生态系统多功能性对全球变化的响应: 进展、问题与展望
Responses of ecosystem multifunctionality to global change: progress, problem and prospect
通讯作者: (wangw@urban.pku.edu.cn)
编委: 梁存柱
责任编辑: 李敏
收稿日期: 2020-03-18 接受日期: 2020-10-22
基金资助: |
|
Corresponding authors: (wangw@urban.pku.edu.cn)
Received: 2020-03-18 Accepted: 2020-10-22
Fund supported: |
|
全球变化所包含的土地利用和气候等因素的改变, 将对生产力、养分循环等生态系统功能产生重要的影响。以往研究大多只关注全球变化对单一功能的影响, 即使同时测定多种功能也是进行独立的分析。但由于不同功能间常常存在的权衡或协同关系, 导致基于单个功能的探讨难以反映全球变化对生态系统多功能性(EMF)的影响, 从而限制了人们对于全球变化影响的全面认识和评估。早在2007年, Hector和Bagchi首次量化EMF, 该领域才开始受到广泛关注。在此之后, EMF量化方法的不断完善, 极大地推动了该领域的发展。近年来, 全球变化对EMF的影响也被广泛关注。为系统梳理该领域的研究进展, 该文基于中国知网、ISI Web of Science等当前常用的学术期刊数据库, 检索2007-2020年的相关文献并进行计量分析, 系统归纳出该领域的发展现状。在此基础上, 详细阐述目前关注较多的土地利用变化、气温升高、降水改变以及氮沉降对EMF的影响, 并针对现有研究中存在的问题, 提出未来所需关注的6个方向: (1)规范EMF量化体系; (2)关注全球变化背景下多因子交互效应; (3)不同时间尺度下EMF对全球变化的响应; (4)全球变化背景下多维度、多尺度生物多样性与EMF; (5)全球变化背景下多营养级多样性与EMF; (6)全球变化背景下根系功能性状与EMF。
关键词:
Global change has exerted profound impacts on ecosystem function, such as variations in plant productivity and imbalances in nutrient cycling. Previous studies mostly focused on the impacts of global change on individual functions. However, ecosystems have multiple functions, known as ecosystem multifunctionality (EMF), such that the evaluation based on a single functionality is inappropriate to reflect the overall performance of ecosystems due to the occurrence of trade-offs or synergies among the differential functions. This imposes limitation to our understanding of the effects of global change on ecosystems. Since the initial quantitative study of EMF by Hector and Bagchi in 2007, this field of research has undergone rapid development and the environmental impacts on EMF have received wide attention with intensification of global change. In order to gain systematic understanding of the progress in EMF studies, we conducted a bibliometric analysis for the period 2007-2020 based on CNKI and ISI Web of Science databases. This paper provides a brief description of the development in EMF research and summary of studies concerning the impacts of land use change, warming, changes in precipitation, and nitrogen deposition on EMF. We raised six issues of further attention in future studies of EMF in the context of global change, including (1) requirement of consensus in EMF indices and evaluation method; (2) consideration on the interactive effects among different factors on EMF; (3) elucidation of EMF responses to global change across various temporal scales; (4) understanding of the relationships between multi-dimensional, multi-scale biodiversity and EMF; (5) understanding of the relationships between multiple trophic diversity and EMF; and (6) understanding of the relationships between root functional traits and EMF.
Keywords:
引用本文
张宏锦, 王娓.
ZHANG Hong-Jin, WANG Wei.
全球变化是指对人类的生存与发展有重要的直接或潜在影响, 由自然或人为因素驱动的全球范围内所发生的地球环境变化(曲建升等, 2008), 主要包括大气组成变化、气候变化以及由于人口、经济、技术和社会的压力而引起的土地利用的变化。自工业革命以来, 人类活动排放的大量温室气体已造成剧烈的气候变化(全球气候变暖、酸雨和臭氧层破坏等)。如从1880年到2012年, 全球平均气温升高0.85 ℃, 并且预计到21世纪末, 全球增温幅度将达到 2.6-4.8 ℃ (IPCC,2014)。与气候变暖同步, 全球降水格局也发生了改变(IPCC, 2014)。除气候变化外, 人类活动还引发了土地利用变化和大气氮沉降等, 而这些变化导致了生态系统土壤有机碳储量(Qin et al., 2019)、植被生产力(Stocker et al., 2019)、凋落物分解(Yin et al., 2019)等生态系统功能的显著改变, 进而对人类的生产和生活产生巨大的影响。为了更准确地评估和预测未来全球变化对自然生态系统的影响, 科学合理地制定生态系统管理政策, 开展生态系统功能对全球变化响应的研究显得尤为重要。
近年来, 生态学家们已通过野外调查(Ding et al., 2017)、控制实验(Melillo et al., 2017)、模型模拟(Hufkens et al., 2016)及meta分析(Song et al., 2019)等多种手段和方法来探讨全球变化对不同生态系统功能的影响。例如, 已有研究发现气温升高对北方高纬度地区及青藏高原地区植被净初级生产力(NPP)有促进作用, 而对中低纬度NPP有强烈的抑制作用(朱再春等, 2018)。此外, Song等(2019)整合全球1 119个控制实验的meta分析表明, 降水量增加(+33%)可提高地上NPP, 降水量减少(-33%)则会使其降低, 并且与湿润生态系统相比, 干旱生态系统地上NPP对降水增加更敏感, 而对降水减少相对不敏感。然而, 以往研究大多只关注全球变化对单一功能的影响(van der Plas, 2019), 即使同时测定多种功能也是进行独立的分析(Gamfeldt et al., 2008)。而在自然界中不同功能间常常存在权衡关系(徐炜等, 2016b), 例如, 土壤呼吸速率与植物群落净生长量呈负相关关系(汤永康等, 2019)。因此, 仅考虑某一生态系统功能可能会削弱生态系统提供其他功能的能力, 难以反映生态系统同时维持多种功能的特性。此外, 全球变化往往会同时改变多个支持生态系统功能的因子, 如土壤环境条件和生物多样性等(Giling et al., 2019), 故而其对生态系统多功能性的影响可能会比单个功能的影响更加强烈。在此背景下, 将各类生态系统功能作为整体考虑, 可以全面理解全球变化对生态系统功能的影响, 从而为生态系统可持续管理提供科学依据。
Sanderson等(2004)最早提出生态系统多功能性(EMF)的概念, 即生态系统具有同时提供多种功能的能力。直到2007年, Hector和Bagchi首次量化EMF, 才真正开启对该领域的系统探索。关于全球变化对EMF影响的研究虽起步较晚, 但在近5年受到广泛关注。已有的野外调查及控制实验发现, 增温会提高淡水生态系统EMF (Antiqueira et al., 2018), 而干旱会降低旱地生态系统EMF (Delgado-Baquerizo et al., 2016), 并且气候变化还可通过不同营养级间的级联效应加剧对EMF的影响(Valencia et al., 2018)。此外, 在草地、旱地及水生生态系统均已发现物种丰富度(Perkins et al., 2015)和植物功能多样性(Fry et al., 2018)是调控EMF响应全球变化的重要生物学机制。尽管我国学者徐炜等(2016b)已针对生物多样性与EMF的关系以及EMF测度方法(徐炜等, 2016a)进行了系统的综述, 但对于全球变化对EMF的影响还缺少系统的梳理。因此, 本文首先基于文献计量的结果, 归纳全球变化背景下EMF研究现状, 在此基础上, 详细阐述目前探讨较多的土地利用变化、温度升高、降水改变以及氮沉降对EMF的影响, 最后就当前研究中存在的问题和未来的研究方向进行展望。
1 全球变化背景下的EMF文献计量分析
基于目前常用的学术期刊数据库中国知网和ISI Web of Science, 中文以“生态系统多功能性”为主题词, 英文以“multifunctionality OR multiple function”和“ecosystem”为主题词进行检索。基于文献选择标准: (1)剔除虽测量多种生态系统功能但未计算多功能性指数的研究; (2)剔除与生态系统服务相关的研究; 共筛选出自2007-2020年5月与EMF相关的文献共119篇。按全球每年发文量统计, EMF的研究论文数量呈现快速增长的趋势(图1A), 主要探讨生物多样性与EMF之间的关系, 而涉及全球变化的研究自2015年才开始发展起来, 目前尚处于起步阶段, 论文数量相对较少。按研究区域划分, 无论是EMF总发文量还是涉及全球变化的论文数量, 欧洲均处于首位(图1B), 以瑞士、西班牙为代表, 在该领域开展了大量的研究工作。按生态系统类型划分, 涉及气候变化的研究主要集中于草地和旱地生态系统, 在农田、城市、湿地、潮间带以及海洋等生态系统研究报道较少(图1C)。按研究内容划分, 全球变化背景下的EMF研究主要关注土地利用变化、降水格局改变、温度升高、氮沉降四个方面的内容, 其中降水格局改变集中探讨干旱加剧的影响。此外, 关于酸雨和臭氧层破坏等其他全球变化要素对EMF的影响尚未有报道, 并且对于多个因子间交互作用的研究也相对较少(图1D)。
图1
图1
生态系统多功能性(EMF)文献计量分析。A, 不同年份全球发文量。B, 各大洲发文量。C, 不同生态系统类型的论文数量。D, 不同全球变化内容的研究所占比例。橘色柱代表涉及全球变化的EMF研究, 橘色+蓝色柱表示EMF总发文量。
Fig. 1
Bibliometric analysis of ecosystem multifunctionality (EMF). A,
The number of global studies published during 2007-2020. B, The number of studies published by continents. C, The number of studies conducted by ecosystem types. D, The proportion of studies concerning different global change factors. The orange column represents EMF researches related to global change, and the combination of orange and blue columns represents the total number of EMF publications.
2 全球变化对EMF的影响
全球变化对EMF的影响可通过两种途径(图2), 即生物和非生物途径。一方面, 通过非生物途径, 如改变环境温度、土壤水分以及土壤pH等物理或化学因素影响EMF (Maestre et al., 2012; Jing et al., 2015; Delgado-Baquerizo et al., 2016)。另一方面, 也可通过生物途径, 如改变生物多样性、生物体的生理机能及行为表现等作用于EMF (Perkins et al., 2015; Antiqueira et al., 2018)。同时, 生物和非生物路径彼此间还可相互作用, 共同对EMF产生影响(图2)。目前, 有关全球变化对EMF影响的研究主要集中在土地利用变化、温度升高、降水改变和氮沉降(图1D), 因此, 本文主要关注这四个方面的研究进展。
图2
2.1 土地利用变化对EMF的影响
由于人口、经济、技术和社会压力而引起的土地利用变化是全球变化的重要内容(Klaus et al., 2018)。目前, 土地利用变化导致的生物多样性改变是EMF的重要影响因素(Wen et al., 2020), 这是由于土地利用变化会影响能够更有效维持生态系统过程的物种组成(Eisenhauer et al., 2018)。例如, Allan等(2015)基于150个不同土地利用强度的农业草地样点, 采用单阈值法量化14种生态系统功能指标(地上生物量、牧草质量、土壤有机碳含量、根系生物量、根系分解能力、土壤硝化速率、土壤磷保留指数、丛枝菌根真菌菌丝长度、土壤团聚体、害虫防治、病原菌调控、授粉能力、休闲娱乐及保护价值), 发现土地利用变化造成的植物多样性降低以及植物功能群组成的改变是影响EMF变化的最重要因素。随后, Soliveres等(2016)利用同样的草地样点, 进一步探讨了常见种和稀有种多样性与EMF (14种生态系统功能指标同上)之间的关系。发现地上稀有种与高水平EMF的维持密切相关, 而常见种的作用相对较小, 并且常见种的作用随着土地利用强度的增加而减弱。因此, 未来研究区分不同物种的作用和地位是十分必要的。最近, 有研究还发现土地利用变化造成的植物功能性状改变也是调控EMF的重要因素(Peco et al., 2017), 这是由于植物功能性状对土地利用变化高度敏感(Chillo et al., 2018), 具有不同功能性状的植物通过生态位互补效应增强了资源的获取和利用能力(Díaz et al., 2007), 进而影响多种生态系统功能。此外, 土地利用变化带来的地上植物群落的改变还会对土壤微生物多样性及群落组成等产生深刻影响, 而大量的研究已表明土壤微生物直接参与土壤地球化学循环过程, 可决定生态系统功能(van der Heijden et al., 2008)。因此, 植物与土壤微生物间的互作关系也会对EMF产生强烈的影响。Wen等(2020)选取海南岛热带森林15个不同土地利用强度的样点, 采用平均值法和单阈值法量化5种生态系统功能指标(土壤有机碳含量、有效氮含量、有效磷含量、土壤导水率、土壤含水量), 发现土地利用强度加剧带来的植物多样性降低通过降低土壤细菌多样性, 间接削弱生态系统维持多种功能的能力, 强调植物与土壤微生物间的级联效应在调控土地利用变化对EMF影响中起到的重要作用。除改变生物多样性外, 土地利用变化还将导致生态系统的生境均质化, 使得生境多样性降低, 进而对生态系统功能产生负面影响。Alsterberg等(2017)首次在海岸生态系统报道生境多样化可以维持更高水平的EMF (包括总初级生产力、固氮能力、反硝化能力、溶解无机氮吸收能力), 这是由于多样化的生境可通过结构上的互补性和生境之间的物质和能量交换来彼此促进, 且生境多样化对EMF的直接和间接影响会随季节发生显著变化。这意味着除物种多样性外, 生境多样化对高水平EMF的维持同样具有重要的作用。然而, 该研究仅是将不同生境的原状样品(包括地上和地下部分)在温室内进行混合搭配培养, 来模拟生境多样化的效果, 可能与野外真实的环境有所差异, 相关结论仍具有一定的局限性。
2.2 温度升高对EMF的影响
Maestre等(2012)通过采集全球旱地生态系统224个样点数据, 测定了14种生态系统功能指标(土壤有机碳含量、β-葡萄糖苷酶活性、2种土壤糖类含量、土壤芳香类和酚类化合物含量、硝酸根离子含量、铵根离子含量、土壤总氮含量、潜在氮转化速率、土壤氨基酸含量、土壤蛋白含量、有效磷含量、磷酸酶活性), 并用平均值法量化EMF。发现在更寒冷的地区EMF更高, 并且随年平均气温(变幅: -1.8-27.8 ℃)的增加而降低。这同温度升高引起旱地生态系统水分限制加剧, 从而抑制其多功能性的发挥有关。而在青藏高原高寒草地生态系统, Jing等(2015)通过60个样点的样带调查, 测定了8种生态系统功能指标(地上生物量、根系生物量、土壤有机碳含量、土壤总氮含量、土壤有效氮含量、土壤总磷含量、植物氮含量、植物磷含量), 采用单功能法、平均值法和多阈值法量化EMF, 发现年平均气温(变幅: -5.2-4.7 ℃)对青藏高原高寒草地的EMF无显著影响。这是由于该区域温度的日变化很大, 往往接近季节变化, 导致该地区的物种拥有广泛的温度适应范围, 使得其可能对温度变化不敏感, 故而温度对生态系统多功能的影响较小(Jing et al., 2015)。这些结果也意味着温度对EMF的影响可能取决于生态系统类型。此外, 有研究发现增温可通过不同营养级间的级联效应加剧对EMF的影响, Valencia等(2018)选取了与碳、氮、磷循环相关的7种生态系统功能指标(土壤有机碳含量、总氮含量、铵根离子含量、硝酸根离子含量、有效磷含量、β-葡萄糖苷酶活性、磷酸酶活性), 并采用平均值法和多阈值法量化EMF。结果表明, 增温3 ℃将会选择更大(植株高度增加)、更高产(比叶面积增加)的植物, 进而提高土壤的碳输入, 土壤碳含量的增加又会促进细菌的繁殖与增长, 进一步增加以捕食细菌为主的土壤线虫的多度, 最终对EMF产生影响。这表明未来纳入更多的营养级可以帮助我们提高解释复杂生态系统过程对气候变化响应的能力。
相较于陆地生态系统, 目前在水生生态系统开展的研究多为小型模拟实验。由于脱离原位实际的环境条件, 相关结论仍具有一定的局限性。Perkins等(2015)的水族箱模拟实验通过控制物种丰富度(1-4种大型底栖无脊椎动物)和不同水温变化(5、10和15 ℃), 并同时测定5种生态系统功能指标(叶片分解速率、藻类消耗、细颗粒有机物生产、铵根离子浓度、藻类生物量), 采用多阈值法量化EMF。结果发现, 在不同温度下, 当关注单一的生态系统功能时, 物种多样性的作用是微弱的, 而当同时考虑多种功能时, 物种多样性的作用表现得十分强烈, 这意味着以往基于单个功能的研究可能低估了物种多样性对生态系统功能的重要性。然而, 该研究仅为短期实验, 而物种在长期演替过程中可能会对增温产生热适应(出现耐高温物种), 使得该结果可能会高估温度对EMF的影响。随后, Antiqueira等(2018)通过小型淡水系统增温实验, 测定包括藻类初级生产力、铵根离子浓度、混浊度、有色可溶性有机物、碎屑分解、溶解氧含量和15N丰度7种功能指标, 发现增温(+2和+4 ℃)可直接通过促进生物化学反应速率和代谢速率显著提高EMF, 而通过调控生物多样性来间接影响EMF的路径并不显著, 说明除生物多样性外, 生物体的生理机能在调控增温对EMF影响中同样重要。但由于该研究在实验过程中保持水分恒定, 未考虑水分蒸发加剧带来的负面影响, 相关结论仍具有一定的局限性。
需要强调的是, 由于不同研究关注不同类型以及不同数量的生态系统功能, 使得量化得到的EMF指数之间难以进行比较, 这意味着目前研究结果是在选取特定功能的背景下得到的, 其是否具有普适性仍存在很大的不确定性。因此, 未来亟须规范多功能性指数量化体系, 提高不同研究间的可比性。
2.3 降水改变对EMF的影响
早期通过野外观测实验发现, 水分增加会提高全球旱地EMF (Maestre et al., 2012)。并且, 相较于温度和养分, 降水改变对旱地EMF的作用更加强烈(Delgado-Baquerizo et al., 2017)。随着全球气温升高、降水格局改变, 导致干旱发生变得越来越普遍(Choat, 2013), 特别是在干旱、半干旱地区, 干旱发生的频率呈现逐渐上升的趋势(代永欣等, 2015), 这将对水分受限区域EMF的维持产生巨大的威胁。已有研究表明, 干旱一方面可通过改变土壤理化性质等对EMF产生直接的负效应(Yan et al., 2020), 另一方面其可通过改变生物多样性, 尤其是植物功能多样性来间接调控EMF (Fry et al., 2018)。例如, Valencia等(2015)沿干旱梯度对西班牙旱地生态系统45个样点进行调查, 并测定了13种功能指标(土壤有机碳含量、总氮含量、总磷含量、有效氮含量、有效磷含量、无机磷含量、磷酸酶活性、β-葡萄糖苷酶活性、2种土壤糖类含量、净矿化速率、土壤蛋白含量、土壤氨基酸含量), 评估干旱程度对地中海地区植物群落结构和EMF的影响; 结果发现干旱将导致EMF降低, 而植物功能多样性, 如个体大小(植株高度或侧向扩展)和叶片属性(叶片干物质含量和比叶面积)是驱动旱地EMF响应干旱的主要因素, 并且可以提高EMF对干旱的抵抗能力, 这意味着在干旱频发的缺水地区, 植物通过调控个体空间分布特征及叶片策略等功能性状, 可减缓干旱对EMF产生的负面影响。有研究认为探讨干旱对EMF间接影响时, 仅考虑某一维度多样性是不全面的(Yan et al., 2020), 因为不同维度多样性(物种多样性、功能多样性、谱系多样性)均已被发现与EMF呈现显著的相关性(Luo et al., 2018; Ren et al., 2018)。因此, 有必要区分不同维度多样性在调节干旱对EMF影响中的相对贡献。基于此问题, Yan等(2020)沿内蒙古草地干旱梯度共设置194个样点, 同时测定了8种生态系统功能指标(地上生产力、土壤有机碳含量、总氮含量、总磷含量、有效氮含量、有效磷含量、土壤碳氮比、氮磷比), 并结合不同维度多样性, 综合评估了干旱对内蒙古草地EMF的影响。结果发现, 植物功能多样性(植株高度和叶片性状)对于EMF的解释度最高, 而谱系多样性的作用最小。此外, 干旱通过直接效应以及植物功能多样性介导的间接效应, 可显著降低EMF。该研究强调了植物功能多样性在调节干旱对EMF影响中起到的重要作用。然而, 以往研究大多只关注植物地上部分的功能性状, 由于植物叶片与根系分别处在不同的环境中, 所受的环境选择压力会有所不同, 使得地上与地下部分具有不同的资源获取策略以及微生物关联等(Bardgett et al., 2014; 雷羚洁等, 2016)。因此, 当试图用植物功能性状来描述或预测EMF时, 同时考虑地上和地下部分, 会加深我们对干旱影响的理解。针对此问题, Fry等(2018)通过控制实验构建不同功能性状的草地植物群落, 并在建立2年后进行干旱处理, 发现结合地上和地下功能性状分析可提高干旱对EMF影响的解释率, 并且EMF对干旱的抵抗力取决于根系深度, 表明根系功能性状对EMF维持具有重要的作用。
此外, 在干旱严重的地区, 植物覆盖度会显著降低, 以苔藓、地衣和蓝藻细菌为优势种的土壤群落(生物结皮)占据干旱区的大部分区域, 其对缓解干旱影响的重要作用, 也被陆续报道(Liu et al., 2017)。例如, Delgado-Baquerizo等(2016)沿干旱梯度对40个样点进行采样, 并测定涉及碳、氮、磷循环的5种功能指标(土壤有机碳含量、总氮含量、无机磷含量、β-葡萄糖苷酶活性、磷酸酶活性), 发现与裸地相比, 以苔藓为优势种的生物结皮对EMF的正效应随干旱程度的增加而逐渐增强, 并且其主要通过调控土壤真菌和细菌的多度来驱动。尽管该研究发现生物结皮对EMF具有促进作用, 但并不意味着其对单个功能都具有显著的正效应, 在所测定的5种生态系统功能中, 只有2种功能指标(β-葡萄糖苷酶活性和磷酸酶活性)对生物结皮覆盖具有正向响应, 其余3种功能均无显著变化(Delgado-Baquerizo et al., 2016)。这表明仅仅关注多功能性指数可能会模糊或掩盖单个功能的响应。因此, 建议未来研究在探讨气候变化对EMF影响的同时, 也应关注每个功能单独的响应, 这样才能更加全面和准确地评估气候变化带来的影响(Giling et al., 2019)。
2.4 氮沉降对EMF的影响
自工业革命以来, 由于化石燃料和化学肥料消耗的增加, 导致全球范围内大气氮沉降速率急剧上升(Galloway et al., 2004)。当前全球大部分地区平均氮沉降速率为10 kg·hm-2·a-1 (Dentener et al., 2006), 预计到2050年全球氮沉降速率将翻倍, 有些地区甚至可高达50 kg·hm-2·a-1 (Galloway et al., 2004)。过量的氮输入将会增加陆地生态系统土壤氮的有效性, 导致土壤酸化, 影响植物和土壤微生物多样性(付伟等, 2020), 进而影响EMF。Liu等(2017)基于微宇宙实验, 测定旱地生态系统15种功能指标(土壤有效性氮含量、潜在硝化速率、微生物生物量氮含量、溶解有机碳含量、微生物生物量碳含量、土壤CO2、CH4以及N2O通量、β-葡萄糖苷酶活性、α-葡萄糖苷酶活性、β-D-纤维二糖水解酶活性、β-木糖苷酶活性、亮氨酸氨基肽酶活性、β-N-乙酰葡糖氨糖苷酶活性、磷酸酶活性), 并采用平均值法量化EMF。发现氮添加(2 g·m-2·a-1)通过改变土壤主要细菌类群的相对优势度对EMF产生负面影响。驱动EMF的主要细菌类群δ-变形菌门(δ-Proteobacteria)和拟杆菌门(Bacteroidetes)对氮富集十分敏感, 它们直接参与土壤养分循环, 故而其相对丰度的变化会对EMF产生重要影响。然而, 在不同生态系统类型中, 土壤微生物优势类群在调节EMF响应氮沉降中表现的作用并不一致。例如, Chen等(2020)通过在农田生态系统开展的控制实验, 测定18种生态系统功能指标(包括土壤总碳含量、土壤总氮含量、土壤碳氮比、土壤pH、土壤电导率、土壤基础呼吸速率、潜在的氨氧化作用、反硝化酶活力、β-葡萄糖苷酶活性、β-N-乙酰葡糖氨糖苷酶活性、脲酶活性、磷酸酶活性, 与碳固持、碳分解、反硝化、硝化、磷循环、硫循环相关的70种功能基因丰度), 采用平均值法、单阈值法和多阈值法量化EMF。发现尿素添加(65.25和130.50 kg·hm-2·a-1)会降低EMF, 并且土壤真菌和细菌多样性是驱动农田生态系统多种功能维持的重要因素。但有趣的是, 蓝细菌(Cyanobacteria)和球囊菌门(Glomeromycota)等稀有类群被认为是EMF的主要驱动者, 而不是变形菌门(Proteobacteria)和子囊菌门(Ascomycota)等优势类群。这可能是由于稀有物种提供的功能是十分脆弱的, 一旦这些物种消失, 它们提供的功能也将随之丧失。因此, 未来研究在关注土壤微生物优势类群变化的同时, 稀有物种的作用也不容忽视。除此之外, 有研究在草地生态系统还发现氮添加对EMF的影响存在一定的阈值。Cui等(2020)在草甸草原开展的微宇宙实验, 通过设置不同的氮添加量(0、10、20、40 g·m-2·a-1), 并采用平均值法量化7种生态系统功能指标(α-1,4-葡萄糖苷酶活性、β-1,4-葡萄糖苷酶活性、β-1,4-木糖苷酶活性、β-D-纤维二糖水解酶活性、亮氨酸氨基肽酶活性、β-1,4-N-乙酰葡糖胺糖苷酶活性、碱性磷酸酶活性), 发现氮添加速率≤10 g·m-2·a-1时, 可显著提高EMF, 超过这一阈值, 氮添加对EMF的促进作用逐渐被削弱。该研究还发现磷添加可以调节EMF对氮添加的响应, 并且当氮、磷添加量为20和10 g·m-2·a-1时, 可使EMF最大化, 同时, 土壤氮磷比和植物多样性是驱动该生态系统类型EMF变化的最主要因素。然而, 目前关于氮沉降对EMF影响的探讨大多基于室内的微宇宙实验和野外高剂量的土壤氮添加实验, 前者与自然界的真实环境会有所差异, 而后者又同大气氮沉降方式和沉降量具有很大的不同。未来建议结合当地的氮沉降水平, 开展冠层氮添加野外控制实验来更为真实地预测EMF对全球氮沉降的响应。
3 问题和展望
3.1 EMF量化体系的完善
目前EMF研究中最主要的问题之一就是选用的生态系统功能指标不一致, 使得不同研究量化出的多功能性指数缺乏可比性。而且对于多功能性概念的混淆, 导致该问题更加凸显。Manning等(2018)重新定义了生态系统多功能性, 将其分为生态系统多功能性和生态系统多重服务性。从生态系统多功能性角度出发, 指标的选择应该涉及营养级和环境之间能量和物质流动速率的过程, 并且应具备客观性, 而不应该主观地从人类价值角度去衡量(生态系统多重服务性)。因此, 建立一套客观的、公认的指标体系是目前亟须解决的问题。本文利用已发表的EMF文献, 汇总了当前较为常用的功能指标, 涉及物质循环和能量流动或是物质和能量储存(图3)。根据统计结果, 发现涉及碳、氮循环的功能指标最多, 而涉及磷循环和水循环的指标相对较少(图3F)。在不考虑期刊影响因子差异的情况下, 我们筛选出文献使用比例大于10%的指标, 涉及碳循环的分别为土壤有机碳含量、地上生物量、β-1,4-葡萄糖苷酶活性、地下生物量、凋落物分解速率(图3A); 涉及氮循环的分别是土壤总氮含量、土壤硝酸根离子含量、铵根离子含量、土壤有效氮含量以及植物氮含量(图3C); 涉及磷循环的分别为土壤磷酸酶活性、土壤有效磷含量、土壤总磷含量(图3E); 若考虑期刊影响因子差异时, 单从重要的综合期刊(如Nature、Science、Nature Communication、Nature Ecology & Evolution等)上发表的文章来看, 涉及碳、氮、磷循环的常用指标种类(文献使用比例大于10%)也并未发生变化(图3A、3C、3E)。目前EMF研究对水循环关注较少, 涉及的指标主要是土壤含水量和土壤持水能力, 但使用频次相对较低(图3E)。此外, 我们还筛选出文献使用比例为5%-10%的指标(图3B、3D、3E)。基于以上统计结果, 未来研究可参考这些常用指标来量化EMF, 并在此基础上逐渐发展出更多公认的指标类型, 消除不同研究间独立的指标选取标准, 从而提高研究结果的可比性。
图3
图3
生态系统功能指标及使用情况。A, 碳循环, 文献使用比例大于10%的指标, 主图为不考虑期刊影响因子, 右上角小图为考虑影响因子。AGB, 地上生物量; BG, β-1,4-葡萄糖苷酶; BGB, 地下生物量; LD, 凋落物分解; SOC, 土壤有机碳。B, 碳循环, 不考虑期刊影响因子时文献使用比例在5%-10%的指标。AC, 芳香族化合物; AMF, 丛枝菌根真菌; BC, β-D-纤维二糖苷酶; DOC, 溶解有机碳; He, 己糖; MBC, 微生物生物量碳; Pe, 戊糖; Ph, 酚类化合物; SOM, 土壤有机质; SR, 土壤呼吸。C, 氮循环, 文献使用比例大于10%的指标, 主图为不考虑期刊影响因子, 右上角小图为考虑影响因子。AvN, 有效氮; NH4+, 铵根离子; NO3-, 硝酸根离子; PN, 植物氮含量; STN, 土壤总氮。D, 氮循环, 不考虑期刊影响因子时文献使用比例在5%-10%的指标。AA, 氨基酸; AR, 氨化速率; LAP, 亮氨酸氨基肽酶; NAG, β-1,4-N-乙酰葡糖胺糖苷酶; NMR, 氮矿化速率; NR, 硝化速率; SP, 土壤蛋白; Ur, 脲酶。E, 磷循环和水循环, 主图为不考虑期刊影响因子时文献使用比例大于5%的指标, 右上角小图为考虑影响因子时文献使用比例大于10%的与磷循环相关的指标。AvP, 有效磷; Ps, 磷酸酶; PP, 植物磷含量; SIP, 土壤无机磷; SM, 土壤含水量; STP, 土壤总磷; SWHC, 土壤持水能力。F, 涉及碳、氮、磷、水循环的所有指标所占比例。
Fig. 3
Indicators of ecosystem function and their applications in literature. A, Carbon cycle indicators with the proportion of literature appearance greater than 10%. The main panel displays values without considering journal impact factor, and the insert displays values considering the journal impact factor. AGB, aboveground biomass; BG, β-1,4-glucosidase; BGB, belowground biomass; LD, litter decomposition; SOC, soil organic carbon. B, Carbon cycle indicators with the proportion of literature appearance between 5% and 10%, without considering journal impact factor. AC, aromatic compounds; AMF, arbuscular mycorrhiza fungi; BC, β-D-cellobiosidase; DOC, dissolved organic carbon; He, hexose; MBC, microbial biomass carbon; Pe, pentose; Ph, phenolic compounds; SOM, soil organic matter; SR, soil respiration. C, Nitrogen cycle indicators with the proportion of literature appearance greater than 10%. The main panel displays values without considering journal impact factor, and the insert displays values considering journal impact factor. AvN, available nitrogen; NH4+, ammonium; NO3-, nitrate; PN, plant nitrogen content; STN, soil total nitrogen. D, Nitrogen cycle indicators with the proportion of literature appearance between 5% and 10%, without considering journal impact factor. AA, amino acid; AR, ammoniation rate; LAP, leucine aminopeptidase; NAG, β-1,4-N-acetylglucosaminidase; NMR, nitrogen mineralization rate; NR, nitrification rate; SP, soil protein; Ur, urease. E, Phosphorus cycle and water cycle indicators with the proportion of literature appearance greater than 5%. The insert displays values of the phosphorus cycle indicators with the proportion of literature appearance greater than 10%, considering journal impact factor. AvP, available phosphorus; PP, plant phosphorus content; Ps, phosphatase; SIP, soil inorganic phosphorus; SM, soil moisture; STP, soil total phosphorus; SWHC, soil water holding capacity. F, Percentage of all indicators related to carbon, nitrogen, phosphorus and water cycles.
图4
图4
生态系统多功能性指标数量选择统计。饼图红色部分代表指标数量为5-8个的EMF研究占总研究的百分比。
Fig. 4
Statistics on the numbers of indicators selected in studies of ecosystem multifunctionality in literature. The red-colored portion of the pie chart represents the percentage of EMF studies that used 5-8 indicators.
多功能性量化的方法仍存在一定的缺陷, 目前平均值法和多阈值法为常用的两种方法, 但这些方法的基本假设是各功能之间所发挥的作用是同等重要的, 均未考虑功能之间的权重问题(Byrnes et al., 2014; 徐炜等, 2016a), 这可能会导致同一维度生态系统功能的重复计算。为弥补这一缺陷, Manning等(2018)提出了聚类阈值法(cluster-threshold approach), 即在使用多阈值法前, 对生态系统功能进行聚类, 赋予各个功能客观的权重。例如, 测定的所有功能聚为5类, 则每类功能所占的权重均为20%, 每一类功能所包含的各个功能具有相同的权重, 如一类功能中包括4个功能, 则这4个功能分别占25%的权重(Manning et al., 2018)。相较于多阈值法计算公式, 该方法增加了一个权重系数αi, 使得计算出的多功能性指数更加准确。
总之, 只有解决上述EMF研究中的“瓶颈问题”, 才能从根源上减少多功能计算的不确定性, 才有利于研究间的对比分析, 从而更加深入地分析气候变化对EMF的影响。
3.2 全球变化背景下多因子之间的交互作用对EMF的影响
全球变化涉及多项因子(氮沉降、增温、降水格局等)的同步改变, 但目前研究大多是从单一的全球变化因子来探讨其对于EMF的影响, 而对多个因子同时改变及其交互作用对EMF的影响仍不清楚, 这极大影响对全球变化效应的准确评估。例如, 土壤氮的可利用性改变对生态系统功能的影响会受到水分的调控。干湿状况一方面会影响土壤微生物群落组成(Ochoa-Hueso et al., 2018)。另一方面, 随着水分减少加剧, 土壤溶质、氧气以及微生物和底物的接触能力会变差(Canarini et al., 2017)。因此, 土壤水分状况改变会导致这些生物和非生物因素的变化, 从而影响生态系统功能对氮可利用性改变的响应。近年在旱地生态系统开展的一项研究发现, 施氮对EMF的作用随着降雨频率的增加而逐渐增强(Liu et al., 2017), 这意味着若不考虑降水改变, 将会低估施氮对EMF的影响。此外, Robroek等(2017)通过结合植物功能群移除实验(分别移除禾本科、非禾本科和金发藓(Polytrichum commune), 以及同时移除以上3种)和干旱处理, 模拟干旱导致的沼泽植物群落的改变如何影响EMF。结果表明, 干旱降低了EMF, 并且植物功能群的移除加剧了这种负效应, 意味着干旱带来的植物群落组成的改变并不能够缓解干旱对EMF产生的负效应。因此, 仅考虑单一全球变化因子对EMF的影响是不全面的, 未来需要开展更多的多因子交互实验, 来准确评估全球变化对EMF产生的作用。
3.3 不同时间尺度下EMF对全球变化的响应
全球变化对生态系统功能的影响往往是渐进的(Elmendorf et al., 2012), 例如在温带草地生态系统, 短期增温对植物群落组成无显著影响(Hoeppner & Dukes, 2012), 但在长期增温条件下可通过改变优势物种动态(Dieleman et al., 2015)和促进植物入侵(Walther et al., 2009)等来改变植物群落组成。此外, 长期增温还会导致土壤微生物产生热适应(Dacal et al., 2019), 使其生理代谢水平发生改变, 这些过程都意味着增温对EMF的影响在不同时期内可能是不同的。同时, 外界干扰引起的生态系统功能的权衡和协同关系也会随着时间发生显著的改变(Renard et al., 2015)。因此, 开展时间序列上的对比研究是十分必要的。而目前已有的研究往往关注基于某一时间点的瞬时状态(Tresch et al., 2019; Wang et al., 2019), 并没有关注时间尺度上的动态变化, 这可能会高估全球变化对EMF的影响。未来需开展长期野外观测实验来消除时间尺度上的不确定性。
3.4 全球变化背景下多维度、多尺度生物多样性与EMF
全球变化不仅会影响生物多样性和EMF, 还可调节生物多样性与EMF之间的关系(Jing et al., 2015)。现阶段研究大多关注物种多样性与EMF的关系, 虽然其他维度多样性(功能多样性、谱系多样性)与EMF关系的研究也在逐渐增多, 但同时考虑全球变化因素的研究相对较少。已有研究表明, 全球变化背景下功能多样性和谱系多样性对EMF同样具有重要影响。例如, 植物功能多样性能够提高草地EMF对干旱的抵抗力(Fry et al., 2018), 并且结合功能多样性与谱系多样性能够更好解释EMF的变异(Le Bagousse-Pinguet et al., 2019), 这表明全球变化背景下考虑不同维度的生物多样性对EMF的影响是十分必要的。此外, 生物多样性还包括α、β和γ三个尺度的多样性, α多样性主要指生境内的多样性, β多样性则强调沿着环境梯度不同生境群落之间物种组成的相异性, 也被称为生境间的多样性, 而γ多样性一般用于描述景观或区域较大尺度的多样性(杨婧等, 2014)。现阶段大量的研究关注α多样性, 即生境内多样性与EMF之间的关系, 忽视了其他尺度多样性对EMF维持的重要作用。越来越多的研究强调, 只有α、β多样性同时达到最大化时, 才有利于高水平EMF的维持(Hautier et al., 2018。即使群落内部拥有较高的α多样性, 生物群落的同质化(即β多样性降低)同样会使EMF降低(van der Plas et al., 2016)。在内蒙古草地的一项研究也证实, 植物功能性状的β多样性在调节干旱对草地多功能性影响中起到了重要作用(Yan et al., 2020)。因此, 以往只关注单一维度或单一尺度多样性与EMF间的关系是不全面的, 未来研究应同时考虑多维度、多尺度生物多样性与EMF间的关系(图5)。
图5
图5
全球变化背景下多维度、多尺度生物多样性与生态系统多功能性的关系。
Fig. 5
Relationships between ecosystem multifunctionality and multi-dimensional or multi-scale biodiversity under the scenario of global change.
3.5 全球变化背景下多营养级多样性与EMF
现阶段研究主要针对植物多样性(Maestre et al., 2012)、土壤微生物多样性(Wagg et al., 2014)以及二者间的相互关系(Jing et al., 2015)对EMF的影响进行探讨, 发现它们与多功能性都呈现良好的相关关系。然而, 越来越多的研究表明, 考虑更多营养级时(蚯蚓、土壤线虫、地上昆虫等), 不同营养级对EMF的作用可通过食物网进行传递(Schuldt et al., 2018),使得生物多样性与多功能性的关系变得更加强烈(Lefcheck et al., 2015; Wang et al., 2019), 这意味着以往只考虑单一营养级多样性可能会低估生物多样性对EMF的影响。此外, Valencia等(2018)发现气候变化可通过营养级间的级联效应加剧对EMF的影响, 表明若不考虑不同营养级间级联效应可能会低估气候变化对EMF造成的影响。由此, 结合上述提到的不同维度和尺度多样性, 我们建立了未来应当考虑的研究框架(图5), 希望能够更加全面地去评价全球变化背景下生物多样性与EMF间的关系。
3.6 全球变化背景下根系功能性状与EMF
目前研究已发现植物地上部分功能性状, 例如比叶面积、植株高度等(Valencia et al., 2015)在EMF响应气候变化过程中扮演重要角色。除地上部分外, 植物根系的功能性状, 如比根长、分枝比、真菌侵染率等, 也会通过调控植物根系的生长及养分的吸收, 影响生态系统的物质循环和能量流动(雷羚洁等, 2016)。相较于植物地上部分, 根系的结构和功能存在很大的异质性, 例如根的末端具备吸收功能, 而根基部具有贮藏、运输、支持等功能, 而且大多数根系都会与菌根真菌形成共生关系(McCormack et al., 2015)。这些因素都增加了根系功能性状研究的复杂性。此外, 由于植物叶片与根系处在不同的环境中(大气和土壤), 所受的环境选择压力也会有所不同, 导致它们之间的功能性状可能不具有协同性。例如, 比叶面积和比根长具有微弱的关联(Chen et al., 2013), 这意味着以往地上部分功能性状与EMF关系的研究可能并不适用于根系。而在全球变化背景下, 温度升高、降水格局改变等因素已对根系生长、根系分布、根系形态等产生重要的影响(Bardgett et al., 2014)。例如, 干旱导致的土壤水分亏缺会刺激根系向下生长, 根长增加, 以便向深层土壤吸收更多的水分(邹慧等, 2016)。部分植物也会通过减少根系的次级分枝和根系重叠、增加根系连接长度等来适应干旱胁迫(单立山等, 2012)。此外, 一项meta分析的结果表明, CO2浓度升高(自340-380
参考文献
Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition
DOI:10.1111/ele.12469
PMID:26096863
[本文引用: 1]
Global change, especially land-use intensification, affects human well-being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real-world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land-use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land-use objectives. We found that indirect land-use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land-use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land-use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast-growing plant species, strongly increased provisioning services in more inherently unproductive grasslands. © 2015 The Authors Ecology Letters published by John Wiley & Sons Ltd and CNRS.
Habitat diversity and ecosystem multifunctionality-The importance of direct and indirect effects
DOI:10.1126/sciadv.1601475 URL [本文引用: 1]
Warming and top predator loss drive ecosystem multifunctionality
DOI:10.1111/ele.12873
PMID:29098798
[本文引用: 3]
Global change affects ecosystem functioning both directly by modifications in physicochemical processes, and indirectly, via changes in biotic metabolism and interactions. Unclear, however, is how multiple anthropogenic drivers affect different components of community structure and the performance of multiple ecosystem functions (ecosystem multifunctionality). We manipulated small natural freshwater ecosystems to investigate how warming and top predator loss affect seven ecosystem functions representing two major dimensions of ecosystem functioning, productivity and metabolism. We investigated their direct and indirect effects on community diversity and standing stock of multitrophic macro and microorganisms. Warming directly increased multifunctional ecosystem productivity and metabolism. In contrast, top predator loss indirectly affected multifunctional ecosystem productivity via changes in the diversity of detritivorous macroinvertebrates, but did not affect ecosystem metabolism. In addition to demonstrating how multiple anthropogenic drivers have different impacts, via different pathways, on ecosystem multifunctionality components, our work should further spur advances in predicting responses of ecosystems to multiple simultaneous environmental changes.© 2017 John Wiley & Sons Ltd/CNRS.
Going underground: root traits as drivers of ecosystem processes
DOI:10.1016/j.tree.2014.10.006 URL [本文引用: 2]
Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions
DOI:10.1111/2041-210X.12143 URL [本文引用: 1]
Soil carbon loss regulated by drought intensity and available substrate: a meta-analysis
DOI:10.1016/j.soilbio.2017.04.020 URL
Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils
DOI:10.1016/j.soilbio.2019.107686 URL [本文引用: 1]
Variation of first-order root traits across climatic gradients and evolutionary trends in geological time
DOI:10.1111/geb.12048 URL [本文引用: 1]
Land-use intensity indirectly affects ecosystem services mainly through plant functional identity in a temperate forest
DOI:10.1111/fec.2018.32.issue-5 URL [本文引用: 1]
Predicting thresholds of drought-induced mortality in woody plant species
DOI:10.1093/treephys/tpt046 URL [本文引用: 1]
Phosphorus addition regulates the responses of soil multifunctionality to nitrogen over-fertilization in a temperate grassland
DOI:10.1007/s11104-020-04620-2 [本文引用: 1]
Soil microbial respiration adapts to ambient temperature in global drylands
Progress on researches of drought-induced tree mortality mechanisms
干旱导致树木死亡机制研究进展
Biocrust-forming mosses mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands
DOI:10.1111/nph.13688
PMID:26452175
[本文引用: 4]
The increase in aridity predicted with climate change will have a negative impact on the multiple functions and services (multifunctionality) provided by dryland ecosystems worldwide. In these ecosystems, soil communities dominated by mosses, lichens and cyanobacteria (biocrusts) play a key role in supporting multifunctionality. However, whether biocrusts can buffer the negative impacts of aridity on important biogeochemical processes controlling carbon (C), nitrogen (N), and phosphorus (P) pools and fluxes remains largely unknown. Here, we conducted an empirical study, using samples from three continents (North America, Europe and Australia), to evaluate how the increase in aridity predicted by climate change will alter the capacity of biocrust-forming mosses to modulate multiple ecosystem processes related to C, N and P cycles. Compared with soil surfaces lacking biocrusts, biocrust-forming mosses enhanced multiple functions related to C, N and P cycling and storage in semiarid and arid, but not in humid and dry-subhumid, environments. Most importantly, we found that the relative positive effects of biocrust-forming mosses on multifunctionality compared with bare soil increased with increasing aridity. These results were mediated by plant cover and the positive effects exerted by biocrust-forming mosses on the abundance of soil bacteria and fungi. Our findings provide strong evidence that the maintenance of biocrusts is crucial to buffer negative effects of climate change on multifunctionality in global drylands. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Microbial richness and composition independently drive soil multifunctionality
DOI:10.1111/fec.2017.31.issue-12 URL [本文引用: 1]
Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation
DOI:10.1029/2005gb002672 [本文引用: 1]
Incorporating plant functional diversity effects in ecosystem service assessments
Climate change drives a shift in peatland ecosystem plant community: implications for ecosystem function and stability
DOI:10.1111/gcb.2014.21.issue-1 URL [本文引用: 1]
Decadal soil carbon accumulation across Tibetan permafrost regions
DOI:10.1038/ngeo2945 URL [本文引用: 1]
Plant diversity maintains multiple soil functions in future environments
DOI:10.7554/eLife.41228 URL [本文引用: 1]
Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time
DOI:10.1111/j.1461-0248.2011.01716.x
PMID:22136670
[本文引用: 1]
Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date.© 2011 Blackwell Publishing Ltd/CNRS.
Soil multifunctionality and drought resistance are determined by plant structural traits in restoring grassland
DOI:10.1002/ecy.2437 URL [本文引用: 5]
Ecological impacts of nitrogen deposition on terrestrial ecosystems: research progresses and prospects
DOI:10.17521/cjpe.2019.0163 URL [本文引用: 1]
陆地生态系统氮沉降的生态效应: 研究进展与展望
DOI:10.17521/cjpe.2019.0163
[本文引用: 1]
随着人类对能源和食物需求的持续增长, 化石燃料和化学肥料的消耗随之急剧增加, 导致全球范围内大气氮沉降速率快速升高。目前, 我国已成为全球大气氮沉降的热点区域, 且氮沉降量可能会在较长一段时间内累积增加, 已严重威胁到生态系统结构和功能的稳定。该文梳理了近40年来国内外氮沉降生态效应研究的发展历史和前沿进展, 综述了氮沉降对陆地植被系统、土壤微生物群落和生态系统元素(碳、氮、磷)循环的影响及其作用机制。研究表明: 氮沉降导致的活性氮在陆地生态系统中的累积, 改变了土壤环境、元素平衡和物种共存关系, 驱动了生物多样性以及生态系统结构和功能的改变。氮沉降速率、沉降持续时间、氮输入形式、生物系统的生态化学计量内稳性和非生物环境条件共同决定了生态响应的性质和程度。基于对国内外氮沉降研究进展和发展趋势的分析, 该文讨论了我国在该研究领域存在的问题与不足, 倡议建立更为完善的全国性长期监测研究平台, 开展区域尺度甚至全球联网研究。同时, 要考虑多因子耦合, 从现象特征的描述向机理探究推进, 从而全面提升我国氮沉降生态效应基础研究与生态风险管理水平。
Nitrogen cycles: past, present, and future
DOI:10.1007/s10533-004-0370-0 URL [本文引用: 2]
Multiple functions increase the importance of biodiversity for overall ecosystem functioning
Biodiversity is proposed to be important for the rate of ecosystem functions. Most biodiversity-ecosystem function studies, however, consider only one response variable at a time, and even when multiple variables are examined they are analyzed separately. This means that a very important aspect of biodiversity is overlooked: the possibility for different species to carry out different functions at any one time. We propose a conceptual model to explore the effects of species loss on overall ecosystem functioning, where overall functioning is defined as the joint effect of many ecosystem functions. We show that, due to multifunctional complementarity among species, overall functioning is more susceptible to species loss than are single functions. Modeled relationships between species richness and overall ecosystem functioning using five empirical data sets on monocultures reflected the range of effects of species loss on multiple functions predicted by the model. Furthermore, an exploration of the correlations across functions and the degree of redundancy within functions revealed that multifunctional redundancy was generally lower than single-function redundancy in these empirical data sets. We suggest that by shifting the focus to the variety of functions maintained by a diversity of species, the full importance of biodiversity for the functioning of ecosystems can be uncovered. Our results are thus important for conservation and management of biota and ecosystem services.
A niche for ecosystem multifunctionality in global change research
DOI:10.1111/gcb.2019.25.issue-3 URL [本文引用: 4]
Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality
DOI:10.1038/s41559-017-0395-0
PMID:29203922
[本文引用: 1]
Biodiversity is declining in many local communities while also becoming increasingly homogenized across space. Experiments show that local plant species loss reduces ecosystem functioning and services, but the role of spatial homogenization of community composition and the potential interaction between diversity at different scales in maintaining ecosystem functioning remains unclear, especially when many functions are considered (ecosystem multifunctionality). We present an analysis of eight ecosystem functions measured in 65 grasslands worldwide. We find that more diverse grasslands-those with both species-rich local communities (α-diversity) and large compositional differences among localities (β-diversity)-had higher levels of multifunctionality. Moreover, α- and β-diversity synergistically affected multifunctionality, with higher levels of diversity at one scale amplifying the contribution to ecological functions at the other scale. The identity of species influencing ecosystem functioning differed among functions and across local communities, explaining why more diverse grasslands maintained greater functionality when more functions and localities were considered. These results were robust to variation in environmental drivers. Our findings reveal that plant diversity, at both local and landscape scales, contributes to the maintenance of multiple ecosystem services provided by grasslands. Preserving ecosystem functioning therefore requires conservation of biodiversity both within and among ecological communities.
Biodiversity and ecosystem multifunctionality
Interactive responses of old-field plant growth and composition to warming and precipitation
DOI:10.1111/j.1365-2486.2011.02626.x URL [本文引用: 1]
Productivity of North American grasslands is increased under future climate scenarios despite rising aridity
DOI:10.1038/NCLIMATE2942
[本文引用: 1]
Grassland productivity is regulated by both temperature and the amount and timing of precipitation(1,2). Future climate change is therefore expected to influence grassland phenology and growth, with consequences for ecosystems and economies. However, the interacting effects of major shifts in temperature and precipitation on grasslands remain poorly understood and existing modelling approaches, although typically complex, do not extrapolate or generalize well and tend to disagree under future scenarios(3,4). Here we explore the potential responses of North American grasslands to climate change using a new, data-informed vegetation-hydrological model, a network of high-frequency ground observations across a wide range of grassland ecosystems and CMIP5 climate projections. Our results suggest widespread and consistent increases in vegetation fractional cover for the current range of grassland ecosystems throughout most of North America, despite the increase in aridity projected across most of our study area. Our analysis indicates a likely future shift of vegetation growth towards both earlier spring emergence and delayed autumn senescence, which would compensate for drought-induced reductions in summer fractional cover and productivity. However, because our model does not include the effects of rising atmospheric CO2 on photosynthesis and water use efficiency(5,6), climate change impacts on grassland productivity may be even larger than our results suggest. Increases in the productivity of North American grasslands over this coming century have implications for agriculture, carbon cycling and vegetation feedbacks to the atmosphere.
The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate
DOI:10.1038/ncomms9159
PMID:26328906
[本文引用: 5]
Jing, Xin; Zhao, Ke; Shi, Yue; He, Jin-Sheng Peking Univ, Dept Ecol, Coll Urban & Environm Sci, Beijing 100871, Peoples R China. Jing, Xin; Zhao, Ke; Shi, Yue; He, Jin-Sheng Peking Univ, Key Lab Earth Surface Proc, Minist Educ, Beijing 100871, Peoples R China. Sanders, Nathan J. Univ Copenhagen, Ctr Macroecol Evolut & Climate, Nat Hist Museum Denmark, DK-2100 Copenhagen, Denmark. Shi, Yu; Chu, Haiyan Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Peoples R China. Classen, Aimee T. Univ Copenhagen, Nat Hist Museum Denmark, DK-2100 Copenhagen, Denmark. Chen, Litong; He, Jin-Sheng Chinese Acad Sci, Northwest Inst Plateau Biol, Key Lab Adaptat & Evolut Plateau Biota, Xining 810008, Peoples R China. Shi, Yue Chinese Acad Sci, Inst Bot, Beijing 100093, Peoples R China. Jiang, Youxu Chinese Acad Forestry, Inst Forest Ecol, Beijing 100091, Peoples R China.
Land use intensity, rather than plant species richness, affects the leaching risk of multiple nutrients from permanent grasslands
DOI:10.1111/gcb.14123 URL [本文引用: 1]
Phylogenetic, functional, and taxonomic richness have both positive and negative effects on ecosystem multifunctionality
DOI:10.1073/pnas.1815727116
PMID:30948639
[本文引用: 1]
Biodiversity encompasses multiple attributes such as the richness and abundance of species (taxonomic diversity), the presence of different evolutionary lineages (phylogenetic diversity), and the variety of growth forms and resource use strategies (functional diversity). These biodiversity attributes do not necessarily relate to each other and may have contrasting effects on ecosystem functioning. However, how they simultaneously influence the provision of multiple ecosystem functions related to carbon, nitrogen, and phosphorus cycling (multifunctionality) remains unknown. We evaluated the effects of the taxonomic, phylogenetic, and functional attributes of dominant (mass ratio effects) and subordinate (richness effect) plant species on the multifunctionality of 123 drylands from six continents. Our results highlight the importance of the phylogenetic and functional attributes of subordinate species as key drivers of multifunctionality. In addition to a higher taxonomic richness, we found that simultaneously increasing the richness of early diverging lineages and the functional redundancy between species increased multifunctionality. In contrast, the richness of most recent evolutionary lineages and the functional and phylogenetic attributes of dominant plant species (mass ratio effects) were weakly correlated with multifunctionality. However, they were important drivers of individual nutrient cycles. By identifying which biodiversity attributes contribute the most to multifunctionality, our results can guide restoration efforts aiming to maximize either multifunctionality or particular nutrient cycles, a critical step to combat dryland desertification worldwide.
Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats
DOI:10.1038/ncomms7936 URL [本文引用: 1]
Plant functional traits, functional diversity, and ecosystem functioning: current knowledge and perspectives
DOI:10.17520/biods.2015295 URL [本文引用: 2]
植物功能性状、功能多样性与生态系统功能: 进展与展望
DOI:10.17520/biods.2015295
[本文引用: 2]
植物功能性状与生态系统功能是生态学研究的一个重要领域和热点问题。开展植物功能性状与生态系统功能的研究不仅有助于人类更好地应对全球变化情景下生物多样性丧失的生态学后果,而且能为生态恢复实践提供理论基础。近二十年来,该领域的研究迅速发展,并取得了一系列的重要研究成果,增强了人们对植物功能性状-生态系统功能关系的认识和理解。本文首先明确了植物功能性状的概念, 评述了近年来植物功能性状-生态系统功能关系领域的重要研究结果, 尤其是植物功能性状多样性-生态系统功能关系研究现状; 提出了未来植物功能性状与生态系统功能关系研究中应加强植物地上和地下性状之间关系及其与生态系统功能、植物功能性状与生态系统多功能性、不同时空尺度上植物功能性状与生态系统功能, 以及全球变化和消费者的影响等方面。
Identity of biocrust species and microbial communities drive the response of soil multifunctionality to simulated global change
DOI:10.1016/j.soilbio.2016.12.003 URL [本文引用: 3]
Deciphering the associations between soil microbial diversity and ecosystem multifunctionality driven by long-term fertilization management
DOI:10.1111/fec.2018.32.issue-4 URL [本文引用: 1]
Plant species richness and ecosystem multifunctionality in global drylands
DOI:10.1126/science.1215442 URL [本文引用: 4]
Redefining ecosystem multifunctionality
Redefining fine roots improves understanding of below-ground contributions to terrestrial biosphere processes
DOI:10.1111/nph.13363
PMID:25756288
[本文引用: 1]
Fine roots acquire essential soil resources and mediate biogeochemical cycling in terrestrial ecosystems. Estimates of carbon and nutrient allocation to build and maintain these structures remain uncertain because of the challenges of consistently measuring and interpreting fine-root systems. Traditionally, fine roots have been defined as all roots ≤ 2 mm in diameter, yet it is now recognized that this approach fails to capture the diversity of form and function observed among fine-root orders. Here, we demonstrate how order-based and functional classification frameworks improve our understanding of dynamic root processes in ecosystems dominated by perennial plants. In these frameworks, fine roots are either separated into individual root orders or functionally defined into a shorter-lived absorptive pool and a longer-lived transport fine-root pool. Using these frameworks, we estimate that fine-root production and turnover represent 22% of terrestrial net primary production globally - a c. 30% reduction from previous estimates assuming a single fine-root pool. Future work developing tools to rapidly differentiate functional fine-root classes, explicit incorporation of mycorrhizal fungi into fine-root studies, and wider adoption of a two-pool approach to model fine roots provide opportunities to better understand below-ground processes in the terrestrial biosphere.© 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world
DOI:10.1126/science.aan2874
PMID:28983050
[本文引用: 1]
In a 26-year soil warming experiment in a mid-latitude hardwood forest, we documented changes in soil carbon cycling to investigate the potential consequences for the climate system. We found that soil warming results in a four-phase pattern of soil organic matter decay and carbon dioxide fluxes to the atmosphere, with phases of substantial soil carbon loss alternating with phases of no detectable loss. Several factors combine to affect the timing, magnitude, and thermal acclimation of soil carbon loss. These include depletion of microbially accessible carbon pools, reductions in microbial biomass, a shift in microbial carbon use efficiency, and changes in microbial community composition. Our results support projections of a long-term, self-reinforcing carbon feedback from mid-latitude forests to the climate system as the world warms.Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Altered root traits due to elevated CO2: a meta-analysis
DOI:10.1111/geb.2013.22.issue-10 URL [本文引用: 1]
Drought consistently alters the composition of soil fungal and bacterial communities in grasslands from two continents
DOI:10.1111/gcb.14113
PMID:29505170
[本文引用: 2]
The effects of short-term drought on soil microbial communities remain largely unexplored, particularly at large scales and under field conditions. We used seven experimental sites from two continents (North America and Australia) to evaluate the impacts of imposed extreme drought on the abundance, community composition, richness, and function of soil bacterial and fungal communities. The sites encompassed different grassland ecosystems spanning a wide range of climatic and soil properties. Drought significantly altered the community composition of soil bacteria and, to a lesser extent, fungi in grasslands from two continents. The magnitude of the fungal community change was directly proportional to the precipitation gradient. This greater fungal sensitivity to drought at more mesic sites contrasts with the generally observed pattern of greater drought sensitivity of plant communities in more arid grasslands, suggesting that plant and microbial communities may respond differently along precipitation gradients. Actinobateria, and Chloroflexi, bacterial phyla typically dominant in dry environments, increased their relative abundance in response to drought, whereas Glomeromycetes, a fungal class regarded as widely symbiotic, decreased in relative abundance. The response of Chlamydiae and Tenericutes, two phyla of mostly pathogenic species, decreased and increased along the precipitation gradient, respectively. Soil enzyme activity consistently increased under drought, a response that was attributed to drought-induced changes in microbial community structure rather than to changes in abundance and diversity. Our results provide evidence that drought has a widespread effect on the assembly of microbial communities, one of the major drivers of soil function in terrestrial ecosystems. Such responses may have important implications for the provision of key ecosystem services, including nutrient cycling, and may result in the weakening of plant-microbial interactions and a greater incidence of certain soil-borne diseases.© 2018 John Wiley & Sons Ltd.
Effects of grazing abandonment on soil multifunctionality: the role of plant functional traits
DOI:10.1016/j.agee.2017.08.013 URL [本文引用: 1]
Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes
DOI:10.1111/gcb.12688
PMID:25131335
[本文引用: 3]
Biodiversity loss is occurring rapidly worldwide, yet it is uncertain whether few or many species are required to sustain ecosystem functioning in the face of environmental change. The importance of biodiversity might be enhanced when multiple ecosystem processes (termed multifunctionality) and environmental contexts are considered, yet no studies have quantified this explicitly to date. We measured five key processes and their combined multifunctionality at three temperatures (5, 10 and 15 °C) in freshwater aquaria containing different animal assemblages (1-4 benthic macroinvertebrate species). For single processes, biodiversity effects were weak and were best predicted by additive-based models, i.e. polyculture performances represented the sum of their monoculture parts. There were, however, significant effects of biodiversity on multifunctionality at the low and the high (but not the intermediate) temperature. Variation in the contribution of species to processes across temperatures meant that greater biodiversity was required to sustain multifunctionality across different temperatures than was the case for single processes. This suggests that previous studies might have underestimated the importance of biodiversity in sustaining ecosystem functioning in a changing environment. © 2014 The Authors Global Change Biology Published by John Wiley & Sons Ltd.
Temperature sensitivity of SOM decomposition governed by aggregate protection and microbial communities
DOI:10.1126/sciadv.aau1218 URL [本文引用: 1]
Development and comparison of the significations of global change and its correlated concepts
全球变化及其相关概念的发展与比较
Livestock grazing regulates ecosystem multifunctionality in semi-arid grassland
DOI:10.1111/fec.2018.32.issue-12 URL [本文引用: 1]
Historical dynamics in ecosystem service bundles
Diverse fen plant communities enhance carbon-related multifunctionality, but do not mitigate negative effects of drought
DOI:10.1098/rsos.170449
PMID:29134063
[本文引用: 1]
Global change, like droughts, can destabilize the carbon sink function of peatlands, either directly or indirectly through changes in plant community composition. While the effects of drought and plant community composition on individual carbon (C) related processes are well understood, their effect on multiple C-related processes simultaneously-multifunctionality-is poorly known. We studied the effect of drought on four C-related processes (net and gross CO exchange, methane fluxes, and dissolved organic carbon content) in a plant removal experiment. Plant functional type (PFT) removal (graminoids, herbs, spp., incl. combinations) negatively affected multifunctionality; most markedly when all PFTs were removed. Our results corroborate a negative drought effect on C-related multifunctionality. Drought reduced multifunctionality, and this reduction was again largest when all PFTs were removed. Our data further indicate that much of these negative drought effects were carried over and maintained from the initial removal treatment. These results suggest that while a high diversity in plant functional types is associated to high C-related multifunctionality, plant community assembly does not drive the ability of peatlands to withstand the negative impacts of drought on multifunctionality. Hence, to safeguard the carbon cycling function in intact peatlands, the effects of climate change on the functional composition of the peatland plant community needs to be minimized.
Plant species diversity and management of temperate forage and grazing land ecosystems
DOI:10.2135/cropsci2004.1132 URL [本文引用: 1]
Biodiversity across trophic levels drives multifunctionality in highly diverse forests
DOI:10.1038/s41467-018-05421-z URL [本文引用: 1]
Ecological adaptation of Reaumuria soongorica root system architecture to arid environment
红砂根系构型对干旱的生态适应
Locally rare species influence grassland ecosystem multifunctionality
DOI:10.1098/rstb.2015.0269 URL [本文引用: 1]
A meta- analysis of 1,119 manipulative experiments on terrestrial carbon-cycling responses to global change
Drought impacts on terrestrial primary production underestimated by satellite monitoring
DOI:10.1038/s41561-019-0318-6 URL [本文引用: 1]
Changes in trade-offs of grassland ecosystem services and functions under different grazing intensities
DOI:10.17521/cjpe.2018.0289 URL [本文引用: 1]
放牧对草地生态系统服务和功能权衡关系的影响
DOI:10.17521/cjpe.2018.0289
[本文引用: 1]
内蒙古草原是我国北方的重要生态屏障和绿色畜牧业基地, 放牧是草原生态系统的主要利用和管理方式, 在放牧管理中充分发挥生态系统某一项或几项服务和功能最大利用价值时, 往往会与其他服务(功能)发生冲突, 需要权衡多项生态系统服务和功能, 制定合理的放牧管理制度。该研究以内蒙古锡林郭勒典型草原为例, 通过设置不放牧、轻度放牧、中度放牧以及重度放牧的放牧梯度, 从多项生态系统服务和功能权衡的角度比较了最适放牧管理强度。结果显示, 在放牧管理的草地生态系统服务和功能的权衡中, 权衡、协同、不相关关系同时存在, 如土壤呼吸速率与植物群落净生长量、生物多样性与植物群落净光合速率表现为权衡关系, 植物群落净生长量分别与土壤含水量、植物群落净光合速率及草地蒸散速率存在协同关系, 土壤有机碳含量与其他服务或功能间呈不相关关系; 放牧能不同程度地削弱多项生态系统服务及功能间的权衡关系(冲突对立关系); 中度放牧条件下的多项生态系统服务及功能的协同性最佳。
Direct and indirect effects of urban gardening on aboveground and belowground diversity influencing soil multifunctionality
DOI:10.1038/s41598-019-46024-y
PMID:31278335
[本文引用: 1]
Urban gardens are popular green spaces that have the potential to provide essential ecosystem services, support human well-being, and at the same time foster biodiversity in cities. We investigated the impact of gardening activities on five soil functions and the relationship between plant (600 spp.) and soil fauna (earthworms: 18 spp., springtails: 39 spp.) in 85 urban gardens (170 sites) across the city of Zurich (Switzerland). Our results suggest that high plant diversity in gardens had a positive effect on soil fauna and soil multifunctionality, and that garden management intensity decreased plant diversity. Indices of biological activity in soil, such as organic and microbial carbon and bacterial abundance, showed a direct positive effect on soil multifunctionality. Soil moisture and disturbance, driven by watering and tilling, were the driving forces structuring plant and soil fauna communities. Plant indicator values proved useful to assess soil fauna community structure, even in anthropogenic plant assemblages. We conclude that to enhance soil functions, gardeners should increase plant diversity, and lower management intensity. Soil protective management practices, such as applying compost, mulch or avoiding soil tilling, should be included in urban green space planning to improve urban biodiversity and nature's contribution to people.
Cascading effects from plants to soil microorganisms explain how plant species richness and simulated climate change affect soil multifunctionality
DOI:10.1111/gcb.14440
PMID:30239067
[本文引用: 3]
Despite their importance, how plant communities and soil microorganisms interact to determine the capacity of ecosystems to provide multiple functions simultaneously (multifunctionality) under climate change is poorly known. We conducted a common garden experiment using grassland species to evaluate how plant functional structure and soil microbial (bacteria and protists) diversity and abundance regulate soil multifunctionality responses to joint changes in plant species richness (one, three and six species) and simulated climate change (3°C warming and 35% rainfall reduction). The effects of species richness and climate on soil multifunctionality were indirectly driven via changes in plant functional structure and their relationships with the abundance and diversity of soil bacteria and protists. More specifically, warming selected for the larger and most productive plant species, increasing the average size within communities and leading to reductions in functional plant diversity. These changes increased the total abundance of bacteria that, in turn, increased that of protists, ultimately promoting soil multifunctionality. Our work suggests that cascading effects between plant functional traits and the abundance of multitrophic soil organisms largely regulate the response of soil multifunctionality to simulated climate change, and ultimately provides novel experimental insights into the mechanisms underlying the effects of biodiversity and climate change on ecosystem functioning.© 2018 John Wiley & Sons Ltd.
Functional diversity enhances the resistance of ecosystem multifunctionality to aridity in Mediterranean drylands
DOI:10.1111/nph.13268
PMID:25615801
[本文引用: 2]
We used a functional trait-based approach to assess the impacts of aridity and shrub encroachment on the functional structure of Mediterranean dryland communities (functional diversity (FD) and community-weighted mean trait values (CWM)), and to evaluate how these functional attributes ultimately affect multifunctionality (i.e. the provision of several ecosystem functions simultaneously). Shrub encroachment (the increase in the abundance/cover of shrubs) is a major land cover change that is taking place in grasslands worldwide. Studies conducted on drylands have reported positive or negative impacts of shrub encroachment depending on the functions and the traits of the sprouting or nonsprouting shrub species considered. FD and CWM were equally important as drivers of multifunctionality responses to both aridity and shrub encroachment. Size traits (e.g. vegetative height or lateral spread) and leaf traits (e.g. specific leaf area and leaf dry matter content) captured the effect of shrub encroachment on multifunctionality with a relative high accuracy (r(2) = 0.63). FD also improved the resistance of multifunctionality along the aridity gradient studied. Maintaining and enhancing FD in plant communities may help to buffer negative effects of ongoing global environmental change on dryland multifunctionality. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems
Microbes are the unseen majority in soil and comprise a large portion of life's genetic diversity. Despite their abundance, the impact of soil microbes on ecosystem processes is still poorly understood. Here we explore the various roles that soil microbes play in terrestrial ecosystems with special emphasis on their contribution to plant productivity and diversity. Soil microbes are important regulators of plant productivity, especially in nutrient poor ecosystems where plant symbionts are responsible for the acquisition of limiting nutrients. Mycorrhizal fungi and nitrogen-fixing bacteria are responsible for c. 5-20% (grassland and savannah) to 80% (temperate and boreal forests) of all nitrogen, and up to 75% of phosphorus, that is acquired by plants annually. Free-living microbes also strongly regulate plant productivity, through the mineralization of, and competition for, nutrients that sustain plant productivity. Soil microbes, including microbial pathogens, are also important regulators of plant community dynamics and plant diversity, determining plant abundance and, in some cases, facilitating invasion by exotic plants. Conservative estimates suggest that c. 20 000 plant species are completely dependent on microbial symbionts for growth and survival pointing to the importance of soil microbes as regulators of plant species richness on Earth. Overall, this review shows that soil microbes must be considered as important drivers of plant diversity and productivity in terrestrial ecosystems.
Biodiversity and ecosystem functioning in naturally assembled communities
Biotic homogenization can decrease landscape-scale forest multifunctionality
Soil biodiversity and soil community composition determine ecosystem multifunctionality
Alien species in a warmer world: risks and opportunities
DOI:10.1016/j.tree.2009.06.008 URL [本文引用: 1]
Diversifying livestock promotes multidiversity and multifunctionality in managed grasslands
Land-use intensity indirectly affects soil multifunctionality via a cascade effect of plant diversity on soil bacterial diversity
DOI:10.1016/j.gecco.2020.e01061 URL [本文引用: 2]
A review on the measurement of ecosystem multifunctionality
DOI:10.17520/biods.2015170 URL [本文引用: 3]
生态系统多功能性的测度方法
Biodiversity and ecosystem multifunctionality: advances and perspectives
DOI:10.17520/biods.2015091 URL [本文引用: 2]
生物多样性与生态系统多功能性: 进展与展望
Plant functional β diversity is an important mediator of effects of aridity on soil multifunctionality
DOI:10.1016/j.scitotenv.2020.138529 URL [本文引用: 4]
Mechanisms underlying the impacts of grazing on plant α, β and γ diversity in a typical steppe of the Inner Mongolia grassland
DOI:10.3724/SP.J.1258.2014.00017 URL [本文引用: 1]
放牧对内蒙古典型草原α、β和γ多样性的影响机制
DOI:10.3724/SP.J.1258.2014.00017
[本文引用: 1]
人类活动干扰对生物多样性和生态系统功能的影响机制是近年来生态学研究的一个热点问题。该研究以内蒙古锡林郭勒草原生态系统国家野外科学观测研究站的大型放牧控制实验为平台, 系统地研究了不同降水(丰水年份和平水年份)和地形(平地和坡地)条件下, 放牧对典型草原不同空间尺度植物多样性(α、β和γ多样性)的影响。研究发现: (1)降水和地形条件及其交互效应对植物多样性有明显的影响, 丰水年份的α、β和γ多样性均高于平水年份; 降水和地形条件存在交互效应, 平水年份坡地系统的α多样性高于平地系统, 丰水年份平地系统的α和γ多样性高于坡地系统, 而地形对β多样性并没有显著影响; (2)随着放牧强度的增加, 平地和坡地的α多样性均呈逐渐下降的趋势, 不同植物群落成员型(优势种、常见种和稀有种)对放牧的响应及其对α多样性的贡献不同, 其中稀有种对α多样性的贡献最大, 常见种次之, 优势种最小; (3) γ多样性对放牧强度的响应受地形条件的影响, 随着放牧强度的增加, 平地γ多样性呈逐渐下降的趋势, 而坡地γ多样性呈现先减少后增加的趋势; (4)平地β多样性随放牧强度的增加而逐渐减小, 而坡地并没有明显的规律。该研究表明, 植物多样性对放牧的响应受降水和地形因素的调控, 平地对放牧的缓冲能力强于坡地, 干旱会加剧过度放牧对生物多样性的影响; 稀有种对于草地生态系统的多样性维持具有重要意义。因此, 在确定合理的放牧强度时, 应结合降水和地形条件。在平水年份需加强平地系统植物多样性的保护, 而在丰水年份需加强坡地系统植物多样性的保护, 从而实现草地资源的可持续性利用。
Additive effects of experimental climate change and land use on faunal contribution to litter decomposition
DOI:10.1016/j.soilbio.2019.01.009 URL [本文引用: 1]
Projection of changes in terrestrial ecosystem net primary productivity under future global warming scenarios based on CMIP5 models
CMIP5模式对未来升温情景下全球陆地生态系统净初级生产力变化的预估
/
〈 |
|
〉 |
