上性状,P添加对羊草的地下性状影响更大,羊草的SLA与SRL呈较弱的正相关关系,表明叶片与根系在资源获取和利用方面具有相对独立性。

[ 詹书侠, 郑淑霞, 王扬, 白永飞 ( 2016).

羊草的地上-地下功能性状对氮磷施肥梯度的响应及关联

植物生态学报, 40, 36-47.]

DOI:10.17521/cjpe.2015.0164      URL     [本文引用: 1]

羊草(Leymus chinensis)是我国北方典型草原群落的主要建群种和优势种,由于长期的过度放牧,羊草草原生态系统的结构和功能严重退化。养分添加作为恢复草地生态系统的一种管理措施,其应用目前还处于实验性研究阶段。关于羊草的地上-地下功能性状对养分添加,尤其是P添加的响应研究较少,相关机制尚不十分清楚。为此,该文以羊草为研究对象,通过温室栽培进行N(50,100,250 mg N·kg–1)和P(5,10,25 mg P·kg–1)各3个水平的养分添加实验,研究羊草的地上-地下功能性状对N、P添加的响应及适应机制。主要研究结果表明:1)羊草的地上生物量和总生物量主要受N添加的影响,N添加显著提高了羊草的地上生物量,而地下生物量主要受P添加的影响,尤其在中N和高N水平,P添加显著降低了羊草的地下生物量。羊草的根冠比受N、P添加的共同影响,随着N、P添加梯度加大,根冠比显著降低,N、P添加促进了羊草生物量向地上部分的分配和N、P向叶片的分配。2)在低N和高N水平,羊草对P添加的响应与适应机制不同。低N水平,羊草主要通过增加光合速率和比根长(SRL),提高光合能力和根系对N的获取能力促进地上部分的生长,而根系对P的吸收有利于地下部分的生长;在高N水平,P添加对羊草的个体生长无明显促进作用,甚至地下生物量明显受到P素抑制,羊草主要通过保持较高的比叶面积(SLA)和SRL,提高对光资源的截获能力和根系对N的获取和吸收能力,维持地上部分的生长。3)相对于地上性状,P添加对羊草的地下性状影响更大,羊草的SLA与SRL呈较弱的正相关关系,表明叶片与根系在资源获取和利用方面具有相对独立性。

Zhang ZH, Hu G, Zhu JD, Luo DH, Ni J ( 2010).

Spatial patterns and interspecific associations of dominant tree species in two old-growth karst forests, SW China

Ecological Research, 25, 1151-1160.

DOI:10.1007/s11284-010-0740-0      URL     [本文引用: 1]

Spatial patterns and interspecific associations of plant species in forests are important for revealing how species interact with each other and with the environment, and hence have important implications for optimal forest management and restoration in degraded forest ecosystems. In this paper, the O -ring statistics were used to characterize the spatial patterns and interspecific associations of eight dominant tree species in two 1-ha old-growth karst forest plots in Maolan National Natural Reserve, southwestern China. We found that most of the eight dominant tree species in two forests were continuously regenerating populations. Six species ( Platycarya longipes , Acer wangchii , Clausena dunniana , Castanopsis carlesii var. spinulosa , Distylium myricoides , and Rhododendron latoucheae ) exhibited significant aggregations at the majority of scales while others ( Celtis biondii and Cyclobalanopsis myrsinaefolia ) showed a random distribution pattern at most scales. Negative association was a dominant pattern for most species pairs in the two plots, while positive associations were found at most scales for only two species pairs ( Platycarya – Clausena and Castanopsis – Rhododendron ). Results also indicated that the two main factors of habitat complexity and heterogeneity—the elevation and rock-bareness rate—play important roles in determining spatial distribution patterns and interspecific associations of tree species in karst forests of Maolan. Thus, the observed spatial patterns among the eight tree species are influenced by habitat heterogeneity in the context of karst topographical variations. The partitioning of habitat niches contributes to the promoting species coexistence in species-rich karst forests. The differences of species features in spatial patterns and associations should be paid more attention when planning forest management and developing restoration strategies.

Zou B, Cai F, Zheng JM, Dai W ( 2015).

Biomass vertical distribution of fine root and its traits of four tree species in subtropical natural forest

Journal of Northeast Forestry University, 43, 18-22.

[本文引用: 1]

[ 邹斌, 蔡飞, 郑景明, 戴伟 ( 2015).

亚热带天然林4种树木细根生物量垂直分布和主要功能性状的差异

东北林业大学学报, 43, 18-22.]

[本文引用: 1]

/