植物生态学报, 2018, 42(6): 692-702 doi: 10.17521/cjpe.2017.0247

研究论文

凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响

魏翠翠, 刘小飞, 林成芳,*, 李先锋, 李艳, 郑裕雄

福建师范大学地理科学学院, 福州 350007; 湿润亚热带山地生态国家重点实验室培育基地, 福州 350007; 福建三明森林生态系统与全球变化研究站, 福建三明 365000

Response of soil enzyme activities to litter input changes in two secondary Castanopsis carlessii forests in subtropical China

WEI Cui-Cui, LIU Xiao-Fei, LIN Cheng-Fang,*, LI Xian-Feng, LI Yan, ZHENG Yu-Xiong

School of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China; State Key Laboratory of Humid Subtropical Mountain Ecology, Fuzhou,350007, China; and Sanming Research Station of Forest Ecosystem and Global Change, Sanming, Fujian 365000, China

通讯作者: tonylcf99@163.com

收稿日期: 2017-09-28   修回日期: 2018-03-15   网络出版日期: 2018-06-20

基金资助: 国家自然科学基金(31770663)
国家自然科学基金(31500407)
海峡联合基金(U1505233)

Received: 2017-09-28   Revised: 2018-03-15   Online: 2018-06-20

Fund supported: Supported by the National Natural Science Foundation of China(31770663)
Supported by the National Natural Science Foundation of China(31500407)
the Joint Fund for Promotion of Cross-strait Cooperation in Science and Technology (U1505233)

摘要

酶在土壤有机质分解中起重要作用。为深入了解全球变化背景下森林凋落物产量的改变对森林生态系统过程的影响, 以亚热带米槠(Castanopsis carlesii)人促更新次生林(米槠人促林)和米槠次生林为研究对象, 设置凋落物加倍(DL)、凋落物去除(NL)和对照(CT) 3种处理, 探讨土壤6种胞外酶活性的变化。研究结果表明: 米槠次生林中土壤纤维素水解酶(CBH)、β-N-乙酰氨基葡萄糖苷酶(NAG)、酚氧化酶(PhOx)和过氧化酶(PerOx)活性高于米槠人促林, 而酸性磷酸酶(AP)和β-葡萄糖苷酶(βG)活性没有差异; NL和DL处理均降低了两种不同更新方式森林土壤的AP、βG和NAG活性, CBH和PerOx活性均无显著变化, 而PhOx活性仅在DL处理后降低; 除NAG活性外, 米槠人促林的AP、βG、PhOx活性在凋落物处理后下降的幅度均高于次生林; Pearson相关分析和冗余分析表明, 土壤酶活性与土壤含水量、碳(C)、氮(N)含量和微生物生物量碳(MBC)、氮(MBN)含量显著相关。因此, 凋落物输入的改变(无论增加和减少), 引起了土壤含水量、C、N以及MBC和MBN含量的下降, 进而可能会导致亚热带米槠次生林和米槠人促林土壤某些胞外酶(如AP、βG和NAG)活性降低。从土壤酶活性角度看, 米槠次生林比米槠人促林更有利于亚热带森林生态系统C、N养分循环。

关键词: 凋落物加倍; 凋落物去除; 土壤酶活性; 米槠次生林; 米槠人促更新次生林

Abstract

Aims Enzymes play an important role in the decomposition of soil organic matter. Changes in net primary productivity in response to climate change are likely to affect litter inputs to forest soil. However, the effects of altered litter input on soil enzyme activities remain poorly understood in subtropical forests. Thus, this study is designed to find out if litter manipulation has an effect on enzymes in different subtropical Castanopsis carlessii forest.

Methods Three treatments including double litter (DL), no litter (NL) and control (CT) were installed in a secondary C. carlesii forest and a human-assisted naturally regenerated C. carlesii forest, to investigate the responses of 6 soil extracellular enzyme activities.

Important findings The activities of Cellobiohydrolase (CBH), β-1,4-N-acetylglucosaminidase (NAG), Polyphenol oxidase (PhOx) and Peroxidase (PerOx) in the secondary C. carlesii forest were higher than those in the human-assisted naturally regenerated C. carlesii forest, while acid phosphatase (AP) and β-1,4-glucosidase (βG) activities had no significant difference between the two forests. Compared to control, both NL and DL treatments decreased the activities of AP, βG and NAG, but had no effect on the activities of CBH and PerOx, and DL treatment decreased only the activity of PhOx in two forests. Except for NAG activity, the activities of AP, βG and PerOx decreased more in the human-assisted naturally regenerated C. carlesii forest than in the secondary C. carlesii forest after litter manipulaition. Both Pearson correlation analysis and redundancy analysis showed that soil enzyme activities were significantly correlated with soil moisture content, carbon (C), nitrogen (N), microbial biomass carbon (MBC) and nitrogen (MBN) contents. Therefore, changes in litter input (both increase and decrease) could decrease some major soil enzyme activities such as AP, βG and NAG in both secondary and human-assisted naturally regenerated C. carlesii forests by decreasing soil moisture content, C and N, MBC and MBN contents. Based on the responses of soil enzyme activity, we conclude that the C and N cycling in secondary C. carlesii forest could be faster compared to that in the human-assisted forest of the same species in the subtropical forest ecosystems.

Keywords: double litter; no litter; soil enzyme activities; secondary Castanopsis carlesii forest; human-assisted naturally regenerated Castanopsis carlesii forest

PDF (1249KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

引用本文

魏翠翠, 刘小飞, 林成芳, 李先锋, 李艳, 郑裕雄. 凋落物输入改变对亚热带两种米槠次生林土壤酶活性的影响. 植物生态学报, 2018, 42(6): 692-702. DOI: 10.17521/cjpe.2017.0247

WEI Cui-Cui, LIU Xiao-Fei, LIN Cheng-Fang, LI Xian-Feng, LI Yan, ZHENG Yu-Xiong. Response of soil enzyme activities to litter input changes in two secondary Castanopsis carlessii forests in subtropical China. Chinese Journal of Plant Ecology, 2018, 42(6): 692-702. DOI: 10.17521/cjpe.2017.0247

土壤酶包括存在于活细胞内的胞内酶和存在于土壤溶液中或吸附在土壤颗粒表面的胞外酶。土壤胞外酶主要来源于动植物残体分解过程中土壤微生物以及植物根系的分泌物(杨万勤和王开运, 2004), 是生态系统代谢的重要动力。土壤中的一切生物学和化学过程都是在酶的催化作用下完成的(曹慧等, 2003)。土壤酶活性与土壤温度、含水量、pH值、碳(C)含量、氮(N)含量等因素有关(Sinsabaugh et al., 2008; 朱同彬等, 2008; Baldrian, 2009), 能用来表征土壤C、N、磷(P)等养分的循环状况(张鹏等, 2007)。

森林凋落物是土壤有机质的重要来源, 是森林生态系统能量流动和物质循环的重要载体(曹富强等, 2010), 可为植物和微生物生长提供所需养分。研究表明大气CO2浓度增加和温度升高将导致植物净初级生产力增加, 提高凋落物生产量(Thomas et al., 2008; Cernusak et al., 2013), 而极端干旱事件可能会降低植物的生产力(Doughty et al., 2015)。植物生产力发生变化将引起输入土壤中的凋落物数量和质量改变, 从而使土壤微生物生物量、群落组成乃至代谢方式发生变化(Gray et al., 2002), 影响土壤酶活性。但现有研究表明凋落物增加和减少对土壤酶活性的影响并不一致(Weintraub et al., 2013; Kotroczó et al., 2014; 刘星等, 2014; Veres et al., 2015)。在温带森林生态系统, 凋落物添加后土壤酶活性未发生显著变化, 而凋落物去除后土壤酶活性显著降低(Kotroczó et al., 2014; 刘星等, 2014; Veres et al., 2015)。尹鹏等(2015)在高原土壤生态系统凋落物添加试验中发现土壤蔗糖酶显著降低, 而Weintraub等(2013)在热带雨林添加凋落物增加了土壤酶活性, 去除凋落物降低了土壤酶活性。有研究指出, 土壤酶活性与土壤温度, 土壤含水量, 土壤C、N等含量有关, 且相关程度因生态系统而异(Kivlin & Treseder, 2014)。碳输入改变引起土壤物理、化学、生物性质发生变化, 进而导致酶活性发生变化(Weintraub et al., 2013)。亚热带作为温带与热带的过渡带, 其温度、降水量等与温带、热带有较大差异, 森林地表凋落物输入改变(增加或减少)对土壤酶活性的影响还是未知。

长期以来, 为获取木材产品, 我国南方天然常绿阔叶林被大面积采伐, 采伐后的林地大部分营造杉木 (Cunninghamia lanceolata)或者马尾松(Pinus massoniana)人工林, 小部分采取自然更新的方式恢复。根据人为干扰程度的不同, 自然更新的林分可以形成次生林和人促更新次生林(陈绍栓等, 2001)。米槠(Castanopsis carlessii)是我国亚热带常绿阔叶林顶极群落建群种, 天然林被采伐后, 自然更新一定时间, 通常容易形成米槠为主的次生林。这种次生林在更新过程中, 部分会采取促进森林生长的劈草除杂等营林措施从而形成人促更新次生林。森林生长过程中的营林措施会降低林分郁闭度, 改变林分群落组成(宋晓英等, 2006), 直接影响土壤养分和微生物活性(齐光等, 2013; 黄玉梅等, 2014), 进而影响土壤C、N和P循环。目前, 对该区域不同森林更新方式的研究多集中在林分结构及生产力、物种多样性以及土壤可溶性有机物的数量和光谱学特征等方面(宋晓英等, 2006; 黄清麟等, 2012; 元晓春等, 2016), 而对不同森林更新方式下土壤酶活性的研究还鲜有报道。本试验选择经营历史清晰的米槠次生林和米槠人促更新次生林, 设置凋落物添加和去除处理, 探讨未来碳输入改变对不同森林更新方式土壤酶活性的影响, 为我国亚热带森林经营和管理实践提供理论依据, 同时为全球变化背景下土壤有机质分解和养分循环提供参考。

1 材料和方法

1.1 试验样地概况

试验地位于福建三明森林生态系统与全球变化研究站陈大观测点(117.60° E, 26.32° N), 地形以低山丘陵为主, 平均海拔300 m, 平均坡度为25°-35°。属中亚热带季风气候, 年平均气温19.1 ℃, 年降水量1 749 mm, 相对湿度81%。区域土壤为粗晶花岗岩发育的酸性红壤, 厚度超过1 m。

米槠次生林(以下简称次生林)是在1976年米槠天然林经强度择伐后封山育林自然演替形成的。主要树种有米槠、闽粤栲(Castanopsis fissa)、木姜子(Litsea pungens)、新木姜子(Neolitsea aurata)等。灌木层有木荚红豆(Ormosia xylocarpa)、褐毛石楠(Photinia hirsuta)、毛冬青(Ilex pubescens)等种类。草本层主要由狗骨柴(Diplospora dubia)、黑莎草(Gahnia tristis)、油草(Leptochloa chinensis)等组成。

米槠人促更新次生林(以下简称人促林)是在1977年米槠天然林经过强度择伐后天然更新, 并在更新过程中人为除去非目的树种形成的。主要树种为米槠, 灌木层以鼠刺(Itea chinensis)、毛冬青、石栎(Lithocarpus glaber)等为主, 草本层不发达。不同森林更新方式下林分概况见表1

表1   试验地林分基本特征和土壤表层(0-10 cm)理化性质

Table 1  Main characteristics of the experiment site and properties of the topsoil (0-10 cm)

项目 Item米槠次生林
Secondary
Castanopsis
carlesii forest
米槠人促更新次生林
Human-assisted naturally
regenerated Castanopsis
carlesii
forest
平均树高
Average tree height (m)
10.8013.70
平均胸径
Average breast diameter (cm)
12.2016.80
林分密度
Stand density (株•hm-2)
37882158
年凋落物量
Annual litter fall (g•m-2)
698658
细根生物量
Fine root biomass (kg•m-3)
0.930.70
全C含量
Total carbon content (g•kg-1)
20.9816.68
全N含量
Total nitrogen content (g•kg-1)
1.421.14
土壤容重
Soil bulk density (g•cm-3)
0.951.10

新窗口打开| 下载CSV


1.2 试验设计

2012年6月, 在米槠次生林和米槠人促林内分别设置3个20 m × 20 m的标准样地, 在每个标准地内随机设置9个大小为1 m × 1 m的小区, 并随机分为3个处理, 即: (1)保留凋落物(CT), 不做任何处理作为对照; (2)去除凋落物(NL), 去除小区内地表全部凋落物, 并在小区上方0.5 m高处放置一个1.5 m × 1.5 m的尼龙网, 以截留并阻止凋落物掉入小区内; (3)凋落物添加(DL), 将去除凋落物处理的尼龙网上的凋落物放置到添加凋落物处理的小区内。其中, 凋落物每半月处理一次。

1.3 样品采集

2016年4月取样, 用内径3 cm、长10 cm的土钻在每个小区内随机取8个点, 采集0-10 cm土壤样品混匀, 手工捡出土壤中大的砾石和动、植物残体, 放入储有冰袋的冷藏箱中, 带回实验室过2 mm筛, 放入4 ℃冰箱内。一部分新鲜土样用于测定土壤含水量, 可溶性有机碳(DOC)、可溶性有机氮(DON)含量, 微生物生物量碳(MBC)、微生物生物量氮(MBN)含量以及土壤酶活性等; 一部分新鲜土样于室内自然风干, 用来测定土壤pH值和土壤全碳(TC)、全氮(TN)含量。

1.4 测定方法

土壤基本理化性质测定参照《土壤农业化学分析方法》(鲁如坤, 2000)。土壤含水量采用铝盒烘干法测定; 土壤pH值采用酸度计测定; 土壤TC和TN含量使用Elementar Vario MAX碳氮元素分析仪(GmbH, Hanau, Germany)测定; 土壤DOC与DON、NH4+、矿质氮(铵态氮与硝态氮)含量分别采用TOC分析仪(Shimadzu, Kyoto, Japan)和流动分析仪(San++, Skalar, Breda, the Netherlands)测定。

称取4 ℃保存的土壤样品10 g分析微生物生物量, 土壤MBC和MBN含量的测定采用氯仿熏蒸-K2SO4浸提法(FE)(Vance et al., 1987)。将待测组与空白对照组同时放入真空干燥箱中用去乙醇氯仿于25 ℃熏蒸24 h 后, 加入40 mL 0.5 mol·L-1 K2SO4提取, 浸取液中的C含量采用TOC分析仪测定, 全氮含量测定采用流动分析仪, 其中MBC的转换系数为0.45, MBN的转换系数为0.54 (Jenkinson et al., 2004)。

酶活性测定参照Saiya-Cork等(2002)的方法, 测定氧化还原酶类: 过氧化物酶(PerOx), 多酚氧化酶(PhOx)以及水解酶类: 磷酸酶(AP)、β-葡萄糖苷酶(βG)、纤维素水解酶(CBH)以及β-N-乙酰氨基葡萄糖苷酶(NAG), 测定酶的底物、缩写及功能见表2。取1 g土壤加入到125 mL醋酸盐缓冲液(50 mmol·L-1、pH 5.0)中制成悬浮液, 取上清液200 µL移入96孔微孔板。每个样品有16个重复(200 µL样品溶液+50 µL 200 µmol·L-1底物溶液), 8个阴性控制(200 µL醋酸缓冲溶液+50 µL底物溶液)和8个空白(200 µL样品溶液+50 µL缓冲溶液)作为对照。水解酶再加以8个淬火标准液(200 µL样液+50 µL标准液)及淬火标准对照液(200 µL缓冲液+50 µL标准液)进行校正, 微孔板在黑暗中20 ℃孵育4 h后向每个微孔中加入1 mol·L-1 NaOH溶液使其中的反应停止。用Synergy H4多功能酶标仪(Molecular Devices, San Jose, USA)配备的365 nm激发光和450 nm发射光滤光器的微孔板荧光光度计来检测荧光度, 酶活性以每小时每克干物质产生底物的摩尔数(nmol·g-1·h-1)来表达。PerOx在PhOx的基础上, 每个孔再添加 10 µL的0.3% H2O2, 氧化酶活性采用吸光光度计来测定, 将微孔板置于黑暗中20 ℃孵育18 h, 用微孔板分光光度计来测定其在450 nm处的吸光度, 氧化酶活性表达为µmol·g-1·h-1

表2   土壤酶的种类、底物、缩写和类型

Table 2  The substrates, abbreviations and types of the examined soil enzymes

酶 Enzyme缩写 Abbreviation编号 Code底物 Substrate类型 Type
酸性磷酸酶 Acid phosphataseAP3.1.3.24-甲基伞形酮磷酸酯
4-MUB-phosphate
P获得水解酶
P-targeting hydrolytic
β-葡萄糖苷酶 β-1,4-glucosidaseβG3.2.1.214-甲基伞形酮-β-D-葡萄糖苷
4-MUB-β-D-glucoside
C获得水解酶
C-targeting hydrolytic
纤维素水解酶 CellobiohydrolaseCBH3.2.1.914-甲基伞形酮-β-D-纤维素二糖苷
4-MUB-β-D-cellobioside
C获得水解酶
C-targeting hydrolytic
β-N-乙酰氨基葡萄糖苷酶 β-1,4-N-acetylglucosaminidaseNAG3.1.6.14-甲基伞形酮-2-乙酰氨基-2-脱氧-β-D-吡喃葡萄糖苷
4-MUB-N-acetyl-β-D-lucosaminide
N获得水解酶
N-targeting hydrolytic
酚氧化酶 Phenol oxidasePhOx1.10.3.2L-二羟基苯 L-DOPAC获得氧化酶
C-targeting oxidase
过氧化物酶 PeroxidasePerOx1.11.1.7L-二羟基苯 L-DOPAC获得氧化酶
C-targeting oxidase

4-MUB, 4-methylumbelliferyl; DOPA, L-3, 4-dihydroxyphenylalanine.

新窗口打开| 下载CSV


1.5 数据统计分析

统计分析在SPSS 19.0软件中进行, 采用单因素方差分析分析同一林分不同处理土壤养分、微生物生物量碳、微生物生物量氮以及酶活性等的差异, 其差异性检验采用最小显著差异性检验法, 显著性水平为p < 0.05, 采用独立样本t检验分析不同林分同一处理土壤养分、MBC和MBN以及酶活性的差异, 显著性水平为p < 0.05。土壤酶活性与土壤养分等指标的相关分析采用Pearson相关分析法和冗余分析, 冗余分析使用Canoco 5.0软件进行(p < 0.05)。作图在Origin 8软件内完成。

2 结果

2.1 凋落物处理后土壤理化性质和MBC、MBN的变化

在次生林内, 与CT相比, NL处理除对土壤pH值和DON无影响外, 土壤含水量、TC、TN、DOC、NH4+、矿质N、MBC和MBN含量分别降低24%、41%、34%、39%、29%、29%、29% ( p > 0.05)和54%; DL处理土壤TC、TN和DON含量分别降低21% (p > 0.05)、20%和64%, 而NH4+和矿质N含量分别显著增加40%和39%, 但对土壤含水量、pH值、DOC、MBC和MBN含量均无影响(表3)。

表3   两种米槠林添加和去除凋落物处理土壤理化性质和微生物生物量碳、微生物生物量氮含量的变化(平均值±标准偏差, n = 3)

Table 3  Soil physical, chemical properties and microbial biomass carbon and nitrogen contents in the litter removal, control, and litter addition treatments plots in the two Castanopsis carlesii forests (mean ± SD, n = 3)

项目 Item米槠次生林
Secondary Castanopsis carlesii forest
米槠人促更新次生林
Human-assisted naturally regenerated Castanopsis carlesii forest
对照
Control
凋落物去除
No litter
凋落物添加
Double litter
对照
Control
凋落物去除
No litter
凋落物添加
Double litter
含水量 Moisture content (%)0.30 ± 0.00aA0.23 ± 0.01bA0.29 ± 0.03abA0.26 ± 0.06aA0.21 ± 0.01aA0.25 ± 0.03aA
pH值 pH value5.11 ± 0.14aA5.10 ± 0.04aA4.91 ± 0.16aA5.25 ± 0.17aA5.11 ± 0.02aA5.13 ± 0.10aA
全碳 Total carbon (g·kg-1)20.98 ± 2.75aA12.41 ± 1.75bA16.49 ± 0.47bB16.68 ± 0.44aB12.77 ± 0.09bA14.71 ± 3.00abA
全氮 Total nitrogen (g·kg-1)1.42 ± 0.09aA0.93 ± 0.12cA1.14 ± 0.02bB1.14 ± 0.09aB0.88 ± 0.07bA1.02 ± 0.19abA
可溶性有机碳
Dissolved organic carbon (mg·kg-1)
49.15 ± 8.37aA29.77 ± 9.46bA55.58 ± 8.7aA48.86 ± 6.76aA47.11 ± 10.09aA49.52 ± 6.46aA
可溶性有机氮
Dissolved organic nitrogen (mg·kg-1)
2.08 ± 0.02aA1.85 ± 0.09aA0.74 ± 0.15bB2.26 ± 0.36aA2.18 ± 0.43aA1.86 ± 0.44aA
NH4+ (mg·kg-1)37.49 ± 0.69bA26.5 ± 3.21cA52.6 ± 0.6aA26.99 ± 4.01bB22.04 ± 3.12aA29.63 ± 4.41aB
矿质氮 Mineral nitrogen (mg·kg-1)38.08 ± 0.52bA27.22 ± 3.31cA53.05 ± 0.82aA27.96 ± 3.94aB22.37 ± 3.24bA30.98 ± 4.41aB
微生物生物量碳
Microbial biomass carbon (mg·kg-1)
315 ± 33abA225 ± 66bA371 ± 57aA258 ± 17aB171 ± 5cA221 ± 23bB
微生物生物量氮
Microbial biomass nitrogen (mg·kg-1)
29.33 ± 6.30aA13.41 ± 2.27bA26.38 ± 5.36aA36.56 ± 3.49aA14.61 ± 2.58cA23.05 ± 5.07bA

同一行小写字母表示同一林分下不同处理间的差异性(p < 0.05), 大写字母表示同一处理不同林分间的差异性(p < 0.05)。

The lowercase letters mean significant differences among treatments in the same forests (p < 0.05), the capital letters mean significant differences between the two forests under the same treatment (p < 0.05).

新窗口打开| 下载CSV


在人促林内, 与CT相比, 凋落物处理(NL和DL)的土壤含水量、pH值、DOC、DON含量均无显著变化。土壤NH4+含量在NL处理后无差异, 在DL处理后增加19% (p > 0.05), 土壤矿质N含量仅在NL处理后降低21%。TC和TN在NL处理后均降低23%, DL处理后无影响; NL处理土壤MBC和MBN含量分别降低34%和60%, DL处理MBC和MBN含量分别降低14%和37% (表3)。

在两个林分中, 相同处理的土壤质量含水量、pH值无显著差异。次生林的CT处理下, 土壤TC、TN、NH4+、矿质N和MBC含量显著高于人促林; 次生林的DL处理下, 土壤NH4+、矿质N和MBC含量高于人促林的DL处理(表3)。

2.2 凋落物添加和移除对土壤酶活性的影响

次生林内, 与CT相比, NL处理后, 土壤AP和NAG活性分别降低49%和48% (图1A, 1D); 而土壤CBH、βG、PhOx和PerOx活性无显著性差异; 与CT相比, DL处理后, AP、NAG和PhOx活性分别降低37%、38%和29% (图1A, 1D, 1E); 土壤βG、CBH和PerOx活性无显著性差异。

图1

图1   次生林和人促林中凋落物添加和去除后土壤酶活性的变化(平均值±标准偏差, n = 3)。小写字母表示同一林分下不同处理间的差异性(p < 0.05), 大写字母表示不同林分同一处理间的差异性(p < 0.05)。

Fig. 1   Soil enzyme activities under litter removal, control, and litter addition treatments in the two Castanopsis carlesii forests (mean ± SD, n = 3). The lowercase letters mean significant differences among treatments in the same forests (p < 0.05), the capital letters mean significant differences between the two forests under the same treatment (p < 0.05).


人促林内, 与CT相比, NL处理后, AP和βG活性分别降低68%和46% (p > 0.05)(图1A, 1B), 而土壤CBH、NAG、PerOx和PhOx活性无显著性差异。与CT相比, DL处理后, 土壤AP、βG和PhOx活性分别降低44%, 53%和58% (图1A, 1B, 1E), 而土壤CBH、NAG和PerOx活性无显著性差异。

此外, 次生林土壤CBH、NAG、PhOx和PerOx活性显著高于人促林。除CBH、NAG和PerOx活性外, 人促林土壤AP、βG、PhOx活性在NL和DL处理后降低的幅度均高于次生林(图1)。

2.3 土壤酶活性与土壤养分及微生物生物量碳氮的相关性

Pearson相关分析表明, 除PhOx活性外, 其余土壤胞外酶活性均分别与土壤含水量、TC、TN、DOC、DON、NH4+、MBC或MBN含量显著相关(表4)。土壤AP和NAG活性与土壤含水量、TC、TN和MBC含量显著正相关, 而AP活性与MBN含量极显著正相关。土壤βG活性与TN、MBC、MBN含量显著正相关。土壤CBH活性与NH4+和MBC含量显著正相关, 与DON含量显著负相关。PerOx活性与土壤DOC和MBN含量显著负相关(表4)。

表4   土壤酶活性与土壤理化性质和微生物生物量碳、微生物生物量氮的相关关系

Table 4  Correlation between soil enzyme activity and soil physical, chemical properties, microbial biomass carbon, microbial biomass nitrogen

项目 Item酸性磷酸酶
Acid
phosphatase
β-葡萄糖苷酶
β-1,4-glucosidase
纤维素水解酶
Cellobiohydrolase
β-N-乙酰氨基葡萄糖苷酶
β-1,4-N-acetylglucosam-
inidase
酚氧化酶
Phenol oxidase
过氧化酶
Peroxidase
含水量 Moisture content (%)0.545*0.3270.3440.504*0.221-0.230
全碳 Total carbon0.638**0.312-0.0030.751**0.119-0.164
全氮 Total nitrogen0.830**0.499*0.2480.807**0.245-0.109
可溶性有机碳 Dissolved organic carbon0.2740.225-0.1750.195-0.391-0.624**
可溶性有机氮 Dissolved organic nitrogen0.060-0.140-0.534*-0.139-0.2050.105
NH4+0.3620.2960.527*0.4110.035-0.279
微生物生物量碳 Microbial biomass carbon0.523*0.488*0.531*0.524*0.252-0.163
微生物生物量碳 Microbial biomass nitrogen0.648**0.498*-0.1180.231-0.150-0.608**

*, p < 0.05; **, p < 0.01.

新窗口打开| 下载CSV


同时冗余分析结果表明, 土壤酶活性与土壤理化性质和MBC、MBN含量显著相关。土壤6种酶活性与土壤理化性质、MBC和MBN含量的RDA结果显示, 第一标准轴(RD1)和第二标准轴(RD2)分别解释土壤酶活性变量的79%和15% (图2)。

图2

图2   土壤酶活性与土壤理化性质和微生物生物量碳、微生物生物量氮冗余分析。

Fig. 2   Redundancy analysis on the relationship of soil enzyme activity and soil physical, chemical properties, microbial biomass carbon, microbial biomass nitrogen.


3 讨论

3.1 凋落物去除和添加对土壤酶活性的影响

本研究中, NL处理降低了土壤AP、βG以及NAG活性, 这与已有凋落物去除降低酶活性的研究结果(Fekete et al., 2011; 郑卫国等, 2011; Weintraub et al., 2013; Veres et al., 2015; 杨洋等, 2016)一致。土壤AP、βG和NAG主要是由微生物产生(杨万勤和杨开运, 2004), 通过这些酶的作用将复杂的有机质水解转化为微生物和植物可利用的P、C、N等小分子物质(Kotroczó et al., 2014)。Xiong等(2008)研究发现随着土壤有机质和全氮含量的下降, 土壤微生物量和微生物活性均显著降低。郑卫国等(2011)研究发现去除凋落物显著降低了土壤微生物数量, 同时降低了土壤微生物的生理活性。本研究中, NL处理显著降低了土壤MBC和MBN的含量, 且相关分析和冗余分析均发现MBC、MBN含量与土壤AP、βG以及NAG活性显著正相关。这表明NL处理可能通过影响微生物生物量, 进而影响土壤AP、βG以及NAG活性。土壤有机质不仅是酶促反应的重要底物, 同时也是微生物活动的主要C源, 去除凋落物减少了土壤有机质的来源, 使微生物可利用的C源减少, 生长受抑制(表现为MBC和MBN的减少), 进而降低了土壤酶活性。微生物活动的变化可以直接引起酶活性的变化, 非生物因素主要通过改变微生物生存环境间接影响土壤酶活性(Kivlin & Treseder, 2014)。本研究中, NL处理降低了土壤含水量, 且土壤水分含量与土壤AP、βG活性显著正相关, 这与Kotroczó等(2014)的研究结果一致, 表明去除凋落物降低土壤酶活性可能与土壤含水量的变化有关。土壤水分含量是限制微生物生物量和活性的重要因素(Rutigliano et al., 2009; Brockett et al., 2012), 杨洋等(2016)认为土壤含水量的降低会通过影响底物和酶的扩散速率影响微生物的变化, 进而降低土壤βG和NAG活性。本研究中去除凋落物使得土壤表层覆盖物减少, 增加了土壤水分的蒸发量, 降低了土壤含水量, 导致微生物生物量发生变化, 从而间接地影响了土壤酶活性。

酶促反应底物的变化也是影响酶活性的重要因素, 如Allison和Vitousek (2005)发现添加纤维素与其他盐离子显著提高了βG活性, 添加胶原蛋白和其他盐离子显著增加了甘氨酸氨基肽酶活性; Hernandez和Hobbie (2010)研究发现, 碳水解酶活性与相应底物的浓度呈正相关关系; Kivlin和Treseder (2014)也认为可利用底物的浓度, 如土壤C含量以及N、P等养分浓度能影响酶活性。本研究中, NL处理显著降低了土壤TC、TN、DOC含量(表3), 且土壤AP、βG和NAG活性与TC和TN含量显著或极显著正相关, 这与许多已有研究结果(Hernandez & Hobbie, 2010; 杨敬天等, 2010; Kivlin & Treseder, 2014; 舒媛媛等, 2016)一致。这表明NL处理降低了土壤AP、βG和NAG的活性可能与土壤TC、TN、DOC等含量下降有关。NL处理后, 可能减少了来自凋落物分解产生的有机磷酸单酯、纤维二糖等有机质进入土壤(Hernandez & Hobbie, 2010), 使土壤中相关酶的底物浓度降低, 进而导致土壤AP、βG和NAG活性的降低。

NL处理后, 土壤PhOx活性没有显著性差异, 可能是本研究凋落物处理时间较短(3年), PhOx活性还未表现出显著差异, 而已有研究表明, PhOx活性随凋落物去除处理时间增长而显著降低(Veres et al., 2015)。

本研究中, DL处理也降低了土壤AP、βG、NAG和PhOx活性。尹鹏等(2015)在川西亚高山针叶林添加凋落物发现微生物生物量的降低引起土壤蔗糖酶活性显著降低; 赵静(2016)在太岳山添加凋落物发现土壤C、N含量显著增加, 促进了微生物生长, 进而显著提高了土壤βG、NAG、PhOx和PerOx活性。以上两个研究均发现凋落物添加引起土壤C、N含量和微生物生物量的变化而影响到酶活性。本研究发现添加凋落物降低了土壤MBC和MBN的含量, 且土壤AP、βG、NAG活性与土壤MBC和MBN含量显著正相关, 可能是DL处理降低了MBC和MBN的含量, 进而导致土壤酶活性的降低。非生物因素如土壤含水量、pH值等环境因子在DL处理后无显著差异, 而土壤TC、TN和DON等养分含量在DL处理后显著降低, 这可能是由于凋落物输入产生了正激发效应, 添加凋落物不仅增加了新有机质的分解还促进了原有土壤有机质的矿化分解(Sayer et al., 2007)。我们的前期研究也发现DL处理产生正激发效应, 促进了土壤有机质分解而加速CO2向大气的排放, 进而减少了土壤中C、N含量(李晓杰等, 2016; Liu et al., 2017)。土壤中TC、TN、DON等含量的降低可能导致酶促反应底物的减少, 进而引起土壤AP、βG、NAG和PhOx活性的降低。土壤中的酶由微生物生产, 用于获得某种特定养分, 如NAG主要分解含氮的高分子有机物如几丁质等以获得N, 供微生物和植物利用, 当某种养分有效性较高时, 酶的生产受到抑制(Allison & Vitousek, 2005)。本研究DL处理后土壤矿质N含量显著增加, 可能使得微生物和植物可利用的N显著提高, N获得酶的产生受到抑制, 从而导致NAG活性降低。

本研究中CBH和PerOx活性在DL和NL处理后没有显著变化, 其原因较为复杂。这可能是由于酶被土壤中的有机质复合体和土壤黏粒固定, 在降解过程中较为稳定的缘故(Olander & Vitousek, 2000)。此外, CBH主要是由真菌产生(杨万勤和王开运, 2004), 而本研究DL和NL处理后真菌丰度无显著变化而细菌丰度变化较大(刘小飞等, 未发表文献), 因此CBH活性的变化不显著。

3.2 不同林分更新方式下土壤酶活性的变化

两种森林更新方式下, 人促林土壤CBH、NAG和PhOx活性显著低于次生林, 这可能与人促林的经营管理活动有关。黄玉梅等(2014)发现在川西亚高山针叶林去除林下植被降低了微生物生物量, 使微生物群落结构发生变化, 削弱了真菌在有机质分解中所起的作用, 进而降低了酶活性。丁思一等(2015)发现在杉木林去除林下植被减少了地下根系, 减少了微生物能利用的有机碳, 影响了土壤微生物活性, 进而降低了土壤βG活性。本研究中, 与次生林相比, 人促林(去除林下植被)土壤C、N含量(表3)、细根生物量(表1)和MBC含量显著降低, 可能是造成人促林土壤酶活性低于次生林的原因。人促林在去除林下植被后凋落物量降低(表1), 减少了进入土壤的来自凋落物的养分, 使得土壤中C、N等养分降低(表3)。同时林下植被去除会减少地下根系(丁思一等, 2015), 降低细根生物量(表3), 而其中根系分泌物既是土壤养分的重要来源又是维持土壤微生物生物量、微生物多样性的重要因素(Blazier et al., 2005)。因此, 人促林在经营管理活动中去除林下植被后, 同时减少了地上和地下植被向土壤的养分归还量, 使人促林土壤C、N等养分含量损失较大, 减少了土壤微生物的营养物质来源, 降低了土壤微生物生物量及土壤酶活性。此外, 有研究指出土壤酶活性与林下植被存在显著或极显著正相关关系(杨万勤等, 2001), 这是因为林下植被的生长需要获得必需的养分, 从而驱动酶的分泌, 促进凋落物的分解(Xiong et al., 2008), 进而使得次生林酶活性高于人促林。

除NAG活性外, 人促林土壤AP、βG、PhOx活性在C输入改变(增加和减少)后降低的幅度高于次生林, 可能与森林物种多样性有关。相关研究表明, 物种多样性的增加能促进生态系统土壤的稳定性(王震洪等, 2006)。人促林在经营管理活动中去除非目的植被, 降低物种多样性, 可能更易受外界扰动(C输入变化)的影响, 导致酶活性变化幅度更大。

4 结论

本研究两种中亚热带米槠次生林在凋落物加倍和去除处理3年后, 除CBH和PerOx活性无显著差异外, 其他几种土壤胞外酶活性均降低。凋落物增加或减少引起的土壤含水量、C、N含量以及MBC、MBN含量的变化可能是引起土壤酶活性变化的主要原因。这种现象可能是森林生态系统通过调整自身的物质和养分循环速率, 应对全球变化的一种负反馈机制。

致谢 感谢福建师范大学地理科学学院熊德成老师、林伟盛老师、胥超老师、洪慧滨同学在野外工作和室内试验中给予的帮助。

参考文献

Allison SD, Vitousek PM ( 2005).

Responses of extracellular enzymes to simple and complex nutrient inputs

Soil Biology & Biochemistry, 37, 937-944.

DOI:10.1016/j.soilbio.2004.09.014      URL     [本文引用: 2]

Soil microbes produce extracellular enzymes that mineralize organic matter and release carbon and nutrients in forms that can be assimilated. Economic theories of microbial metabolism predict that enzyme production should increase when simple nutrients are scarce and complex nutrients are abundant; however, resource limitation could also constrain enzyme production. We tested these hypotheses by monitoring enzyme activities and nutrient pools in soil incubations with added simple and complex nutrient compounds. Over 28 days of incubation, we found that an enzyme's activity increased when its target nutrient was present in complex but not simple form, and carbon and nitrogen were available. β-Glucosidase and acid phosphatase activities also increased in treatments where only carbon and nitrogen were added. Glycine aminopeptidase and acid phosphatase activities declined in response to ammonium and phosphate additions, respectively. In some cases, mineralization responses paralleled changes in enzyme activity—for example, β-glucosidase activity increased and respiration was 5-fold greater in soil incubations with added cellulose, ammonium, and phosphate. However, a doubling of acid phosphatase activity in response to collagen addition was not associated with any changes in phosphorus mineralization. Our results indicate that microbes produce enzymes according to ‘economic rules’, but a substantial pool of mineral stabilized or constitutive enzymes mediates this response. Enzyme allocation patterns reflect microbial nutrient demands and may allow microbes to acquire limiting nutrients from complex substrates available in the soil.

Baldrian P ( 2009).

Microbial enzyme-catalyzed processes in soils and their analysis

Plant Soil and Environment, 55, 370-378.

DOI:10.1007/s11104-009-0098-7      URL     [本文引用: 1]

Currently, measuring enzyme activities in soils or other lignocellulose-based materials is technically feasible; this measurement is particularly suitable for evaluating soil processes of biopolymer (cellulose, hemicelluloses, lignin, chitin and others) degradation by microbes and for assessing cycling and mobilization of principal nutrients including nitrogen, phosphorus and sulfur. With some ...

Blazier MA, Hennessey TC, Deng S ( 2005).

Effects of fertilization and vegetation control on microbial biomass carbon and dehydrogenase activity in a juvenile loblolly pine plantation

Forest Science, 51, 449-459.

[本文引用: 1]

Brockett BF, Prescott CE, Grayston SJ ( 2012).

Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada

Soil Biology & Biochemistry, 44, 9-20.

[本文引用: 1]

Cao FQ, Liu ZH, Liu M, Cui JF ( 2010).

Research progress on the forest litterfall and its decomposition process

Guangxi Agricultural Sciences, 41, 693-697.

[本文引用: 1]

[ 曹富强, 刘朝晖, 刘敏, 崔俊峰 ( 2010).

森林凋落物及其分解过程的研究进展

广西农业科学, 41, 693-697.]

[本文引用: 1]

Cao H, Sun H, Yang H, Sun B, Zhao QG ( 2003).

A review soil enzyme activity and its indication for soil quality

Chinese Journal of Applied and Environmental Biology, 9, 105-109.

[本文引用: 1]

[ 曹慧, 孙辉, 杨浩, 孙波, 赵其国 ( 2003).

土壤酶活性及其对土壤质量的指示研究进展

应用与环境生物学报, 9, 105-109.]

[本文引用: 1]

Cernusak LA, Winter K, Dalling JW, Holtum JAM, Jaramillo C, Körner C, Leakey ADW, Norby RJ, Poulter B, Turner BL, Wright S ( 2013).

Tropical forest responses to increasing atmospheric CO2: Current knowledge and opportunities for future research

Functional Plant Biology, 40, 531-551.

DOI:10.1071/FP12309      URL     [本文引用: 1]

Chen SS, Chen SR, Ma XQ ( 2001).

Effects of different regeneration pattern of secondary broadleaved forest on stand composition and soil fertility

Scientia Silvae Sinicae, 37(6), 113-117.

DOI:10.11707/j.1001-7488.20010621      Magsci     [本文引用: 1]

[ 陈绍栓, 陈淑容, 马祥庆 ( 2001).

次生阔叶林不同更新方式对林分组成及土壤肥力的影响

林业科学, 37(6), 113-117.]

DOI:10.11707/j.1001-7488.20010621      Magsci     [本文引用: 1]

Ding SY, She JY, Yang QP, Wang SL ( 2015).

Effects of thinning and pruning on soil microbial biomass carbon and soilenzyme activities in Chinese fir plantation

Journal of Central South University of Forestry & Technology, 35(6), 75-79.

DOI:10.14067/j.cnki.1673-923x.2015.06.014      URL     [本文引用: 2]

土壤微生物量碳和土壤酶活性都是反映土壤养分和土壤生态环境质量的重要指标之一,但间伐、修枝和去除林下植被等经营措施对其影响如何还不太清楚。以湖南省会同县杉木人工林研为究对象,探讨了不同森林经营措施对土壤微生物量碳和酶活性的影响。结果表明,与对照样地相比,间伐、修枝和去除林下植被均显著减小了土壤微生物量碳含量和酶活性,分别为对照样地的79.96%、76.69%和70.70%;土壤微生物量碳和酶活性之间存在极显著的正相关关系。

[ 丁思一, 佘济云, 杨庆朋, 汪思龙 ( 2015).

间伐和修枝对杉木人工林土壤微生物量碳和酶活性的影响

中南林业科技大学学报, 35(6), 75-79.]

DOI:10.14067/j.cnki.1673-923x.2015.06.014      URL     [本文引用: 2]

土壤微生物量碳和土壤酶活性都是反映土壤养分和土壤生态环境质量的重要指标之一,但间伐、修枝和去除林下植被等经营措施对其影响如何还不太清楚。以湖南省会同县杉木人工林研为究对象,探讨了不同森林经营措施对土壤微生物量碳和酶活性的影响。结果表明,与对照样地相比,间伐、修枝和去除林下植被均显著减小了土壤微生物量碳含量和酶活性,分别为对照样地的79.96%、76.69%和70.70%;土壤微生物量碳和酶活性之间存在极显著的正相关关系。

Doughty CE, Metcalfe DB, Girardin CA, Girardin F, Amezquita FF, Cabrera DG, Huasco WH, Silva-Espejo JE, Araujo-Murakami A, Costa MC, Rocha W, Feldpausch TR, Mendoza ALM, Costa ACL, Meir P, Phillips OL, Malhi Y ( 2015).

Drought impact on forest carbon dynamics and fluxes in Amazonia

Nature, 519, 78-82.

DOI:10.1038/nature14213      URL     PMID:25739631      [本文引用: 1]

Abstract In 2005 and 2010 the Amazon basin experienced two strong droughts, driven by shifts in the tropical hydrological regime possibly associated with global climate change, as predicted by some global models. Tree mortality increased after the 2005 drought, and regional atmospheric inversion modelling showed basin-wide decreases in CO2 uptake in 2010 compared with 2011 (ref. 5). But the response of tropical forest carbon cycling to these droughts is not fully understood and there has been no detailed multi-site investigation in situ. Here we use several years of data from a network of thirteen 1-ha forest plots spread throughout South America, where each component of net primary production (NPP), autotrophic respiration and heterotrophic respiration is measured separately, to develop a better mechanistic understanding of the impact of the 2010 drought on the Amazon forest. We find that total NPP remained constant throughout the drought. However, towards the end of the drought, autotrophic respiration, especially in roots and stems, declined significantly compared with measurements in 2009 made in the absence of drought, with extended decreases in autotrophic respiration in the three driest plots. In the year after the drought, total NPP remained constant but the allocation of carbon shifted towards canopy NPP and away from fine-root NPP. Both leaf-level and plot-level measurements indicate that severe drought suppresses photosynthesis. Scaling these measurements to the entire Amazon basin with rainfall data, we estimate that drought suppressed Amazon-wide photosynthesis in 2010 by 0.38 petagrams of carbon (0.23-0.53 petagrams of carbon). Overall, we find that during this drought, instead of reducing total NPP, trees prioritized growth by reducing autotrophic respiration that was unrelated to growth. This suggests that trees decrease investment in tissue maintenance and defence, in line with eco-evolutionary theories that trees are competitively disadvantaged in the absence of growth. We propose that weakened maintenance and defence investment may, in turn, cause the increase in post-drought tree mortality observed at our plots.

Fekete I, Varga C, Kotroczó Z, Tóth JA, Várbiró G ( 2011).

The relation between various detritus inputs and soil enzyme activities in a Central European deciduous forest

Geoderma, 167- 168, 15-21.

[本文引用: 1]

Gray DB, Mary KT, Julie EJ ( 2002).

Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities

Soil Biology & Biochemistry, 34, 1073-1082.

[本文引用: 1]

Hernandez DL, Hobbie SE ( 2010).

The effects of substrate composition, quantity, and diversity on microbial activity

Plant and Soil, 335, 397-411.

DOI:10.1007/s11104-010-0428-9      URL     [本文引用: 3]

Huang QL, Zheng QR, Rong JT, Zhuo MX, Guan XH ( 2012).

Selective logging techniques of natural broad-leaved timber forest in the mid-subtropical zone of Fujian, China

Journal of Mountain Science, 30(2), 180-185.

[本文引用: 1]

[ 黄清麟, 郑群瑞, 戎建涛, 卓鸣秀, 官晓辉 ( 2012).

福建中亚热带天然阔叶用材林择伐技术I. 基于树种特征的目标树种清单

山地学报, 30(2), 180-185.]

[本文引用: 1]

Huang YM, Yang WQ, Zhang J, Lu CT, Liu X, Wang W, Guo W, Zhang DJ ( 2014).

Response of soil microorganism and soil enzyme activity to understory plant removal in the subalpine coniferous plantation of western Sichuan

Acta Ecologica Sinica, 34, 4183-4192.

DOI:10.5846/stxb201212131798      URL     [本文引用: 2]

生物多样性与生态系统功能的关系是生态学领域研究的热点与难点.但因受研究手段的限制,有关森林物种组成及其多样性变化对土壤微生物数量和酶活性影响的研究少有报道.采用人工去除灌草层的实验方法,研究了川西亚高山针叶林灌草层丧失对土壤微生物数量和酶活性的影响.结果表明:1)灌草层去除后,土壤细菌和真菌数量以CK(对照)>RH(除草)>RS(除灌),而土壤放线菌数量则以RH>CK>RS;2)灌草层去除后,土壤微生物群落构成发生改变,真菌比例有所下降;3)灌草层去除后,土壤酶活性随之发生变化,各种酶活性均以CK>RH>RS.表明林下灌草层去除,尤其是灌木层去除,导致土壤微生物数量下降、群落构成发生变化以及土壤酶活性下降,从而在一定程度上影响到森林生态系统的物质循环功能.

[ 黄玉梅, 杨万勤, 张健, 卢昌泰, 刘旭, 王伟, 郭伟, 张丹桔 ( 2014).

川西亚高山针叶林土壤微生物及酶对林下植物去除的响应

生态学报, 34, 4183-4192.]

DOI:10.5846/stxb201212131798      URL     [本文引用: 2]

生物多样性与生态系统功能的关系是生态学领域研究的热点与难点.但因受研究手段的限制,有关森林物种组成及其多样性变化对土壤微生物数量和酶活性影响的研究少有报道.采用人工去除灌草层的实验方法,研究了川西亚高山针叶林灌草层丧失对土壤微生物数量和酶活性的影响.结果表明:1)灌草层去除后,土壤细菌和真菌数量以CK(对照)>RH(除草)>RS(除灌),而土壤放线菌数量则以RH>CK>RS;2)灌草层去除后,土壤微生物群落构成发生改变,真菌比例有所下降;3)灌草层去除后,土壤酶活性随之发生变化,各种酶活性均以CK>RH>RS.表明林下灌草层去除,尤其是灌木层去除,导致土壤微生物数量下降、群落构成发生变化以及土壤酶活性下降,从而在一定程度上影响到森林生态系统的物质循环功能.

Jenkinson DS, Brookes PC, Powlson DS ( 2004).

Measuring soil microbial biomass

Soil Biology & Biochemistry, 36, 5-7.

[本文引用: 1]

Kivlin SN, Treseder KK ( 2014).

Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition

Biogeochemistry, 117, 23-37.

DOI:10.1007/s10533-013-9852-2      URL     [本文引用: 4]

Kotroczó Z, Veres Z, Fekete I, Krakomperger K, Tóth JA Lajtha K, Tóthmérész B ( 2014).

Soil enzyme activity in response to long term organic matter manipulation

Soil Biology & Biochemistry, 70, 237-243.

DOI:10.1016/j.soilbio.2013.12.028      URL     [本文引用: 4]

61Litter additions did not affect enzyme activities.61Detritus removal significantly reduced enzyme activities.61Root removal significantly reduced enzyme activities.61Enzyme activity are driven primarily by labile carbon.61Aboveground litter is not a significant source of labile carbon to microbes.

Li XJ, Liu XF, Xiong DC, Lin WS, Lin TW, Shi YW ( 2016).

Impact of litterfall addition and exclusion on soil respiration in

Cunninghamia lanceolata plantation and secondary Castanopsis carlesii forest in mid-subtropical China. Chinese Journal of Plant Ecology, 40, 447-457.

DOI:10.17521/cjpe.2015.0404      URL     [本文引用: 1]

在未来大气CO2浓度升高的背景下,植被净初级生产力的增加将促使森林土壤碳输入增多。凋落物是土壤碳库的重要来源,对土壤呼吸会产生重要影响。为了模拟植物净初级生产力提高、凋落物产量增加情景下凋落物对土壤呼吸和土壤碳库的影响,2013年1月到2014年12月,在福建省三明市陈大镇国有林场,在杉木(Cunninghamia lanceolata)人工林和米槠(Castanopsis carlesii)次生林,通过设置去除凋落物、添加凋落物和对照(保留凋落物,不做任何处理)处理,研究了土壤呼吸和土壤碳库的动态变化。研究发现:土壤含水量在10%–25%范围内,土壤呼吸温度敏感性指数(Q10)随着土壤含水量的增加呈递增趋势,当含水量<10%时,由于干旱胁迫打破了土壤呼吸与温度之间的耦合,改变了Q10值,使得Q10值小于1。土壤呼吸与凋落物输入量呈显著的线性正相关关系,杉木人工林对照和添加凋落物处理及米槠次生林对照处理,土壤呼吸与2个月前的凋落物输入量相关性最好。而米槠次生林添加凋落物处理,土壤呼吸与当月的凋落物输入量相关性最好,不同林分凋落物呼吸对土壤呼吸的贡献率不同,米槠次生林凋落物层呼吸年通量明显大于杉木人工林,分别占各林分土壤总呼吸的34.4%和15.1%,添加凋落物后,杉木人工林和米槠次生林的土壤呼吸速率增加,但添加凋落物处理的土壤呼吸年通量与对照的差值小于年凋落物输入量。因此,在未来全球CO2升高背景下,植被碳储量的增加、凋落物增加并没有引起土壤呼吸成倍增加,更有利于中亚热带地区土壤碳吸存。

[ 李晓杰, 刘小飞, 熊德成, 林伟盛, 林廷武, 施友文 ( 2016).

中亚热带杉木人工林和米槠次生林凋落物添加与去除对土壤呼吸的影响

植物生态学报, 40, 447-457.]

DOI:10.17521/cjpe.2015.0404      URL     [本文引用: 1]

在未来大气CO2浓度升高的背景下,植被净初级生产力的增加将促使森林土壤碳输入增多。凋落物是土壤碳库的重要来源,对土壤呼吸会产生重要影响。为了模拟植物净初级生产力提高、凋落物产量增加情景下凋落物对土壤呼吸和土壤碳库的影响,2013年1月到2014年12月,在福建省三明市陈大镇国有林场,在杉木(Cunninghamia lanceolata)人工林和米槠(Castanopsis carlesii)次生林,通过设置去除凋落物、添加凋落物和对照(保留凋落物,不做任何处理)处理,研究了土壤呼吸和土壤碳库的动态变化。研究发现:土壤含水量在10%–25%范围内,土壤呼吸温度敏感性指数(Q10)随着土壤含水量的增加呈递增趋势,当含水量<10%时,由于干旱胁迫打破了土壤呼吸与温度之间的耦合,改变了Q10值,使得Q10值小于1。土壤呼吸与凋落物输入量呈显著的线性正相关关系,杉木人工林对照和添加凋落物处理及米槠次生林对照处理,土壤呼吸与2个月前的凋落物输入量相关性最好。而米槠次生林添加凋落物处理,土壤呼吸与当月的凋落物输入量相关性最好,不同林分凋落物呼吸对土壤呼吸的贡献率不同,米槠次生林凋落物层呼吸年通量明显大于杉木人工林,分别占各林分土壤总呼吸的34.4%和15.1%,添加凋落物后,杉木人工林和米槠次生林的土壤呼吸速率增加,但添加凋落物处理的土壤呼吸年通量与对照的差值小于年凋落物输入量。因此,在未来全球CO2升高背景下,植被碳储量的增加、凋落物增加并没有引起土壤呼吸成倍增加,更有利于中亚热带地区土壤碳吸存。

Liu XF, Lin TC, Yang Z, Vadeboncoeur MA, Lin CF, Xiong DC, Lin WS, Chen GS, Xie JS, Li YQ, Yang YS ( 2017).

Increased litter in subtropical forests boosts soil respiration in natural forests but not plantations of

Castanopsis carlesii. Plant and Soil, 418, 141-148.

[本文引用: 1]

Liu X, Wang N, Zhao B, Zhang Q, Zhao XH ( 2014).

Effects of carbon input changes on soil enzyme activities in a

Pinus tabulaeformis forest at the Taiyue Mountain. Chinese Journal of Applied and Environmental Biology, 20, 655-661.

[本文引用: 2]

[ 刘星, 王娜, 赵博, 张青, 赵秀海 ( 2014).

改变碳输入对太岳山油松林土壤酶活性的影响

应用与环境生物学报, 20, 655-661.]

[本文引用: 2]

Lu RK 2000).

Soil Agrichemistry Analysis Protocols

.China Agriculture Science Press, Beijing

[本文引用: 1]

[ 鲁如坤 ( 2000).

土壤农业化学分析方法

.中国农业科学出版社,北京.]

[本文引用: 1]

Olander LP, Vitousek PM ( 2000).

Regulation of soil phosphatase and chitinase activity by N and P availability

Biogeochemistry, 49, 175-191.

DOI:10.1023/A:1006316117817      URL     [本文引用: 1]

Soil microorganisms and plants produce enzymes that mineralize organically bound nutrients. When nutrient availability is low, the biota may be able to increase production of these enzymes to enhance the supply of inorganic nitrogen (N) and phosphorus (P). Regulation of enzyme production may be a point where N and P cycles interact. We measured acid phosphatase and chitinase (N-acetyl -D-glucosaminide) activity in soil across a chronosequence in Hawaii where N and P availability varies substantially among sites and long term fertilizer plots had been maintained for over 4 years. Phosphatase activity was high at all sites. Chitinase activity decreased significantly as age and N availability increased across the chronosequence. Phosphorus addition suppressed phosphatase activity at all sites, while N addition increased phosphatase activity at the young, N-limited site. In contrast, N addition repressed chitinase activity only at the N limited young site, and P additions had no effect on chitinase activity. These results suggest that the regulatory relationship between nutrient supply and nutrient mineralization are asymmetric for N and P, and that the differences could help to explain differences observed in patterns of N and P availability.

Qi G, Wang QL, Wang XC, Yu DP, Zhou L, Zhou WM ( 2013).

Soil organic carbon storage in different aged

Larix gmelinii plantations in Great Xing’an Mountains of Northeast China. Chinese Journal of Applied Ecology, 24, 10-16.

URL     [本文引用: 1]

通过样地调查,研究了大兴安岭林区10、15、26和61年生兴安落叶松人工林0~ 40cm土壤有机碳(SOC)贮量,以及原始兴安落叶松林皆伐后营造人工林过程中SOC碳源/汇的变化.结果表明:随林龄的增加,兴安落叶松人工林SOC 贮量呈现先减少后增加的趋势,转折点在林龄15 ~26 a.与原始落叶松林相比,兴安落叶松人工林土壤碳库初期(10 ~26 a)表现为碳源,之后逐渐转变为碳汇,林龄61 a时SOC贮量达158.91· hm-2.兴安落叶松人工林土壤碳库的垂直分布表现为初期下层SOC贮量高于上层,26 a后上层高于下层,说明人为干扰对该地区森林土壤碳库垂直分布产生了强烈的影响.大兴安岭林区兴安落叶松人工林的主伐年龄以>60 a为宜.

[ 齐光, 王庆礼, 王新闯, 于大炮, 周莉, 周旺明 ( 2013).

大兴安岭林区兴安落叶松人工林土壤有机碳贮量

应用生态学报, 24, 10-16.]

URL     [本文引用: 1]

通过样地调查,研究了大兴安岭林区10、15、26和61年生兴安落叶松人工林0~ 40cm土壤有机碳(SOC)贮量,以及原始兴安落叶松林皆伐后营造人工林过程中SOC碳源/汇的变化.结果表明:随林龄的增加,兴安落叶松人工林SOC 贮量呈现先减少后增加的趋势,转折点在林龄15 ~26 a.与原始落叶松林相比,兴安落叶松人工林土壤碳库初期(10 ~26 a)表现为碳源,之后逐渐转变为碳汇,林龄61 a时SOC贮量达158.91· hm-2.兴安落叶松人工林土壤碳库的垂直分布表现为初期下层SOC贮量高于上层,26 a后上层高于下层,说明人为干扰对该地区森林土壤碳库垂直分布产生了强烈的影响.大兴安岭林区兴安落叶松人工林的主伐年龄以>60 a为宜.

Rutigliano FA, Castaldi S, D’Ascoli R, Papa S, Carfora A, Marzaioli R ( 2009).

Soil activities related to nitrogen cycle under three plant cover types in Mediterranean environment

. Applied Soil Ecology, 43, 40-46.

DOI:10.1016/j.apsoil.2009.05.010      URL     [本文引用: 1]

Saiya-Cork KR, Sinsabaugh RL, Zak DR ( 2002).

The effects of long term nitrogen deposition on extracellular enzyme activity in an

Acer saccharum forest soil. Soil Biology & Biochemistry, 34, 1309-1315.

[本文引用: 1]

Sayer EJ, Powers JS, Tanner EVJ ( 2007).

Increased litterfall in tropical forests boosts the transfer of soil CO2 to the atmosphere

PLOS ONE, 2, e1299. DOI: 10. 1371/journal. pone.‌0001299.

DOI:10.1371/journal.pone.0001299      URL     PMID:18074023      [本文引用: 1]

Abstract Aboveground litter production in forests is likely to increase as a consequence of elevated atmospheric carbon dioxide (CO(2)) concentrations, rising temperatures, and shifting rainfall patterns. As litterfall represents a major flux of carbon from vegetation to soil, changes in litter inputs are likely to have wide-reaching consequences for soil carbon dynamics. Such disturbances to the carbon balance may be particularly important in the tropics because tropical forests store almost 30% of the global soil carbon, making them a critical component of the global carbon cycle; nevertheless, the effects of increasing aboveground litter production on belowground carbon dynamics are poorly understood. We used long-term, large-scale monthly litter removal and addition treatments in a lowland tropical forest to assess the consequences of increased litterfall on belowground CO(2) production. Over the second to the fifth year of treatments, litter addition increased soil respiration more than litter removal decreased it; soil respiration was on average 20% lower in the litter removal and 43% higher in the litter addition treatment compared to the controls but litter addition did not change microbial biomass. We predicted a 9% increase in soil respiration in the litter addition plots, based on the 20% decrease in the litter removal plots and an 11% reduction due to lower fine root biomass in the litter addition plots. The 43% measured increase in soil respiration was therefore 34% higher than predicted and it is possible that this 'extra' CO(2) was a result of priming effects, i.e. stimulation of the decomposition of older soil organic matter by the addition of fresh organic matter. Our results show that increases in aboveground litter production as a result of global change have the potential to cause considerable losses of soil carbon to the atmosphere in tropical forests.

Shu YY, Huang JS, Zhao GJ, Bao WK, Pang XY ( 2016).

Effects of a forestation with different tree species on soil enzyme activities and nutrient content in eastern Qinghai-‌Tibetan Plateau, China

Acta Ecologica Sinica, 36, 394-402.

DOI:10.5846/stxb201409221877      URL     [本文引用: 1]

为评价不同树种人工林对土壤酶及养分的影响,选择立地条件和营林方式相同的4种人工林(连香树[CJ]、油松[PT]、落叶松[LK]和华山松[PA])为研究对象,以落叶灌丛(QC)为对照,比较不同树种人工林地土壤酶活性和土壤养分的变化。结果显示:(1)造林降低了土壤酸性磷酸酶、脱氢酶、β-葡萄糖苷酶和过氧化氢酶活性,但人工造林后土壤脲酶活性增加;(2)造林也明显影响了土壤养分,与对照林地相比,除CJ人工林土壤中磷(P)略高外,造林地土壤有机碳(TOC)、氮(N)、水可提取有机碳(WEOC)和氮(WEON)、铵态氮(NH+4-N)和硝态氮(NO-3-N)均降低;(3)不同的人工林树种之间土壤养分及酶活性也存在一定的差异性,CJ和LK人工林土壤C、N、P及相关酶活性明显不同于PT和PA人工林;(4)土壤酶与养分变化有一定的相关性,除转化酶和多酚氧化酶反应较迟钝外,其它酶对环境反应较敏感。综合分析表明,在川西地区选择高密度单一树种造林并没有改善土壤养分和酶活性,在该地区选择落叶或阔叶树种造林可使土壤肥力恢复。

[ 舒媛媛, 黄俊胜, 赵高卷, 包维楷, 李根前, 庞学勇 ( 2016).

青藏高原东缘不同树种人工林对土壤酶活性及养分的影响

生态学报, 36, 394-402.

DOI:10.5846/stxb201409221877      URL     [本文引用: 1]

为评价不同树种人工林对土壤酶及养分的影响,选择立地条件和营林方式相同的4种人工林(连香树[CJ]、油松[PT]、落叶松[LK]和华山松[PA])为研究对象,以落叶灌丛(QC)为对照,比较不同树种人工林地土壤酶活性和土壤养分的变化。结果显示:(1)造林降低了土壤酸性磷酸酶、脱氢酶、β-葡萄糖苷酶和过氧化氢酶活性,但人工造林后土壤脲酶活性增加;(2)造林也明显影响了土壤养分,与对照林地相比,除CJ人工林土壤中磷(P)略高外,造林地土壤有机碳(TOC)、氮(N)、水可提取有机碳(WEOC)和氮(WEON)、铵态氮(NH+4-N)和硝态氮(NO-3-N)均降低;(3)不同的人工林树种之间土壤养分及酶活性也存在一定的差异性,CJ和LK人工林土壤C、N、P及相关酶活性明显不同于PT和PA人工林;(4)土壤酶与养分变化有一定的相关性,除转化酶和多酚氧化酶反应较迟钝外,其它酶对环境反应较敏感。综合分析表明,在川西地区选择高密度单一树种造林并没有改善土壤养分和酶活性,在该地区选择落叶或阔叶树种造林可使土壤肥力恢复。

Sinsabaugh RL, Lauber CL, Weintraub MN, Ahmed B, Allison SD, Crenshaw C, Contosta AS, Cusack D, Frey S, Gallo ME, Gartner TB, Hobbie SE, Holland K, Keeler BL, Powers JS, Stursova M, Takacs-Vesbach C, Waldrop MP, Wallenstein MD, Zak DR, Zeglin LH ( 2008).

Stoichiometry of soil enzyme activity at global scale

. Ecology Letters, 11, 1252-1264.

DOI:10.1111/j.1461-0248.2008.01245.x      URL     PMID:18823393      [本文引用: 1]

Extracellular enzymes are the proximate agents of organic matter decomposition and measures of these activities can be used as indicators of microbial nutrient demand. We conducted a global-scale meta-analysis of the seven-most widely measured soil enzyme activities, using data from 40 ecosystems. The activities of β-1,4-glucosidase, cellobiohydrolase, β-1,4- N -acetylglucosaminidase and phosphatase g 611 soil increased with organic matter concentration; leucine aminopeptidase, phenol oxidase and peroxidase activities showed no relationship. All activities were significantly related to soil pH. Specific activities, i.e. activity g 611 soil organic matter, also varied in relation to soil pH for all enzymes. Relationships with mean annual temperature (MAT) and precipitation (MAP) were generally weak. For hydrolases, ratios of specific C, N and P acquisition activities converged on 1 : 1 : 1 but across ecosystems, the ratio of C : P acquisition was inversely related to MAP and MAT while the ratio of C : N acquisition increased with MAP. Oxidative activities were more variable than hydrolytic activities and increased with soil pH. Our analyses indicate that the enzymatic potential for hydrolyzing the labile components of soil organic matter is tied to substrate availability, soil pH and the stoichiometry of microbial nutrient demand. The enzymatic potential for oxidizing the recalcitrant fractions of soil organic material, which is a proximate control on soil organic matter accumulation, is most strongly related to soil pH. These trends provide insight into the biogeochemical processes that create global patterns in ecological stoichiometry and organic matter storage.

Song XY, Niu SK, Peng B, Ke YQ ( 2006).

A study on species diversity of different regeneration patterns in

Castanopsis carlesii forest in Sanming, Fujian Province. Subtropical Plant Science, 35(2), 31-34.

[本文引用: 2]

[ 宋晓英, 牛树奎, 彭彪, 柯玉琼 ( 2006).

福建三明不同更新方式的米槠林物种多样性研究

亚热带植物科学, 35(2), 31-34.]

[本文引用: 2]

Thomas H, Benjamin S, Icolin P, Kristina M, Paul M, Almut A, Martint S ( 2008).

CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests

Global Change Biology, 14, 1531-1542.

DOI:10.1111/j.1365-2486.2008.01598.x      URL     [本文引用: 1]

Vance ED, Brooks PC, Jenkinson DS ( 1987).

An extraction method for measuring soil microbial biomass

Soil Biology & Biochemistry, 19, 703-707.

DOI:10.1016/0038-0717(87)90052-6      URL     [本文引用: 1]

The effects of fumigation on organic C extractable by 0.5 M K 2SO 4 were examined in a contrasting range of soils. E C (the difference between organic C extracted by 0.5 M K 2SO 4 from fumigated and non-fumigated soil) was about 70% of F C (the flush of CO 2-C caused by fumigation during a 10 day incubation), meaned for ten soils. There was a close relationship between microbial biomass C, measured by fumigation-incubation (from the relationship Biomass C = F C/0.45) and E C given by the equation: Biomass C = (2.64 0.060) E C that accounted for 99.2% of the variance in the data. This relationship held over a wide range of soil pH (3.9 8.0). ATP and microbial biomass N concentrations were measured in four of the soils. The (ATP) (E C) ratios were very similar in the four soils, suggesting that both ATP and the organic C rendered decomposable by CHCl 3 came from the soil microbial biomass. The C:N ratio of the biomass in a strongly acid (pH 4.2) soil was greater (9.4) than in the three less-acid soils (mean C:N ratio 5.1). We propose that the organic C rendered extractable to 0.5 m K 2SO 4 after a 24 h CHCl 3-fumigation ( E C) comes from the cells of the microbial biomass and can be used to estimate soil microbial biomass C in both neutral and acid soils.

Veres Z, Kotroczó Z, Fekete I, Tóth JA, Lajtha K, Townsend K, Tóthmérész B ( 2015).

Soil extracellular enzyme activities are sensitive indicators of detrital inputs and carbon availability

Applied Soil Ecology, 92, 18-23.

DOI:10.1016/j.apsoil.2015.03.006      URL     [本文引用: 4]

Wang ZH, Duan CQ, Hou YP, Yang JS ( 2006).

The relationship of plant species diversity to ecosystem function in relation to soil conservation in semi-humid evergreen forests, Yunnan Province, China

Journal of Plant Ecology (Chinese Version), 30, 392-403.

[本文引用: 1]

[ 王震洪, 段昌群, 侯永平, 杨建松 ( 2006).

植物多样性与生态系统土壤保持功能关系及其生态学意义

植物生态学报, 30, 392-403.]

[本文引用: 1]

Weintraub SR, Wieder WR, Cleveland CC, Townsend AR ( 2013).

Organic matter inputs shift soil enzyme activity and allocation patterns in a wet tropical forest

Biogeochemistry, 114, 313-326.

DOI:10.1007/s10533-012-9812-2      URL     [本文引用: 4]

Xiong YM, Xia HP, Li ZA, Cai XA, Fu SL ( 2008).

Impacts of litter and understory removal on soil properties in a subtropical

Acacia mangium plantation in China. Plant and Soil, 304, 179-188.

[本文引用: 2]

Yang JT, Su ZX, Hu JY, Wu QG, He J ( 2010).

Path analysis for soil organic matters and enzyme activities of

Davidia involucrate Virgin forest. Chinese Journal of Applied and Environmental Biology, 16, 164-167.

[本文引用: 1]

[ 杨敬天, 苏智先, 胡进耀吴庆贵, 贺静 ( 2010).

珙桐林土壤有机质与酶活性的通径分析

应用与环境生物学报, 16, 164-167.]

[本文引用: 1]

Yang WQ, Wang KY ( 2004).

Advances in forest soil enzymology

Scientia Silvae Sinicae, 40(2), 152-159.

DOI:10.11707/j.1001-7488.20040227      URL     Magsci     [本文引用: 3]

<p>土壤酶在土壤生态系统的物质循环和能量流动方面扮演重要的角色。目前,在几乎所有的森林生态系统研究中,土壤酶活性的监测似乎成为必不可少的研究内容。森林凋落物分解过程中的酶活性动态,植被特征与土壤酶活性的关系,土壤微生物与土壤酶的关系,植物-土壤界面的土壤酶,森林土壤质量评价指标的土壤酶及人类活动干扰对森林土壤酶活性的影响等是当前森林土壤酶学的研究重点。由于土壤酶的功能和生态重要性,森林土壤酶研究可能包括:(1 )土壤酶系统分异;(2 )作为森林土壤质量综合评价指标的土壤酶活性;(3)植被动态与土壤酶的关系;(4 )退化森林生态系统的土壤酶活性特征;(5 )人工林土壤酶活性特征;(6 )人类活动对森林土壤酶系统的影响。本文从土壤酶系统分异和生态系统的角度对土壤酶在森林生态系统中的作用和地位进行了综述,这对于加深理解森林生态系统中的物质循环、土壤酶的生态重要性以及森林生态系统退化机理有重要作用</p>

[ 杨万勤, 王开运 ( 2004).

森林土壤酶的研究进展

林业科学, 40(2), 152-159.]

DOI:10.11707/j.1001-7488.20040227      URL     Magsci     [本文引用: 3]

<p>土壤酶在土壤生态系统的物质循环和能量流动方面扮演重要的角色。目前,在几乎所有的森林生态系统研究中,土壤酶活性的监测似乎成为必不可少的研究内容。森林凋落物分解过程中的酶活性动态,植被特征与土壤酶活性的关系,土壤微生物与土壤酶的关系,植物-土壤界面的土壤酶,森林土壤质量评价指标的土壤酶及人类活动干扰对森林土壤酶活性的影响等是当前森林土壤酶学的研究重点。由于土壤酶的功能和生态重要性,森林土壤酶研究可能包括:(1 )土壤酶系统分异;(2 )作为森林土壤质量综合评价指标的土壤酶活性;(3)植被动态与土壤酶的关系;(4 )退化森林生态系统的土壤酶活性特征;(5 )人工林土壤酶活性特征;(6 )人类活动对森林土壤酶系统的影响。本文从土壤酶系统分异和生态系统的角度对土壤酶在森林生态系统中的作用和地位进行了综述,这对于加深理解森林生态系统中的物质循环、土壤酶的生态重要性以及森林生态系统退化机理有重要作用</p>

Yang WQ, Zhong ZC, Tao JP, He WM ( 2001).

Study on relationship between soil enzyme activities and plant species diversity in forest ecosystem of Mt. Jinyun

Scientia Silvae Sinicae, 37(4), 124-128.

DOI:10.11707/j.1001-7488.20010420      Magsci     [本文引用: 1]

[ 杨万勤, 钟章成, 陶建平, 何维明 ( 2001).

缙云山森林土壤酶活性与植物多样性的关系

林业科学, 37(4), 124-128.]

DOI:10.11707/j.1001-7488.20010420      Magsci     [本文引用: 1]

Yang Y, Wang JF, Zhang XY, Li DD, Wang HM, Chen FS, Sun XM, Wen XF ( 2016).

Mechanism of litter and understory vegetation effects on soil carbon and nitrogen hydrolase activities in Chinese fir forests

Acta Ecologica Sinica, 36, 8102-8110.

[本文引用: 2]

[ 杨洋, 王继富, 张心昱, 李丹丹, 王辉民, 陈伏生, 孙晓敏, 温学发 ( 2016).

凋落物和林下植被对杉木林土壤碳氮水解酶活性的影响机制

生态学报, 36, 8102-8110.]

[本文引用: 2]

Yin P, Hu X, Wu Y ( 2015).

Responses of soil enzyme activity on snow cover and litter input in alpine area

Journal of Jinan University, 36, 115-118.

[本文引用: 1]

[ 尹鹏, 胡霞, 吴彦 ( 2015).

川西高原土壤酶活性对雪被覆盖和凋落物添加的响应

暨南大学学报, 36, 115-118.]

[本文引用: 1]

Yuan XC, Lin WS, Pu XT, Yang ZR, Zheng W, Chen YM ( 2016).

Effects of forest regeneration patterns on the quantity and chemical structure of soil solution dissolved organic matter in a subtropical forest

Chinese Journal of Applied Ecology, 27, 1845-1852.

[本文引用: 1]

[ 元晓春, 林伟盛, 蒲晓婷, 杨智榕, 郑蔚, 陈岳民 ( 2016).

更新方式对亚热带森林土壤溶液可溶性有机质数量及化学结构的影响

应用生态学报, 27, 1845-1852.]

[本文引用: 1]

Zhang P, Tian XJ, He XB, Song FQ, Ren LL ( 2007).

Enzyme activities in litter, fragmentation and humus layers of subtropical forests

Ecology and Environment, 16, 1024-1029.

[本文引用: 1]

[ 张鹏, 田兴军, 何兴兵, 宋富强, 任利利 ( 2007).

亚热带森林凋落物层土壤酶活性的季节动态

生态环境学报, 16, 1024-1029.]

[本文引用: 1]

Zhao J ( 2016).

Effects of Nitrogen Addition and Litter on Soil Microorganism and Enzyme Activities. Master degree dissertation, Beijing Forestry University

Beijing.

URL     [本文引用: 1]

随着全球气候变化日益加剧,一些人为或者自然的扰动会导致森林地表凋落物和土壤性状发生变化,进而影响到由微生物介导的土壤有机碳周转和养分循环。然而,由于缺少全面、系统性的实验探索,目前在全球变化研究中对凋落物变化和外源氮输入双重影响下的森林土壤微生物过程和功能的变异性仍认识不足。本研究于2014年4月至2015年8月期间,基于山西省太岳山灵空山林场的凋落物处理和氮素添加双因子交互作用实验样地,通过样品采集和土壤性状化验分析,探究了森林土壤微生物和相关土壤酶对不同凋落物输入和氮添加的响应形式、过程和机理。实验样地于2010年9月建立,位于一个典型油松-辽东栎混交林中;样地布设采用随机区组设计,实验处理包含4种凋落物情形(剔除凋落物、混合凋落物加倍、叶凋落物加倍和枝果凋落物加倍)和3个梯度氮添加处理(不施氮、5g·N·m-2·a-1施氮率和10g·N·m-2·a-1施氮率)。主要研究结果概要总结如下:(1)与剔除凋落物、枝果凋落物加倍处理相比,叶凋落物加倍与混合凋落物加倍处理极显著提高了土壤有机碳、全氮、C:N、铵态氮、总无机氮含量,微生物生物量及其活性,以及p-葡萄糖苷酶、N-乙酰-β-葡萄糖苷酶、酚氧化酶、过氧化物酶活性,同时显著提高细菌总量及革兰氏阴性细菌的相对含量。(2) 5gN·m-2·a-1施氮率处理极显著提高了有机碳含量、革兰氏阴性细菌的相对含量以及脲酶活性,而土壤硝态氮、总无机氮含量则随着施氮率升高而上升。不同梯度氮添加处理对微生物量及活性影响并不显著。(3)不同梯度氮添加及凋落物处理对微生物及酶活性交互影响并不显著。仅在2014年10月,N-乙酰-β-葡萄糖苷酶活性在5gN·m2·a-1施氮率处理配合叶凋落物加倍、混合凋落物加倍处理时显著高于其他处理。综上,混合凋落物加倍、叶凋落物加倍处理显著促进了土壤微生物群落的生长、增加了酶活性,相比之下不同氮添加处理以及不同氮添加与凋落物处理之间的交互作用并不显著。

[ 赵静 ( 2016).

氮添加与凋落物对土壤微生物和酶活性的影响

硕士学位论文, 北京林业大学. 北京.]

URL     [本文引用: 1]

随着全球气候变化日益加剧,一些人为或者自然的扰动会导致森林地表凋落物和土壤性状发生变化,进而影响到由微生物介导的土壤有机碳周转和养分循环。然而,由于缺少全面、系统性的实验探索,目前在全球变化研究中对凋落物变化和外源氮输入双重影响下的森林土壤微生物过程和功能的变异性仍认识不足。本研究于2014年4月至2015年8月期间,基于山西省太岳山灵空山林场的凋落物处理和氮素添加双因子交互作用实验样地,通过样品采集和土壤性状化验分析,探究了森林土壤微生物和相关土壤酶对不同凋落物输入和氮添加的响应形式、过程和机理。实验样地于2010年9月建立,位于一个典型油松-辽东栎混交林中;样地布设采用随机区组设计,实验处理包含4种凋落物情形(剔除凋落物、混合凋落物加倍、叶凋落物加倍和枝果凋落物加倍)和3个梯度氮添加处理(不施氮、5g·N·m-2·a-1施氮率和10g·N·m-2·a-1施氮率)。主要研究结果概要总结如下:(1)与剔除凋落物、枝果凋落物加倍处理相比,叶凋落物加倍与混合凋落物加倍处理极显著提高了土壤有机碳、全氮、C:N、铵态氮、总无机氮含量,微生物生物量及其活性,以及p-葡萄糖苷酶、N-乙酰-β-葡萄糖苷酶、酚氧化酶、过氧化物酶活性,同时显著提高细菌总量及革兰氏阴性细菌的相对含量。(2) 5gN·m-2·a-1施氮率处理极显著提高了有机碳含量、革兰氏阴性细菌的相对含量以及脲酶活性,而土壤硝态氮、总无机氮含量则随着施氮率升高而上升。不同梯度氮添加处理对微生物量及活性影响并不显著。(3)不同梯度氮添加及凋落物处理对微生物及酶活性交互影响并不显著。仅在2014年10月,N-乙酰-β-葡萄糖苷酶活性在5gN·m2·a-1施氮率处理配合叶凋落物加倍、混合凋落物加倍处理时显著高于其他处理。综上,混合凋落物加倍、叶凋落物加倍处理显著促进了土壤微生物群落的生长、增加了酶活性,相比之下不同氮添加处理以及不同氮添加与凋落物处理之间的交互作用并不显著。

Zheng WG, Xue L, Xu PB, Liang LL, Feng HF ( 2011).

Soil response to litter in a

Pinus caribaea woodland. Journal of South China Agricultural University, 32(1), 21-25.

[本文引用: 2]

[ 郑卫国, 薛立, 许鹏波, 梁丽丽, 冯慧芳 ( 2011).

加勒比松林地土壤对凋落物的响应

华南农业大学学报, 32(1), 21-25.]

[本文引用: 2]

Zhu TB, Zhuge YP, Liu SJ, Lou YH ( 2008).

Effects of different fertilizer treatments and water regimes on soil enzyme activities

Shandong Agricultural Sciences,( 3), 74-78.

[本文引用: 1]

[ 朱同彬, 诸葛玉平, 刘少军, 娄燕宏 ( 2008).

不同水肥条件对土壤酶活性的影响

山东农业科学, ( 3), 74-78.]

[本文引用: 1]

/