宏观生态学中的植物功能性状研究: 历史与发展趋势
Current and future trends of plant functional traits in macro-ecology
通讯作者: (henp@igsnrr.ac.cn)
编委: 储诚进
责任编辑: 乔鲜果
收稿日期: 2023-04-24 接受日期: 2023-08-9
基金资助: |
|
Corresponding authors: (henp@igsnrr.ac.cn)
Received: 2023-04-24 Accepted: 2023-08-9
Fund supported: |
|
植物功能性状通常是指能直接或间接影响植物生长、存活和繁殖的形态学、生理学和物候学等相对稳定和可测量的特征参数。经过多年发展, 植物功能性状的定义、内涵以及测量手段已经科学化和规范化, 人们利用在不同地点、不同时间测定的数据, 深入阐述了植物功能性状的种内与种间变异、区域乃至全球植物功能性状的空间变异规律及其调控机制、多种功能性状间的协同与权衡以及植物功能性状的演化等。随着20世纪90年代开始的大尺度和全球整合型植物功能性状数据库的逐步建成, 植物功能性状的研究已经不再局限于个体、特定群落和局域尺度: 一方面, 区域和全球的植物功能性状生物地理学研究蓬勃发展; 另一方面, 植物功能性状研究也逐步被拓展到群落物种共存机制、生态系统功能形成与变异等的机理解释。随着植物功能性状研究逐步深入到复杂的自然群落或生态系统, 科研人员发现传统“零星数据收集性数据库”难以很好地满足相关数据要求, 迫切需要考虑与群落复杂性和植物不同器官功能性状相匹配的新型数据库, 该数据库的基本要求和特色是基于原位群落调查和多种功能性状协同测量。随着科学概念和新型数据库的发展, 相关研究呈现出如下发展趋势: 1)进一步强调了植物不同器官间功能性状的协同机制与权衡关系, 并力争从植物整体观探讨植物对资源环境变化的响应与适应机制; 2)强调多种功能性状对资源环境变化的多维度响应与适应机制, 发展了植物功能性状网络理论体系和技术手段; 3)强调了植物群落结构复杂性, 利用群落内部植物功能性状的分布和功能多样性指数探究群落构建机制; 4)完善了植物功能性状从器官-物种-群落-生态系统拓展理论体系, 进一步搭建了以植物群落功能性为核心的宏观生态学与宏观地学等多学科的桥梁。这些新发展趋势, 让传统功能性状研究逐步深入地走进自然生态系统、社会系统和经济系统, 进而推动以功能性状为基础的整合生态学快速发展, 服务于区域生态环境问题的解决。
关键词:
Plant functional traits are generally defined as relatively stable and measurable morphological, physiological, and phenological characteristics of plants that can indirectly affect plant growth, reproduction, and survival. Years of development have enabled the standardization of the definition, connotation, and measurement methods of plant functional traits. Now, the intraspecific and interspecific variation, biogeographic patterns, coordination, and the evolution of plant functional traits have been well explored. The gradual development of global plant functional trait databases since the 1990s has led to the expansion of plant functional traits beyond individual and local scales. Regional and global biogeographical studies on plant functional traits are gradually exploring community species coexistence mechanisms and maintenance of ecosystem functions. Researchers have found that traditional plant trait databases, which were created from published studies, have insufficient data to provide answers to questions about natural ecosystems. Therefore, constructing a plant trait database that considers compatibility and orderliness is crucial. As new databases and scientific concepts have emerged, the following areas have become the focus of studies on plant functional traits: 1) coordination between functional traits of different plant organs, and holistic examination of plant response to environmental changes; 2) multi-dimensional response and adaptation of various plant functional traits, and proposal of the concept of a plant trait network; 3) consideration of the complexity of plant community structure, and exploration of community assembly using plant functional diversity and trait moments; and 4) refinement of the scaling method for different levels of ecological organization, and recognition of plant community and ecosystem traits as critical bridges between plant traits and macroecology. These directions have pushed for the application of traditional functional trait research to natural, social, and economic systems, thus promoting the rapid development of trait-based studies to further solve regional eco-environmental problems.
Keywords:
引用本文
刘聪聪, 何念鹏, 李颖, 张佳慧, 闫镤, 王若梦, 王瑞丽.
LIU Cong-Cong, HE Nian-Peng, LI Ying, ZHANG Jia-Hui, YAN Pu, WANG Ruo-Meng, WANG Rui-Li.
性状(trait)是植物、动物和微生物等生命体对外界环境长期适应和演化后所呈现的相对稳定并可度量的外在特征, 具有非常重要的生态学意义, 是探索生物对环境响应和适应的重要途径。植物功能性状(plant functional traits)通常是指能间接影响植物生长、存活和繁殖的形态学、生理学和物候学等的相对稳定和可测量的特征参数; 在具体研究中, 科研人员常将植物功能性状与植物性状几乎等同(何念鹏等, 2018a; He et al., 2019)。植物性状研究长期受到高度重视, 人们常常利用植物性状来解释生态过程中的相关机理(Violle et al., 2007)。但植物功能性状不仅与遗传因素密切相关, 同时也会受到外界环境的影响。因此, 植物功能性状的时空变异规律, 可以反映植物对资源环境变化的响应策略。目前, 功能性状已经是植物学、遗传学和农学等学科的研究热点, 也是在空间和时间尺度上解决生态学问题的重要工具。
近年来, 基于性状的生态学(trait-based ecology)飞速发展, 生态学家也开始从植物功能性状的角度, 揭示各个时空尺度的复杂生态过程; 相关中英文综述类文章已有多篇, 从不同角度推动了相关领域快速发展(刘晓娟和马克平, 2015; Martin & Isaac, 2015; He et al., 2019, 2020a; Hanisch et al., 2020; 何念鹏等, 2020)。本文在系统梳理前人研究的基础上, 较系统地梳理了“性状”的涵义及其发展的脉络, 总结了植物功能性状的种内种间变异、功能性状间的协同和权衡、功能性状与群落构建、功能性状与生态系统功能等方面的重要研究进展, 并展望了未来植物功能性状研究的发展趋势和新生长点。
1 性状的起源与发展
1.1 性状与人类的发展
在远古时期, 人类就已经学会用质地坚硬的棍棒、弹性较高的枝条制作的弓箭作为狩猎工具; 用燃点低的叶片或树皮作为钻木取火的材料; 用热值高或能够持续燃烧的树干在夜间取暖和驱赶野兽; 用质地柔软的植物枝叶铺垫作为休息的温床。在神话故事中, 神农氏尝遍百草, 发现草木有酸甜苦辣等各种味道, 并将苦味的草用于治疗咳嗽, 酸味的草用于治疗肠胃疾病。现在看来, 这些成功的实践是利用了植物的化学性状。到农耕时期, 人类已经学会将“性状”应用到农业生产: 例如, 筛选颗粒饱满的种子, 以实现农作物的高产优质。到秦汉时期, 人们根据“二十四节气”指导农业生产活动, 也是利用了农作物相对稳定的物候性状。“人间四月芳菲尽, 山寺桃花始盛开”, 这首白居易的诗所描述的是海拔对植物花期的影响; 通常, 随着海拔的升高, 植物花期会更晚。古代人类并没有科学地定义“性状”这个名词, 也没有将“性状”定量化, 但“性状”早已贯穿到人类发展史和生产活动中。
1.2 性状研究的科学化与规范化
1.2.1 性状定义的规范化
1859年, 达尔文在《物种起源》中详细描绘加拉帕戈斯群岛达尔文雀(Coerebini)鸟喙的大小和形状时, 就引入了“性状”的概念, 并指出“性状”是机体行为的指示器, 这也是首次对“性状”定量化的研究。随着群落生态学和生态系统生态学的发展, “性状”的概念早已超越其原始的界限。基于性状的方法(trait-based approaches)现在被用于从有机体到生态系统的各个层次的研究中。
即使是在生态学领域, “性状”这个术语的涵义也经历了一个混乱的时期。Petchey等(2004)利用“性状”解释物质生产(biomass production)的差异, 在这些所谓的“性状”中, 8个性状在个体水平上(4个叶片性状、3个整体性状和1个种子性状), 3个在群落水平上(生物量、植物盖度和林冠高度)。Eviner (2004)把生物量、土壤条件和微生物磷含量统称为“性状”, 并探究了这些“性状”对凋落物、有机碳输入、土壤温度和湿度的影响。在这两项研究中, 因变量都是在生态系统水平上, 都被自变量“性状”所解释, 这里的“性状”包含了植物个体、植物群落、微生物群落的相关特征, 甚至还包括土壤条件。在使用相同的术语“性状”时, 却包含了不同的生物水平以及生态系统的不同组成部分, 使得在用“性状”探究群落结构和生态系统功能机制时产生了不可避免的混乱。为解决上述问题, Violle等(2007)在Oikos上发表题为《Let the concept of trait be functional》的文章, 文中指出, 大多数情况下“性状”一词应该用于生物的个体水平, 但也可以用于群落的统计学特征(图1), 但为避免混淆, 性状应该只应用于个体水平。同时, 他们给出了性状明确的定义: 性状是指在个体水平上测量的任何形态学的、生理学的和物候学的特征, 不涉及环境因子。“功能性状” (functional traits)在植物生态学中也一直被广泛应用, 但不同的科学家对其理解也不同。字面意思上, 功能性状就是某个功能的代理者, 但科学家却难以对“功能”的实际意义达成一致理解。“功能”可以是影响机体的表现, 如比叶面积影响植物光合速率; 可以是影响植物的适合度, 如比叶面积越大, 植物生长速率越高; 也可以是影响生态系统的功能, 如比叶面积与生态系统净初级生产力的正相关关系。为明确“功能性状”的含义, Violle等(2007)进一步将“功能性状”定义为: “任何影响植物、动物和微生物等适合度的形态学的、生理学的和物候学的等相关特征”。
图1
虽然Violle等(2007)对功能性状的定义目前已经被大部分同行所接受, 但也有科学家持有不同的意见。Mlambo (2014)强烈反对Violle等(2007)定义中的“任何”二字, 他认为没有性状不与生物的适合度有关, 因此这个概念也只是把“性状”全部转换为“功能性状”的叫法而已, 把“生理性状” “行为性状”和“生活史性状”等统一打上“功能性状”的标签, 反而损失了很多有效的信息。功能性状应该对生态系统过程产生影响, 而不是适合度, 如果性状没有被证明是“功能的(functional)”, 那么这个性状应该叫做“生物学性状(biological traits)”。也就是说, 所有的功能性状都是生物学性状, 但并不是所有的生物学性状都可以叫做功能性状。功能性状只能是生物学性状中, 明确对生态系统过程具有效应和响应的性状, 需要经过严格的生物多样性-生态系统功能关系实验进行检验。
考虑到植物表型整合、选择压力的时空变化以及基因型与环境交互对植物表型特征的影响时, 理论上所有的性状都会对适合度有潜在的影响。因此, 从演化角度上来说, 所有的植物性状都是功能性状(Sobral, 2021)。目前, Violle等(2007)对功能性状的定义已经被广大科研人员接受, 但性状与功能性状间的界限仍没有严格的划分。考虑到性状起源与遗传相关, 以及规范其在生态研究中的可比性, 我们将植物功能性状定义为在个体水平上植物的形态、解剖结构、生物化学、生理和物候学上可遗传的、相对稳定的并可测量的特征参数(He et al., 2019, 2023)。大量研究表明自然界植物的生长、存活与繁殖同时受到多种功能性状及其相互间复杂关系的影响, 因此单个植物功能性状与适合度的关系并不是一一映射的(何念鹏等, 2020)。
1.2.2 性状测量的规范化与统一命名
由于学科背景和实验条件的不同, 科研人员在植物性状的测量方式上往往存在非常大的差异。这种由于实验条件和操作手段的不同而引起的对同一植物功能性状测量的误差, 不仅给功能性状自身研究带来巨大困扰, 而且在一定程度上, 限制了功能性状在生态学不同研究尺度和领域的应用。为减小这种误差, Cornelissen等(2003)总结和介绍了28个植物功能性状的测量方法, 揭开了植物功能性状规范化测量的序幕。随着越来越多的证据表明植物性状的变异以及性状-性状间的关系与生态系统的过程和功能相关, 人们迫切需要统一更多的性状测量手段, Pérez-Harguindeguy等(2013)总结了整株性状、叶片性状、根系性状、茎干性状以及繁殖性状的测量方法, 并强调了其生态意义。此外, Wigley等(2020)对34个植物功能性状的测量方法以及测量误区进行了阐述; Freschet等(2021)编制了植物根系功能性状的测量手册, 对根系取样、测量和根系功能性状的生态意义进行了系统总结。这些论著(表1)的发表, 极大地规范了植物功能性状的测量准则, 提升了不同研究间的数据可比性和可整合性, 拓展了植物功能性状在复杂系统和大空间尺度的研究领域。在对植物功能性状新定义中, 我们强调了其“可遗传的、相对稳定的、可测量的”特性, 可进一步推进相关研究的科学化和规范化。
表1 与植物功能性状规范化测量和名称统一化相关的论著
Table 1
题目 Title | 期刊 Journal | 文献 Reference |
---|---|---|
A handbook of protocols for standardised and easy measurement of plant functional traits worldwide | Australian Journal of Botany | Cornelissen et al., 2003 |
New handbook for standardised measurement of plant functional traits worldwide | Australian Journal of Botany | Pérez-Harguindeguy et al., 2013 |
A handbook for the standardised sampling of plant functional traits in disturbance-prone ecosystems, with a focus on open ecosystems | Australian Journal of Botany | Wigley et al., 2020 |
A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements | New Phytologist | Freschet et al., 2021 |
Towards a thesaurus of plant characteristics: an ecological contribution | Journal of Ecology | Garnier et al., 2017 |
A unique web resource for physiology, ecology and the environmental sciences: PrometheusWiki. | Functional Plant Biology | Sack et al., 2010 |
由于语言、学科背景、个人喜好等原因, 人们对同一功能性状的命名和测定方法可能存在明显差异。例如, 叶片大小(leaf size)可以由叶片面积(leaf area)、叶片质量(leaf mass)和叶片长度(leaf length)等代表。名称和内涵的混乱, 极大地阻碍了植物功能性状的整合和飞速发展。Garnier等(2017)呼吁对植物功能性状的命名规范加以重视, 并开发Plant Trait Thesaurus网站对植物功能性状的名称进行编码, 方便同行交流和使用。此外, 人们也积极开发一些网站用以探讨植物功能性状名称和测量方法的规范化, 如PrometheusWiki (
2 文献计量学下植物功能性状的研究进展
通过上述探讨发现, 大多数研究都认为植物功能性状与植物性状几乎等同, 没有必要过度强调其差异。以“植物性状”或“植物功能性状”为关键词, 我们检索了Web of Science 2000年以来的文献, 发现与植物功能性状相关的发文量一直呈现快速增加的趋势。2001年的发文量为499篇, 随后以平均每年增加147篇的速度, 快速增长到2020年的3 000多篇(图2), 表明植物性状研究处于高速发展阶段。“性状”的研究目前主要涉及植物学、生态学和遗传学, 主要发表在New Phytologist、Annals of Botany、American Journal of Botany和Functional Ecology等国际主流期刊。“性状”研究的高速发展离不开国内外植物学家和生态学家的努力, 并在各个时期都出现了突出的工作, 为“性状”研究的发展做出了巨大的贡献。例如, Garnier等(2004)率先将植物功能性状与群落结构相结合, 将植物功能性状推导至群落水平, 并在群落尺度探究了植物功能性状与生态系统功能的关系。Wright等(2004)率先提出了全球叶经济谱, Cornwell等(2006)将植物功能性状与群落的构建过程联系起来, Violle等(2007)在概念上澄清了“功能性状”, Pérez-Harguindeguy等(2013)制定了植物功能性状的测量标准。
图2
图2
植物功能性状相关文章发文量动态变化。
Fig. 2
Changes in annual scientific publications related to plant functional trait.
3 植物功能性状的主要研究进展
经过20世纪90年代末以来的高速发展, 目前基于植物功能性状的研究早已从传统的个体和物种水平尺度拓展到群落和生态系统水平, 并延伸到生态学研究的各个方面。性状在宏观生态学中备受大家关注的科学问题主要包括但不限于: 1)性状的变异及其与环境的关系; 2)性状-性状间的关系; 3)性状与群落构建; 4)性状与生态系统功能。
3.1 植物功能性状的种内变异
植物功能性状表现出了很强的种内变异, 反映了植物的遗传变异和表型可塑性, 并且种内功能性状变异可影响生物体之间以及生物体与其环境之间的相互作用, 进而影响群落构建过程以及生态系统功能(Bolnick et al., 2011; Siefert et al., 2015; Yang et al., 2018)。因此, 科学家逐步对植物功能性状的种内变异产生了浓厚兴趣, 并将其应用于探究局部群落构建、物种间的相互作用、群落对环境变化时空动态的响应以及生态系统功能预测等领域(He et al., 2018b; Luo et al., 2023)。Midolo等(2019)通过整合全球不同海拔梯度下的109个物种的比叶面积、叶面积、单位面积氮含量、单位质量氮含量、单位质量磷含量和碳同位素组成(δ13C)发现, 随着海拔升高, 单位叶面积氮含量、单位叶质量氮含量和δ13C显著升高, 而比叶面积显著降低; 在全球变化的控制实验中, 氮添加可使叶片氮含量和光合速率分别提升18.4%和12.6% (Liang et al., 2020); CO2浓度升高会显著促进植物光合速率、降低植物气孔导度, 从而显著提升植物水分利用效率(Wang & Wang, 2021)。Liu等(2022c)对光合速率、比叶面积和叶片氮含量的研究发现, 叶片功能性状对全球变化因素响应的可塑性并不受系统发育的约束。
近期, 研究人员逐渐开始定量化植物功能性状的种内变异, 进而探讨这些种内变异的影响因素。Siefert等(2015)以全球629个植物群落、36个植物功能性状为对象, 探究植物性状的种内变异, 发现种内功能性状变异占群落内总性状变异的25%, 占群落间总性状变异的32%。其中, 与植物个体大小相关的功能性状(如树高)比器官水平的功能性状(如叶片面积和厚度)和叶片功能元素(如氮含量、磷含量)表现出更大的种内变异率。Thomas等(2020)发现苔原6个植物功能性状的种内变异约占功能性状总体变异的23.2%, 其中氮含量具有最大的种内变异率, 可占功能性状总体变异的55%。每个植物物种通常具有特定的分布范围, 物种内的个体在不同环境下会调整其特定的功能性状以达到对环境的最优化适应。例如, 在自然状态下, 羊草(Leymus chinensis)个体的叶片厚度、比叶面积、K+含量、Na+含量等在样带尺度会随着温度和降水的变化而发生显著的变化(Wang et al., 2011); 拟南芥(Arabidopsis thaliana)的个体大小和相对生长速率也呈现一定的纬度变异规律, 且与气候密切相关(Li et al., 1998); 栎属(Quercus)植物的叶片形态性状和功能元素组成与降水量具有显著的相关关系(Castro-Díez et al., 1997)。
在具体研究中何时应将种内性状变异考虑在内, 目前仍存在争议(Bolnick et al., 2011)。考虑种内功能性状变异, 势必会促进基于性状的研究方法的发展, 但在具体生态学研究过程中衡量每个生态系统类型和每种环境条件下功能性状的种内变异, 几乎是不可行的。因此, 未来在基于功能性状种内变异来开展群落构建或生态系统功能优化机制的研究中, 要根据研究目的、研究尺度、人力物力等实际条件仔细思考, 实现科学性与可行性的有机统一。
3.2 植物功能性状种间变异规律及其空间格局
植物功能性状的种间变异及其在不同功能群和群落间的差异, 是当前研究最广泛的内容, 甚至可称为植物功能性状研究的经典领域。Kattge等(2011)报道了52个植物功能性状的种间变异, 并定量化评估了每种功能性状的最大值、最小值和均值等统计特征, 发现大部分植物功能性状在全球尺度呈现对数正态分布。植物功能性状在不同功能群中的差异也早已被明确探究: 人们发现落叶植物的比叶面积、叶片氮含量和光合速率等显著高于常绿植物(Wright et al., 2004), 被子植物的气孔密度和最大气孔导度显著高于裸子植物(Liu et al., 2018), 木本植物的根系组织密度显著高于非木本植物等(Ma et al., 2018)。相关研究非常之多, 不一一赘述。
近年来, 在区域和全球尺度上, 定量探究植物功能性状的空间分布特征以及驱动因子是生物地理学或宏观生态学研究的热点(He et al., 2018b)。Wang等(2016)在中国东部森林样带测量了847种植物的叶片面积、厚度、比叶面积等, 发现叶片面积和厚度随着纬度的升高而降低, 而比叶面积随着纬度的升高而增加。Han等(2011)通过搜集公开发表的中国区域文献, 系统地分析了氮、磷、钾等11种植物功能元素的计量特征、大尺度地理格局及其生态成因, 明确了气候、土壤和植物功能群对植物化学计量特征的相对贡献, 并提出了植物养分平衡假说或限制元素稳定性假说(stability of limiting elements hypothesis)。Paroshy等(2021)发现全球尺度乔木的树干碳含量的分布主要受到年平均气温和年降水量的影响, He等(2020b)发现全球尺度茎木质部水力学导度受到生长季气温和降水的影响。Freschet等(2017)揭示了全球植物根系性状变异特征, 发现气候、土壤和植物功能型是植物根系性状空间变异的主要驱动因子。此外, 科研人员还发现在全球尺度上种子质量随着纬度的升高而降低, 植物功能群和植被类型的变化是造成种子质量纬度变化的重要原因(Moles et al., 2007)。Song等(2022)发现全球花的寿命随着纬度升高而增长, 而开花季节的温度是其主要气候驱动因子。
近年来, 随着植物功能性状实测数据的积累和神经网络等机器学习算法的快速发展, 通过探究植物功能性状的主控因子及其与系统发育的关系, 科学家正逐渐将局域和区域样点尺度的植物功能性状拓展到全球尺度上(Boonman et al., 2020)。此外, 全球尺度比叶面积、树高、木质密度和叶片氮含量等数据产品均已公开, 将极大地促进植物功能性状研究的发展和影响力。
3.3 植物功能性状间的关系
植物功能性状间的相关关系目前倍受科研人员关注, 是当前的研究热点之一。通常, 科研人员将性状间的相关性归结为如下3种原因。第一, 功能性状之间的关联性是结构优化的结果, 例如, 在结构与生理功能的关系中, 结构数量与大小直接决定了植物的特定生理速率或过程; 气孔大小和气孔密度的协同变化, 共同促成植物具有稳定的气孔最大导度, 以便更好、更快速地响应环境资源变化(Liu et al., 2022b)。第二, 功能性状之间的关联性是功能平衡的结果, 两个功能性状独立的对更高等级的功能有所贡献, 例如气孔形态性状和叶脉性状都对水分的传导和优化起到至关重要的作用。第三, 功能性状之间的关联性是局部环境筛选而形成的生态位优化的适应性结果, 例如, 在光受限的情况下, 主叶脉分支的单子叶植物更容易结出肉质多汁的果实(Sack & Scoffoni, 2013)。
科研人员通过探究6种叶片功能性状之间的相关关系, 如叶片氮磷含量、叶片寿命、比叶面积、光合速率和呼吸速率等, 发展了经典的“叶经济谱(leaf economics spectrum)”: 它的一端代表着生长速率快、寿命短的物种, 另一端代表着生长速率慢、寿命长的物种(Wright et al., 2004)。进一步的研究还证实, 叶片经济学性状间的关系受到局地气候的修饰作用较小, 并且叶经济谱在苔原、青藏高原、湿地, 甚至在全球变化实验的研究结果中都比较稳定(Cui et al., 2020)。此后, 人们逐步发展了木材经济谱(Chave et al., 2009)、根经济谱(Weemstra et al., 2016)和花经济谱(Roddy et al., 2021)。其中, 根经济谱把根系呼吸强度、比根长和氮含量等归为与资源获取密切相关的性状(acquisitive traits), 而把根系干物质含量、根系直径和木质素含量等归为保守性状(Weemstra et al., 2016)。近年来, 越来越多的研究发现根系-菌根间的合作打破了传统的根经济谱, 将功能性状的协同与权衡关系从二维性状向多维性状空间拓展, 同时, 该拓展也被认为是该研究领域的重要进展。通过对全球1 810个物种的根系功能性状数据深入分析, 人们证实了根系中存在着描述投资收益快慢的保守性状轴(conservation gradient)和菌根合作性状轴(collaboration gradient)。其中, 保守性状轴一端代表着投资回报缓慢但寿命长、具有高组织密度的物种, 另一端代表着投资回报快、寿命短, 并具有高氮含量和高代谢速率的物种。同时, 菌根合作性状轴的一端代表着具有高比根长、细根系的物种, 另一端代表着根系粗并与菌根合作紧密的物种(Bergmann et al., 2020)。
叶片和根系性状间的关系早已被广泛关注。Wang等(2017)发现叶片和根系的形态特征是分化的, 而功能元素含量却是紧密相关的, Zhao等(2016)发现叶片和根系的多种功能元素具有相似的控制机制。相关研究开启了植物不同器官间功能性状的协同关系及其区域变化特征研究的先河, 推动了人们对植物环境变化的综合适应机理的认知。Valverde- Barrantes等(2020)通过整合全球植物根系和叶片性状, 发现叶脉密度与细根直径、根组织密度和比根长密切相关, 并且在历史演化中也保持着紧密的关系。Weigelt等(2021)指出根系和叶片的保守梯度(conservation gradient)是耦合的, 植株高度和根系深度显著正相关。除了根叶性状间的关系, 其他器官性状间的关系也引起了科研人员的重视。如Liu等(2023)通过对蒿属(Artemisia)植物的叶片、茎和根的碳、氮、磷含量等15个性状的研究, 发现即使环境变化, 不同器官间性状的关系也较为稳健; Li等(2021)基于6个树皮性状、7个茎性状和12个叶性状发现器官性状间存在较好的关系, 并可以形成全株植物经济谱; Zhang等(2020)在生物区系尺度分析了叶、枝、干、根C:N的演化规律与气候驱动因素; Zhao等(2020)分析了各个器官多种功能元素的异速分配规律, 发现这些功能元素在不同器官的分配具有一定的保守性。
3.4 植物功能性状与植物群落构建机制
群落内物种共存机制一直是生态学研究的核心问题。理论上, 植物功能性状与物种分布和物种间的相互作用密切相关, 从功能性状的角度揭示植物群落构建机制是非常具有前景的。群落中具有不同功能性状的物种更趋向于利用环境中的不同资源, 或者在不同时间尺度上利用相同的资源, 促进群落内物种共存。在具体研究过程中, 基于功能性状的群落构建可划分为两种相反的作用机制, 分别是生境过滤作用(habitat filtering)和限制性相似作用(limiting similarity)。由于环境的过滤作用, 具有极端功能性状值的物种将会受到抑制甚至消失, 逐步减小了群落内物种功能性状的分布范围, 进而导致群落内功能性状趋同(trait convergence)。而限制性相似作用通过增加功能性状间的差异, 减小物种间的资源竞争, 导致群落内物种的功能性状趋异(trait divergence)。Kraft等(2015)基于102对多年生植物的叶片、根系和种子性状证明了性状的差异确实会促进多物种的共存。
生境过滤和限制性相似作用会影响植物性状在群落内的分布(如平均值、方差、分布范围、偏度和峰度等)。Cornwell和Ackerly (2009)对加利福尼亚森林群落的研究表明, 生境过滤使比叶面积和树高的分布范围缩小, 而限制性相似作用使比叶面积、叶片氮含量在群落内的分布更为均匀。基于群落加权平均值和方差, Bernard-Verdier等(2012)沿着土壤深度梯度发现叶片干物质含量在土层较浅的区域分布较为发散, 而种子质量在土层较深的区域表现更为发散。利用群落加权偏度(S)和峰度(K)的数学关系——K ≥ S2 + 1, Gross等(2017)发现全球干旱地区的树高和比叶面积的偏度和峰度均沿着K = S2 + 1二次曲线分布, 表明树高和比叶面积在群落内部的分布已经趋近于均匀化。Liu等(2020)发现水分可利用性和温度分别决定了水力学性状和叶片经济学性状在群落内部的均匀程度, 并且群落内部功能性状的组装过程提高了生态系统生产力。
3.5 植物功能性状与生态系统功能的关系
为了探索植物功能性状与不同尺度功能的定量关系, Violle等(2007)将植物功能性状划分为响应性状(response traits)和效应性状(effect traits)。响应性状描述植物对环境变化的响应, 而效应性状描述植物对生态系统功能的影响。因此, 一个特定的功能性状可以反映植物的适应策略或其对生态系统功能的影响。从理论上讲, 植物功能性状可以跟踪环境变化, 在决定生态系统功能方面起着重要作用。因此, 建立植物功能性状与生态系统功能之间的联系, 一直是生态学研究的热点。目前而言, 响应性状和效应性状虽然在定义上有明确的界限, 但在实际应用中, 由于功能性状间存在着直接或间接的关系, 二者在实际操作过程中难以区分, 而且在大部分情况下, 一个性状可能既是响应性状, 又是效应性状。
图3
图3
植物功能性状对生态系统过程和功能的影响。
Fig. 3
Influence of plant functional traits on ecosystem processes and functioning.
目前, 植物功能性状与生态系统功能的主要研究途径有两种: 一种是基于物种相对多度或群落生物量加权的植物功能性状平均值, 对应着环境对物种的选择效应(selection effect); 另一种是功能性状的多样性, 对应着生态位互补效应(niche complementarity effect)。受“质量比”假说的影响, 传统观点认为优势种对生态系统功能的影响起决定作用, 而群落加权平均值也主要取决于优势物种的功能性状。相关研究也发现了群落加权平均值与生态系统功能间的关系, 如Liu等(2018)发现气孔密度与生态系统水分利用效率间存在着显著的正相关关系。随着生态位理论的发展, 人们逐渐意识到群落内的物种可能会通过互补效应对生态系统功能产生影响, Li等(2022b)发现生态系统生产力受到功能多样性指数的强烈影响, Tang等(2022)基于大样地发现树种多样性和遗传多样性对生产力的影响主要是通过功能多样性指数实现的。选择效应和互补效应对生态系统功能的贡献可能会随着时间和外界环境的变化而变化。例如, Bongers等(2021)发现互补效应对森林生态系统生产力的影响会随着林龄的增长而逐渐超过选择效应。实际上, 选择效应和互补效应并不是对立的, 同时考虑选择效应和互补效应对生态系统功能的影响, 有助于深入探究群落构建法则和生态系统功能优化机理。
4 植物功能性状数据库的发展过程与方向
无论是建立经验性或机理性的功能性状-环境的关系, 还是对动态植被模型的参数优化或验证, 都离不开大量的植物功能性状的实测数据。建立完备的植物功能性状数据库一直是生态学家所追求的, 同时也是推动植物功能性状研究发展的重要因素。本文在此回顾植物功能性状数据库建设的发展, 探讨植物功能性状研究快速发展的原因和未来发展方向。主要可以归纳如下:
4.1 物种水平数据库
20世纪90年代初, 植物学家和生态学家陆续收集和整理公开发表的数据, 构建植物功能性状数据库。受传统植物功能性状数据仅能在器官水平进行测试的限制, 这类零星或非配套的数据, 组成了第一代物种水平的数据库。通常, 这类植物功能性状数据库从一开始就由收集或捐献的零散数据组成, 逐步发展到现在, 已进入整合全球范围内多种植物功能性状的阶段。TRY植物功能性状数据库(TRY plant trait database,
4.2 结合群落结构的植物功能性状数据库
植物分布范围会因为生态系统的变化而发生改变, 甚至有些物种会因为无法适应快速变化的环境而灭绝。目前大多数植物功能性状数据集, 都是来自单个研究人员或研究团队, 覆盖范围相对较小。为了探究物种多样性地理分布的潜在机制, 并利用越来越多的数据进行可重复的科学研究, BIEN (Botanical Information and Ecology Network,
4.3 基于原位群落调查和多性状测量的植物功能性状数据库
植物功能性状数据库建设理念和技术途径与研究内容是协同发展的, 应与时俱进。如前所述, TRY数据库是当前全球性状研究的最重要数据库之一。目前, TRY数据库通过整合全球公开发表数据, 共收录27.9万物种和1 185万条性状数据, 被广泛地应用于各个领域或尺度(Bjorkman et al., 2018; Bruelheide et al., 2018)。以TRY类型数据库为例, 在研究前期其快速获取、数量大、空间代表性强等特点, 使其成为推动植物功能性状研究的重要推手。然而, 随着研究的深入, 相关研究逐渐从传统器官水平拓展到复杂的自然群落或生态系统, 如近年来结合群落结构数据和TRY性状数据的sPlot数据库, 在一定程度上弥补了缺乏群落结构数据的缺陷。TRY数据库或第二代组合型数据库真的很完美吗? 深入分析后发现, 受数据库建设思路和数据源的限制, 上述数据库主要收集了植物易于测定的性状数据, 如叶片大小、厚度、比叶面积、碳含量、氮含量、个体大小等, 而非常缺乏叶-枝-干-根配套的性状数据; 同时, 也非常缺乏与群落结构相配套的物种功能性状数据, 使其难以真正运用到自然群落结构维持和生态系统功能优化的研究中。
借鉴TRY数据库的构建经验, 并充分考虑自然群落复杂性的特点, 中国科学院地理科学与资源研究所何念鹏等提出了基于原位群落调查和多性状测量为特色的植物功能性状数据库建设新思路。在该思路下, 科研人员对中国典型区域100多个森林、灌丛、草地、荒漠和农田生态系统开展了系统性的调查和测定工作, 建立了由112种配套参数组成的中国生态系统植物功能性状数据库(China_Traits数据库) (He et al., 2018a)。在实际操作过程中, 不仅详细调查了植物群落结构、土壤和土壤微生物属性等, 也收集了每个样地所有物种叶-枝-干-根样品(>6 120个物种), 测定了所有样品碳、氮、磷、钾等16种元素含量。并配套性地对叶片常规形态性状-气孔性状-解剖结构性状-叶绿素含量-非结构性碳水化合物含量, 以及根形态指标和同位素特征等进行了调查和测量。此外, 在草地生态系统功能性状调查中增加了蝗虫、土壤线虫、甲虫、跳虫、蚯蚓等小型动物的调查和功能性状的测定, 但种子、花等繁殖体功能性状参数仍需专门调查才能很好地匹配。
除了China_Traits数据库的系统性和配套性, 其另一个特色是匹配了系统的群落结构数据、土壤微生物数据、土壤理化性质数据等, 可帮助科研人员从传统器官水平测定的功能性状尺度上推至群落和生态系统, 开拓了“器官-物种-群落-生态系统”和“单一功能性状-多种功能性状-功能性状网络”的功能性状研究新领域, 进一步促进相关研究成果的创新性和引领性(He et al., 2020a, 2023)。China_Traits数据库克服了传统的以收集数据为主的数据库的一大缺陷——缺乏配套性状数据和群落结构数据, 使后续相关研究能够在物种、功能群和群落开展全新视角的多维度性状研究。2018年1月, 功能性状领域国际旗舰期刊Functional Ecology以“Functional traits along a transect”为专题, 报道了这套基于中国东部森林样带配套的功能性状测试数据撰写的系列研究论文, 打破了该刊创刊32年以来, “不发表基于实验数据专题”的惯例。
China_Traits数据库能够在物种、功能群和群落开展全新视角的多维度性状研究, 进而更真实地揭示大自然。随着类似于China_Traits数据库的发展和完善, 这种基于原位群落调查和多性状测量的数据库构建理念必将被更多科学家认可, 进而切实有力地推动功能性状研究走向复杂的自然生态系统、服务于区域生态环境问题的解决、助力生态系统结构和功能对全球变化响应适应领域的研究。
5 植物功能性状研究的潜在生长点
二十年前, 整合全球数百个物种的功能性状进行分析, 通常就会被认为是非常重要的研究。如今, 利用功能性状数据库(如TRY)和全球生物多样性信息网络(Global Biodiversity Information Facility, GBIF), 根据坐标信息获得对应样地的气候(WorldClim,
经过黄金20年的高速发展, 植物功能性状研究取得了令世人瞩目的研究成果, 逐步拓展到了生态学研究的各个时空尺度, 形成了基于功能性状的生态学的雏形。在赞赏和欢呼前人成绩时, 人们正面临一系列巨大挑战: 植物功能性状研究下一阶段的突破方向是什么? 如何实现原创性重大理论创新? 如何让植物功能性状研究真正能服务于当前严峻的生态环境问题的解决? 破解之路就是回归我们的科研初心, 认识自然和揭示自然背后的调控规律。植物功能性状研究必须走进复杂的自然群落或自然生态系统, 直面自然植物群落的复杂性和多样性及其周边自然环境条件多变性和诡异的极端干扰或灾害事件。简言之, 就是让植物功能性状研究真正走进复杂的自然, 揭示自然现象及其背后的调控机制, 服务于区域生态环境问题的解决。
在具体研究过程中, 建议从以下几个方面(图4)着手: 1)不断发展新的功能性状参数, 拓展传统功能性状研究的内涵与研究视角, 尤其应充分利用微观的基因组学、宏观的遥感技术和大数据为基础的新型算法; 2)突破传统理念的束缚, 创新发展新理论体系并利用日益增多的多源数据, 全面实现植物功能性状研究从单一功能性状到多种功能性状的多维度拓展, 实现从单器官到多种器官的拓展; 3)通过创新理论、方法和技术, 真正实现植物功能性状从单物种到多物种的拓展应用, 揭示基于功能性状的自然群落结构维持机制和响应机制; 4)除了推动结构决定功能的传统认知, 更应深入探讨结构如何协同功能性状来实现自然生态系统功能的优化与稳定。必须指出, 系统性和配套型的植物功能性状数据库, 是开展这些新领域研究的必要条件; 当然, 科研人员应敢于打破传统束缚, 勇于发展新的概念、方法和技术, 尤其是加强学科交叉融合的新技术和新方法。
图4
图4
植物功能性状研究的多维度拓展趋势。
Fig. 4
Multi-dimensional expansion of plant functional traits in future.
5.1 植物功能性状新参数的发展与应用
大量植物功能性状参数已被广泛使用, 但在区域乃至全球尺度使用的还多为一些易于测定的参数。随着人们对植物功能性状认识的加深和各种观测技术的发展, 越来越多的, 且与植物响应与适应密切相关的参数会涌现出来。以气孔为例, 传统对气孔形态性状的研究多集中于气孔密度和大小。事实上, 在相同气孔密度和大小下, 气孔的空间排列组合依然可以千变万化, 并影响叶片整体的最大气孔导度和响应机制。Liu等(2021)基于叶片气孔间的距离, 创新性地提出气孔分布的均匀度指数、离散度指数和聚合度指数。这些新参数的加入, 不仅弥补了传统参数研究的缺陷, 还为更好地探索农作物培育、植物适应和演化提供了新思路。类似地, 叶片pH也是新兴的植物功能性状参数(Cornelissen et al., 2011): 叶片pH变化在物种间普遍存在, 其受到相对稳定的原质体pH和对外界环境变化较为敏感的质外体pH的共同调控。由于叶片pH测量的简易性及其在养分循环和生理过程中的密切作用, 可能在未来生态过程模型中被考虑或应用(Liu et al., 2019)。除了器官水平的新参数外, 人们在拓展植物功能性状研究尺度时, 也可能发展新的参数, 拓展新的研究领域(何念鹏等, 2018a; He et al., 2019)。总而言之, 新参数的发展与应用, 将是助推植物功能性状研究快速发展的重要途径以及原始创新之源泉。
5.2 叶-枝-干-根间功能性状协同适应与优化分配
在自然群落中, 任何高等植物都是由不同器官相互连接而构成的连续体, 不同器官各司其职, 相互配合, 相互影响, 共同维持和调节着植物的各项生命活动。其中, 叶片最重要的功能之一是光合作用, 它通过从大气中吸收CO2, 释放O2, 同时产生碳水化合物提供能量, 以支持植物自身以及生态系统内其他生物的物质和能量需求。枝和干具有支撑和贮存的作用, 其韧皮部和木质部分别承担着运输养分和水分的重要功能; 根除了具有固定的功能外, 更重要的是从土壤中吸收水分和养分。这些植物器官在功能上各异, 互为补充, 分工协作而不可替代; 在结构上彼此连接, 具有相同的养分和能量来源。因此, 弄清植物不同器官协同演化和适应机制, 是科学评估植物及其群落对资源环境变化响应或外界扰动响应与适应的重要理论基础。
虽然人们早就意识到植物叶-枝-干-根功能性状协同与优化分配的普遍性和科学意义, 但真正在区域乃至全球尺度开展多物种叶、枝、干、根联动分析的研究还非常罕见。以功能元素含量为例, 元素含量在不同器官间的协同和权衡是植物在长期演化过程中的重要适应策略(Zhang et al., 2020)。弄清功能元素在不同器官间的分配和调控机制, 有助于进一步揭示植物内部的物质循环和能量流动规律, 并对生态过程模型的优化提供重要帮助。在整个生长发育过程中, 植物必需的功能元素大约有16种, 这些功能元素以不同形式参与植物各种生理生化反应, 与植物生命活动密切相关(Zhao et al., 2016)。各个元素功能的差异及植物对其的需求可以体现在各元素的平均含量上, 通常大量元素参与了更多也更基础的生理生化过程(Fernández-Martínez, 2022)。基于最小因子限制理论, 任何元素供应量小于最适平衡的需求, 都可能会限制植物生长。植物多种元素含量及变异规律可以有效地反映植物营养的调控分配策略以及对环境变化的适应机制, 相关研究不应把不同器官割裂开来, 而应该将“叶-枝-干-根”进行联动分析, 否则可能会获得片面的结果。例如, 人们经常从叶片氮含量角度探讨氮的限制性, 而忽略植物茎/干氮含量应对“氮限制”的重要性。如果氮真是特定植物群落生长的限制因子, 植物在保证基本光合生理氮需求的前提下, 会把多余的氮储存在枝干或根系中, 而不是冒险地把限制其种群繁衍的氮更多地分配到叶片, 即维持相对低的、相对稳定的氮含量, 才是植物应对氮限制情景下的长期生存优先策略, 可概括为植物器官间功能元素优化分配与协调适应原则(Zhang et al., 2018, 2020)。
5.3 植物功能性状的多维度协同适应与响应机制
大多数研究还局限在探究单一功能性状的变异以及两两功能性状的关系上, 而植物生长、发育和繁殖等每一个过程都需要多个功能性状的协同与权衡。因此, 只有综合考虑多个功能性状间的复杂关系, 才有望系统而全面地阐述植物对资源环境变化的适应对策(He et al., 2020a; Li et al., 2022c)。目前, 研究人员在对多种功能性状的研究中, 大多采用“降维”的方式进行处理。如果多个功能性状呈现强烈的相关性, 则可采用主成分分析等方法对这些功能性状进行简化。例如, 植物叶经济谱被认为是沿单轴变化的, 一端代表的是生长速度快、寿命短的物种, 另一端代表的是生长速度缓慢但寿命长的物种(Wright et al., 2004)。通过主成分对数据降维的分析在表达上较为直观, 但缺陷是掩盖了多种功能性状间真实的复杂关系。
自然界中的植物以多维空间形式来响应复杂而多变的资源环境。为了推动这方面的探索工作, He等(2020a)发展了植物功能性状网络(plant functional trait networks)的理论体系, 系统地阐述了其定义、关键参数及生态学意义。在新理论体系中, 植物功能性状可以当作网络的“节点”, 性状-性状的关系可以当作网络的“边”, 进而构建多维度的植物功能性状网络, 可以用网络分析中的参数量化多性状间的关系, 并鉴定其中重要的或敏感的功能性状。作为一种新的理念或方法, 植物功能性状网络为一系列研究提供了新的视角, 如植物功能性状生物地理学研究、植物群落演替过程研究、整合植物不同器官关系研究、植物群落对全球变化响应研究等。Li等(2022c)以中国东部森林植物35个叶片性状为研究对象, 发现叶经济学性状是性状网络中的关键性状, 并且其在网络中的中心位置受环境的影响较小。Liu等(2022a)发现藤本植物性状网络的模块化程度显著高于乔木的性状网络, 为全球变化条件下藤本植物丰富度增加的现象提供了新的解释。Zhang等(2021a)发现氮添加对草地群落结构的影响取决于植物功能元素网络的可塑性, 可塑性高的物种在氮添加下相对生物量增加, 反之亦然。总之, 植物性状网络为揭示植物对资源环境变化和外界扰动的响应提供了多维度的新视角, 可能发展成为未来植物功能性状研究的新生长点和主流研究方法。
5.4 从群落内部功能性状分布探究生态系统功能
功能性状驱动理论(functional trait driver theory)认为生物、非生物和中性过程的相对作用变化将导致植物群落存在不同功能性状分布特征谱系, 从而深刻影响生态系统过程和功能。受“质量比假说”影响, 科研人员非常重视群落尺度的加权平均值, 这在一定程度上可能夸大了优势物种的影响; 相反地, “生态位互补假说”强调了非优势物种, 甚至稀有物种在群落中的作用。群落内植物功能性状分布(plant functional trait moment)可将优势种、非优势种和稀有种的作用都考虑进来, 并用群落加权均值、方差、偏度和峰度来量化。均值主要反映了植物群落对环境适应的最优结果; 方差反映了植物群落功能性状分散程度, 也就是功能离散度, 可衡量植物群落内部生态位互补的程度; 偏度和峰度是性状频度分布的两个形态参数, 偏度表征着性状频度分布的功能稀有性, 峰度反映着功能性状频度分布的均匀度(Liu et al., 2020)。
植物功能性状分布可以帮助人们探究跨越多个尺度植物群落结构的维持法则。在种群尺度上, 功能性状分布反映的是种群对不同选择压力和其他演化驱动力的响应; 在群落尺度上, 功能性状分布反映的是局域选择的差异、物种的相互作用、与物种共存和生态系统功能相关的不同生态驱动因素, 以及过去的历史干扰、物种的迁移、灭绝和环境变化。功能性状分布的理论基础已经相当成熟, 但受限于系统性数据的缺乏, 人们目前还仅能使用比叶面积和树高等常用功能性状分布来推断群落构建过程, 以及种群、群落和生态系统对气候变化的响应(Gross et al., 2021)。随着配套性和系统性植物功能性状数据库的发展, Liu等(2022b)获得气孔面积指数、最大气孔导度和气孔空间利用效率的群落加权均值、方差、偏度和峰度, 并首次在区域尺度探究气孔性状频度特征对生态系统生产力的影响。总而言之, 植物功能性状分布既考虑了优势物种的选择效应, 又考虑了非优势物种的生态位互补效应, 方便纳入植物功能性状的种内变异, 因此在以功能性状为基础的研究上具有广阔的应用前景。此外, 群落内植物功能性状分布蕴含了复杂自然系统的丰富信息, 其特征也有利于未来与光谱遥感等建立理论联系, 不仅能从几个关键特征参数着手, 更能从性状分布的微弱波动中揭示特定植物对资源环境变化的敏感性, 反映植物群落结构变化, 进而推算和预测生态系统功能。
5.5 从植物功能性状到生态系统(多)功能
“结构决定功能”是生态系统生态学的基本法则, 然而, 在面对复杂群落或复杂的生态系统时, 弄清“结构如何决定功能”远比空谈“结构决定功能”更重要, 也更具有理论和实践价值。植物功能性状的微弱变化以及多种功能性状的复杂关系, 是决定生态系统结构和功能及其对全球变化响应的核心根源。由于种种原因, 现有的植物功能型框架并未给予植物功能性状应有的重要地位, 一定程度上阻碍了全球植被动态模型的发展。植物功能性状不仅可以反映植物对环境变化的响应与适应, 而且与生态系统的结构和功能密切相关, 基于植物功能性状的途径将可显著提升全球植被动态模型对生态系统过程的模拟和功能的预测。
在所有的生态系统功能中, 生产力的变异是最受关注的话题, 而准确预测区域乃至全球生态系统生产力, 是永恒的核心科学问题之一。传统上以大叶模式(big-leaf model)为核心的生态过程模型来预测生产力的时空变异, 并取得了重大进展。该途径基于叶片组织水平光合和呼吸机理过程, 通过统一性原理来模拟分析生态系统生产力, 并在环境变量驱动下预测生产力时空尺度变异。它在单站点的预测精度较高, 但在区域以及全球生产力时空变异预测中存在高不确定性(He et al., 2019)。研究人员特别指出: 植物功能性状, 如叶片大小、比叶面积、叶片碳氮比等, 在“器官—物种—功能群—群落—生态系统”等多尺度上影响甚至决定植物生产力, 是未来模型改进和发展的重要方向。近期, 科研人员基于物理学经典的发动机功率模式和植物群落功能性状二维特征, 发展了“数量性状×效率性状×生长期”为核心的生产力预测新框架(trait-based productivity, TBP) (图5; He et al., 2023)。在新框架中, 温度、降水和土壤养分等环境因子对生态系统生产力的影响并不是直接的, 而是通过影响群落结构、物种组成、种内功能性状变异等, 间接影响生态系统生产力时空变异。最近的案例研究表明: 利用单位土地面积标准化的群落叶绿素的数量性状和效率性状, 能解释中国草地生态系统生产力60%的空间变异(Zhang et al., 2021b); 利用叶片比叶面积的数量性状和效率性状, 可以解释森林演替梯度上生态系统生产力78%的变异(Li et al., 2021); 利用叶片氮含量的数量性状和效率性状, 可以解释中国自然生态系统生产力81%的空间变异(Yan et al., 2022)。随着植物功能性状数据的积累和高光谱遥感等高新技术的发展, 植物群落功能性状可能是预测生态系统生产力(或多功能)的重要途径, 并有望成为未来新一代机理过程模型的驱动核心。
图5
图5
基于植物群落功能性状的生态系统生产力时空变异预测新模式。
Fig. 5
Using plant community functional traits to predict the spatio-temporal variability of ecosystem productivity.
5.6 以功能性状为基础构建多学科融合发展的桥梁
自然生态系统是由特定空间范围内植物、动物、微生物等生物要素与非生物环境要素共同构成, 并以物质循环和能量流动来串联这些生物要素和非生物要素。近年来, 科研人员逐步收集和整编了与脊椎动物(如爬行动物、鱼类、鸟类、两栖动物、哺乳动物等)、无脊椎动物、珊瑚和真菌等相关的功能性状数据库(Gallagher et al., 2020)。然而, 真正在生态系统尺度深入探讨植物-动物-微生物功能性状关系、空间变异规律及其对资源环境变化响应的研究还非常罕见。大多数研究都是聚焦在植物、动物或土壤微生物的某一类生物功能性状变异与适应机制研究。如何基于功能性状研究框架, 对生态系统植物-动物-微生物相互关系进行研究, 是当前所面临的巨大挑战。近期发展的以群落功能性状(community functional traits)为基础的生态系统功能性状(ecosystem functional traits)理论框架, 提出了单位土地面积标准化的植物性状新参数(He et al., 2019; Zhang et al., 2021)。群落功能性状的提出和发展, 为在生态系统尺度深入探讨植物、动物、土壤微生物性状的内部关系、协同或趋异规律提供了新思路, 也可用于探讨植物-动物-土壤微生物-土壤和气候等的相互作用关系, 并从功能性状角度揭示植物群落、动物群落和土壤微生物群落的构建与维持机制(图6)。
图6
图6
以群落功能性状为基础建立生态系统尺度植物-动物-微生物关系的研究框架。
Fig. 6
A framework to explore plants-animals-microorganisms interactions on basis of plant community functional traits.
此外, 生态系统功能性状是一系列基于单位土地面积群落性状的组合, 可以很好地解决长期以来植物/动物/微生物功能性状数据与宏观尺度观测技术空间尺度不匹配的问题。同时, 基于植物群落功能性状的生态系统生产力框架构建、植物功能性状网络理论体系等的发展, 与生态系统功能性状一起, 突破了植物功能性状跨尺度(多物种、多性状、多尺度)的研究壁垒, 拓展了基于功能性状生态学的研究范畴。
在新研究框架下, 科研人员可以充分利用各种高新技术, 推动生态系统组分-结构-过程-功能-服务级联关系的基于性状的整合生态学(trait-based integrative ecology)的理论框架构建(图7)。随着宏观尺度的高新技术(遥感和通量观测)快速发展, 将可能会产生更多的可用于解释生态系统结构、性状和功能的参数, 如叶面积指数、比叶面积、荧光参数、群落结构参数等。这些参数必将成为相关领域新的生长点。总之, 生态系统功能性状(植物群落功能性状、动物群落功能性状和土壤微生物群落功能性状等)为构建地面测试参数与高新技术间的桥梁奠定了坚实的基础, 不仅可推动生态系统生态学自身的发展, 还有助于宏观生态、宏观地学和遥感科学等多学科融合发展。
图7
图7
以群落功能性状为核心构建整合生态学研究的理论框架。虚线代表“结构—过程—功能—服务”间的连接, 实线表示通过生态系统功能性状连接“结构—过程—功能—服务”。
Fig. 7
New framework of integrative ecology based on plant community functional traits. The dotted line represents the connection between “structure--process--function--service” and the solid line represents the connection between “structure--process--function--service” and ecosystem functional traits.
6 总结
基于植物功能性状的研究方法贯穿了生态学不同尺度的研究。本文从植物功能性状的概念发展开始, 系统地阐述了植物功能性状的种内变异、种间变异、性状-性状关系、性状-生态系统功能关系的研究进展。在此基础之上, 提出了未来在植物功能性状上应加强多器官间的协同关系的研究, 而植物功能性状网络、植物群落功能系统性状、群落内植物功能性状分布和基于群落功能预测生态系统(多)功能等, 可能会成为下一阶段植物功能性状研究的新增长点。除此之外, 建议未来应通过整合动物、植物、微生物的群落功能性状, 深入探讨植物-动物-土壤微生物-土壤和气候等的相互作用关系, 并从功能性状角度揭示植物群落、动物群落和土壤微生物群落的构建与维持机制。同时, 建议发展以群落功能性状为核心的整合生态学研究的理论框架, 推动以功能性状为基础的生态学的发展, 促进宏观生态、地学和遥感科学等多学科融合, 使相关研究能更好地服务于当前生态环境问题和全球变化问题的解决。
致谢
感谢民族地区生态环境国家民委重点实验室(中央民族大学)自主课题(KLEEMA202302)的资助。
参考文献
The fungal collaboration gradient dominates the root economics space in plants
Community assembly along a soil depth gradient: contrasting patterns of plant trait convergence and divergence in a Mediterranean rangeland
DOI:10.1111/jec.2012.100.issue-6 URL [本文引用: 1]
Tundra Trait Team: a database of plant traits spanning the tundra biome
Why intraspecific trait variation matters in community ecology
DOI:10.1016/j.tree.2011.01.009 URL [本文引用: 2]
Functional diversity effects on productivity increase with age in a forest biodiversity experiment
Assessing the reliability of predicted plant trait distributions at the global scale
DOI:10.1111/geb.13086
PMID:32612452
[本文引用: 1]
Predictions of plant traits over space and time are increasingly used to improve our understanding of plant community responses to global environmental change. A necessary step forward is to assess the reliability of global trait predictions. In this study, we predict community mean plant traits at the global scale and present a systematic evaluation of their reliability in terms of the accuracy of the models, ecological realism and various sources of uncertainty.Global.Present.Vascular plants.We predicted global distributions of community mean specific leaf area, leaf nitrogen concentration, plant height and wood density with an ensemble modelling approach based on georeferenced, locally measured trait data representative of the plant community. We assessed the predictive performance of the models, the plausibility of predicted trait combinations, the influence of data quality, and the uncertainty across geographical space attributed to spatial extrapolation and diverging model predictions.Ensemble predictions of community mean plant height, specific leaf area and wood density resulted in ecologically plausible trait-environment relationships and trait-trait combinations. Leaf nitrogen concentration, however, could not be predicted reliably. The ensemble approach was better at predicting community trait means than any of the individual modelling techniques, which varied greatly in predictive performance and led to divergent predictions, mostly in African deserts and the Arctic, where predictions were also extrapolated. High data quality (i.e., including intraspecific variability and a representative species sample) increased model performance by 28%.Plant community traits can be predicted reliably at the global scale when using an ensemble approach and high-quality data for traits that mostly respond to large-scale environmental factors. We recommend applying ensemble forecasting to account for model uncertainty, using representative trait data, and more routinely assessing the reliability of trait predictions.© 2020 The Authors. Global Ecology and Biogeography published by John Wiley & Sons Ltd.
sPlot—A new tool for global vegetation analyses
DOI:10.1111/jvs.12710
[本文引用: 1]
Aims Vegetation-plot records provide information on the presence and cover or abundance of plants co-occurring in the same community. Vegetation-plot data are spread across research groups, environmental agencies and biodiversity research centers and, thus, are rarely accessible at continental or global scales. Here we present the sPlot database, which collates vegetation plots worldwide to allow for the exploration of global patterns in taxonomic, functional and phylogenetic diversity at the plant community level. Results sPlot version 2.1 contains records from 1,121,244 vegetation plots, which comprise 23,586,216 records of plant species and their relative cover or abundance in plots collected worldwide between 1885 and 2015. We complemented the information for each plot by retrieving climate and soil conditions and the biogeographic context (e.g., biomes) from external sources, and by calculating community-weighted means and variances of traits using gap-filled data from the global plant trait database TRY. Moreover, we created a phylogenetic tree for 50,167 out of the 54,519 species identified in the plots. We present the first maps of global patterns of community richness and community-weighted means of key traits. Conclusions The availability of vegetation plot data in sPlot offers new avenues for vegetation analysis at the global scale.
Global trait-environment relationships of plant communities
Leaf morphology and leaf chemical composition in three Quercus (Fagaceae) species along a rainfall gradient in NE Spain
Towards a worldwide wood economics spectrum
DOI:10.1111/j.1461-0248.2009.01285.x
PMID:19243406
[本文引用: 1]
Wood performs several essential functions in plants, including mechanically supporting aboveground tissue, storing water and other resources, and transporting sap. Woody tissues are likely to face physiological, structural and defensive trade-offs. How a plant optimizes among these competing functions can have major ecological implications, which have been under-appreciated by ecologists compared to the focus they have given to leaf function. To draw together our current understanding of wood function, we identify and collate data on the major wood functional traits, including the largest wood density database to date (8412 taxa), mechanical strength measures and anatomical features, as well as clade-specific features such as secondary chemistry. We then show how wood traits are related to one another, highlighting functional trade-offs, and to ecological and demographic plant features (growth form, growth rate, latitude, ecological setting). We suggest that, similar to the manifold that tree species leaf traits cluster around the 'leaf economics spectrum', a similar 'wood economics spectrum' may be defined. We then discuss the biogeography, evolution and biogeochemistry of the spectrum, and conclude by pointing out the major gaps in our current knowledge of wood functional traits.
A handbook of protocols for standardised and easy measurement of plant functional traits worldwide
DOI:10.1071/BT02124
URL
[本文引用: 2]
There is growing recognition that classifying terrestrial plant species on the basis of their function (into 'functional types') rather than their higher taxonomic identity, is a promising way forward for tackling important ecological questions at the scale of ecosystems, landscapes or biomes. These questions include those on vegetation responses to and vegetation effects on, environmental changes (e.g. changes in climate, atmospheric chemistry, land use or other disturbances). There is also growing consensus about a shortlist of plant traits that should underlie such functional plant classifications, because they have strong predictive power of important ecosystem responses to environmental change and/or they themselves have strong impacts on ecosystem processes. The most favoured traits are those that are also relatively easy and inexpensive to measure for large numbers of plant species. Large international research efforts, promoted by the IGBP–GCTE Programme, are underway to screen predominant plant species in various ecosystems and biomes worldwide for such traits. This paper provides an international methodological protocol aimed at standardising this research effort, based on consensus among a broad group of scientists in this field. It features a practical handbook with step-by-step recipes, with relatively brief information about the ecological context, for 28 functional traits recognised as critical for tackling large-scale ecological questions.
Leaf pH as a plant trait: species- driven rather than soil-driven variation
DOI:10.1111/fec.2011.25.issue-3 URL [本文引用: 1]
Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California
DOI:10.1890/07-1134.1
URL
[本文引用: 1]
Community assembly processes are thought to shape the mean, spread, and spacing of functional trait values within communities. Two broad categories of assembly processes have been proposed: first, a habitat filter that restricts the range of viable strategies and second, a partitioning of microsites and/or resources that leads to a limit to the similarity of coexisting species. The strength of both processes may be dependent on conditions at a particular site and may change along an abiotic gradient.
A trait-based test for habitat filtering: convex hull volume
Community assembly theory suggests that two processes affect the distribution of trait values within communities: competition and habitat filtering. Within a local community, competition leads to ecological differentiation of coexisting species, while habitat filtering reduces the spread of trait values, reflecting shared ecological tolerances. Many statistical tests for the effects of competition exist in the literature, but measures of habitat filtering are less well-developed. Here, we present convex hull volume, a construct from computational geometry, which provides an n-dimensional measure of the volume of trait space occupied by species in a community. Combined with ecological null models, this measure offers a useful test for habitat filtering. We use convex hull volume and a null model to analyze California woody-plant trait and community data. Our results show that observed plant communities occupy less trait space than expected from random assembly, a result consistent with habitat filtering.
Robust leaf trait relationships across species under global environmental changes
The global spectrum of plant form and function
DOI:10.1038/nature16489 [本文引用: 1]
Plant traits that influence ecosystem processes vary independently among species
DOI:10.1890/03-0405 URL [本文引用: 1]
From atoms to ecosystems: elementome diversity meets ecosystem functioning
DOI:10.1111/nph.v234.1 URL [本文引用: 1]
A starting guide to root ecology: strengthening ecological concepts and standardising root classification, sampling, processing and trait measurements
Climate, soil and plant functional types as drivers of global fine-root trait variation
DOI:10.1111/jec.2017.105.issue-5 URL [本文引用: 1]
Open Science principles for accelerating trait-based science across the Tree of Life
Plant functional markers capture ecosystem properties during secondary succession
DOI:10.1890/03-0799 URL [本文引用: 1]
Towards a thesaurus of plant characteristics: an ecological contribution
DOI:10.1111/jec.2017.105.issue-2 URL [本文引用: 2]
Functional trait diversity maximizes ecosystem multifunctionality
Unveiling ecological assembly rules from commonalities in trait distributions
DOI:10.1111/ele.v24.8 URL [本文引用: 1]
Biogeography and variability of eleven mineral elements in plant leaves across gradients of climate, soil and plant functional type in China
DOI:10.1111/j.1461-0248.2011.01641.x
PMID:21692962
[本文引用: 1]
Understanding variation of plant nutrients is largely limited to nitrogen and to a lesser extent phosphorus. Here we analyse patterns of variation in 11 elements (nitrogen/phosphorus/potassium/calcium/magnesium/sulphur/silicon/iron/sodium/manganese/aluminium) in leaves of 1900 plant species across China. The concentrations of these elements show significant latitudinal and longitudinal trends, driven by significant influences of climate, soil and plant functional type. Precipitation explains more variation than temperature for all elements except phosphorus and aluminium, and the 11 elements differentiate in relation to climate, soil and functional type. Variability (assessed as the coefficient of variation) and environmental sensitivity (slope of responses to environmental gradients) are lowest for elements that are required in the highest concentrations, most abundant and most often limiting in nature (the Stability of Limiting Elements Hypothesis). Our findings can help initiate a more holistic approach to ecological plant nutrition and lay the groundwork for the eventual development of multiple element biogeochemical models.© 2011 Blackwell Publishing Ltd/CNRS.
Plant functional traits shape multiple ecosystem services, their trade-offs and synergies in grasslands
DOI:10.1111/jpe.v57.8 URL [本文引用: 1]
Plant trait networks: improved resolution of the dimensionality of adaptation
DOI:10.1016/j.tree.2020.06.003 URL [本文引用: 4]
Ecosystem traits linking functional traits to macroecology
DOI:10.1016/j.tree.2018.11.004 URL [本文引用: 7]
Ecosystem traits open new insights into macroecology: opportunity and challenge
生态系统性状对宏生态研究的启示与挑战
Perspectives and challenges in plant traits: from organs to communities
植物性状研究的机遇与挑战: 从器官到群落
Predicting ecosystem productivity based on plant community traits
DOI:10.1016/j.tplants.2022.08.015 URL [本文引用: 3]
Patterns and influencing factors of traits in forest ecosystems: synthesis and perspectives on the synthetic investigation from the north-east transect of eastern China (NETEC)
森林生态系统性状的空间格局与影响因素研究进展——基于中国东部样带的整合分析
Growing-season temperature and precipitation are independent drivers of global variation in xylem hydraulic conductivity
DOI:10.1111/gcb.v26.3 URL [本文引用: 1]
V.PhyloMaker2: an updated and enlarged R package that can generate very large phylogenies for vascular plants
TRY—A global database of plant traits
TRY plant trait database—Enhanced coverage and open access
DOI:10.1111/gcb.v26.9 URL [本文引用: 1]
Plant functional traits and the multidimensional nature of species coexistence
DOI:10.1073/pnas.1413650112
PMID:25561561
[本文引用: 1]
Understanding the processes maintaining species diversity is a central problem in ecology, with implications for the conservation and management of ecosystems. Although biologists often assume that trait differences between competitors promote diversity, empirical evidence connecting functional traits to the niche differences that stabilize species coexistence is rare. Obtaining such evidence is critical because traits also underlie the average fitness differences driving competitive exclusion, and this complicates efforts to infer community dynamics from phenotypic patterns. We coupled field-parameterized mathematical models of competition between 102 pairs of annual plants with detailed sampling of leaf, seed, root, and whole-plant functional traits to relate phenotypic differences to stabilizing niche and average fitness differences. Single functional traits were often well correlated with average fitness differences between species, indicating that competitive dominance was associated with late phenology, deep rooting, and several other traits. In contrast, single functional traits were poorly correlated with the stabilizing niche differences that promote coexistence. Niche differences could only be described by combinations of traits, corresponding to differentiation between species in multiple ecological dimensions. In addition, several traits were associated with both fitness differences and stabilizing niche differences. These complex relationships between phenotypic differences and the dynamics of competing species argue against the simple use of single functional traits to infer community assembly processes but lay the groundwork for a theoretically justified trait-based community ecology.
Plant functional traits have globally consistent effects on competition
DOI:10.1038/nature16476 [本文引用: 1]
Latitudinal variation in plant size and relative growth rate in Arabidopsis thaliana
DOI:10.1007/s004420050519 URL [本文引用: 1]
Variation in functional trait diversity from tropical to cold-temperate forests and linkage to productivity
Plant community traits can explain variation in productivity of selective logging forests after different restoration times
Leaf trait network architecture shifts with species-richness and climate across forests at continental scale
DOI:10.1111/ele.v25.6 URL [本文引用: 1]
Global response patterns of plant photosynthesis to nitrogen addition: a meta-analysis
DOI:10.1111/gcb.15071
PMID:32146723
[本文引用: 1]
A mechanistic understanding of plant photosynthetic response is needed to reliably predict changes in terrestrial carbon (C) gain under conditions of chronically elevated atmospheric nitrogen (N) deposition. Here, using 2,683 observations from 240 journal articles, we conducted a global meta-analysis to reveal effects of N addition on 14 photosynthesis-related traits and affecting moderators. We found that across 320 terrestrial plant species, leaf N was enhanced comparably on mass basis (N, +18.4%) and area basis (N, +14.3%), with no changes in specific leaf area or leaf mass per area. Total leaf area (TLA) was increased significantly, as indicated by the increases in total leaf biomass (+46.5%), leaf area per plant (+29.7%), and leaf area index (LAI, +24.4%). To a lesser extent than for TLA, N addition significantly enhanced leaf photosynthetic rate per area (A, +12.6%), stomatal conductance (g, +7.5%), and transpiration rate (E, +10.5%). The responses of A were positively related with that of g, with no changes in instantaneous water-use efficiency and only slight increases in long-term water-use efficiency (+2.5%) inferred from C composition. The responses of traits depended on biological, experimental, and environmental moderators. As experimental duration and N load increased, the responses of LAI and A diminished while that of E increased significantly. The observed patterns of increases in both TLA and E indicate that N deposition will increase the amount of water used by plants. Taken together, N deposition will enhance gross photosynthetic C gain of the terrestrial plants while increasing their water loss to the atmosphere, but the effects on C gain might diminish over time and that on plant water use would be amplified if N deposition persists.© 2020 John Wiley & Sons Ltd.
Variation of stomatal traits from cold temperate to tropical forests and association with water use efficiency
DOI:10.1111/fec.2018.32.issue-1 URL [本文引用: 2]
Differential adaptation of lianas and trees in wet and dry forests revealed by trait correlation networks
Stomatal arrangement pattern: a new direction to explore plant adaptation and evolution
Optimal community assembly related to leaf economic-hydraulic- anatomical traits
Contrasting adaptation and optimization of stomatal traits across communities at continental scale
DOI:10.1093/jxb/erac266
URL
[本文引用: 2]
Shifts in stomatal trait distributions across contrasting environments and their linkage with ecosystem productivity at large spatial scales have been unclear. Here, we measured the maximum stomatal conductance (g), stomatal area fraction (f), and stomatal space-use efficiency (e, the ratio of g to f) of 800 plant species ranging from tropical to cold-temperate forests, and determined their values for community-weighted mean, variance, skewness, and kurtosis. We found that the community-weighted means of g and f were higher in drier sites, and thus, that drought ‘avoidance’ by water availability-driven growth pulses was the dominant mode of adaptation for communities at sites with low water availability. Additionally, the variance of g and f was also higher at arid sites, indicating greater functional niche differentiation, whereas that for e was lower, indicating the convergence in efficiency. When all other stomatal trait distributions were held constant, increasing kurtosis or decreasing skewness of g would improve ecosystem productivity, whereas f showed the opposite patterns, suggesting that the distributions of inter-related traits can play contrasting roles in regulating ecosystem productivity. These findings demonstrate the climatic trends of stomatal trait distributions and their significance in the prediction of ecosystem productivity.
Can evolutionary history predict plant plastic responses to climate change?
DOI:10.1111/nph.v235.3 URL [本文引用: 3]
Coordination of economics spectra in leaf, stem and root within the genus Artemisia along a large environmental gradient in China
DOI:10.1111/geb.v32.2 URL [本文引用: 1]
Foliar pH, an emerging plant functional trait: biogeography and variability across Northern China
DOI:10.1111/geb.v28.3 URL [本文引用: 1]
Plant functional traits—Concepts, applications and future directions
植物功能性状研究进展
Interspecific and intraspecific trait variability differentially affect community-weighted trait responses to and recovery from long-term drought
DOI:10.1111/fec.v37.3 URL [本文引用: 1]
Evolutionary history resolves global organization of root functional traits
DOI:10.1038/nature25783 URL [本文引用: 1]
The BIEN R package: a tool to access the Botanical Information and Ecology Network (BIEN) database
REVIEW: plant functional traits in agroecosystems: a blueprint for research
DOI:10.1111/jpe.2015.52.issue-6 URL [本文引用: 1]
Global patterns of intraspecific leaf trait responses to elevation
DOI:10.1111/gcb.14646
PMID:31056841
[本文引用: 1]
Elevational gradients are often used to quantify how traits of plant species respond to abiotic and biotic environmental variations. Yet, such analyses are frequently restricted spatially and applied along single slopes or mountain ranges. Since we know little on the response of intraspecific leaf traits to elevation across the globe, we here perform a global meta-analysis of leaf traits in 109 plant species located in 4 continents and reported in 71 studies published between 1983 and 2018. We quantified the intraspecific change in seven morpho-ecophysiological leaf traits along global elevational gradients: specific leaf area (SLA), leaf mass per area (LMA), leaf area (LA), nitrogen concentration per unit of area (Narea), nitrogen concentration per unit mass (Nmass), phosphorous concentration per unit mass (Pmass) and carbon isotope composition (δ C). We found LMA, Narea, Nmass and δ C to significantly increase and SLA to decrease with increasing elevation. Conversely, LA and Pmass showed no significant pattern with elevation worldwide. We found significantly larger increase in Narea, Nmass, Pmass and δ C with elevation in warmer regions. Larger responses to increasing elevation were apparent for SLA of herbaceous compared to woody species, but not for the other traits. Finally, we also detected evidences of covariation across morphological and physiological traits within the same elevational gradient. In sum, we demonstrate that there are common cross-species patterns of intraspecific leaf trait variation across elevational gradients worldwide. Irrespective of whether such variation is genetically determined via local adaptation or attributed to phenotypic plasticity, the leaf trait patterns quantified here suggest that plant species are adapted to live on a range of temperature conditions. Since the distribution of mountain biota is predominantly shifting upslope in response to changes in environmental conditions, our results are important to further our understanding of how plants species of mountain ecosystems adapt to global environmental change.© 2019 John Wiley & Sons Ltd.
Not all traits are ‘functional’: insights from taxonomy and biodiversity-ecosystem functioning research
DOI:10.1007/s10531-014-0618-5 URL [本文引用: 1]
Global patterns in seed size
DOI:10.1111/geb.2007.16.issue-1 URL [本文引用: 1]
Carbon concentration in the world’s trees across climatic gradients
DOI:10.1111/nph.v232.1 URL [本文引用: 1]
New handbook for standardised measurement of plant functional traits worldwide
DOI:10.1071/BT12225
URL
[本文引用: 3]
Plant functional traits are the features (morphological, physiological, phenological) that represent ecological strategies and determine how plants respond to environmental factors, affect other trophic levels and influence ecosystem properties. Variation in plant functional traits, and trait syndromes, has proven useful for tackling many important ecological questions at a range of scales, giving rise to a demand for standardised ways to measure ecologically meaningful plant traits. This line of research has been among the most fruitful avenues for understanding ecological and evolutionary patterns and processes. It also has the potential both to build a predictive set of local, regional and global relationships between plants and environment and to quantify a wide range of natural and human-driven processes, including changes in biodiversity, the impacts of species invasions, alterations in biogeochemical processes and vegetation–atmosphere interactions. The importance of these topics dictates the urgent need for more and better data, and increases the value of standardised protocols for quantifying trait variation of different species, in particular for traits with power to predict plant- and ecosystem-level processes, and for traits that can be measured relatively easily. Updated and expanded from the widely used previous version, this handbook retains the focus on clearly presented, widely applicable, step-by-step recipes, with a minimum of text on theory, and not only includes updated methods for the traits previously covered, but also introduces many new protocols for further traits. This new handbook has a better balance between whole-plant traits, leaf traits, root and stem traits and regenerative traits, and puts particular emphasis on traits important for predicting species’ effects on key ecosystem properties. We hope this new handbook becomes a standard companion in local and global efforts to learn about the responses and impacts of different plant species with respect to environmental changes in the present, past and future.
How do different measures of functional diversity perform?
DOI:10.1890/03-0226 URL [本文引用: 1]
Towards the flower economics spectrum
DOI:10.1111/nph.v229.2 URL [本文引用: 1]
A unique web resource for physiology, ecology and the environmental sciences: PrometheusWiki
DOI:10.1071/FP10097
URL
[本文引用: 2]
\n\nPROtocols, METHods, Explanations and Updated Standards Wiki (PrometheusWiki, http://www.publish.csiro.au/prometheuswiki/) is a new open access, fully searchable web resource that contains protocols and methods for plant physiology, ecology and environmental sciences. Contributions can be uploaded by anyone in the community, with attributed authorship, and are open for wiki-style comment. This resource allows the gathering in one place of methods, links to published methods and detailed protocols used by leading laboratories around the world, with annotation. As a web resource, PrometheusWiki is continually evolving and updatable, easily and rapidly searchable and highly accessible. It will also enhance communication, allowing multimedia description of protocols and techniques, with spreadsheet tools, slide shows and video files easily integrated into the text. This resource is anticipated to lead to strong benefits in standardising methods, improving access to training for students and professionals, promoting collaborations and expanding the cutting edge of research.\n
Leaf venation: structure, function, development, evolution, ecology and applications in the past, present and future
DOI:10.1111/nph.12253
PMID:23600478
[本文引用: 1]
The design and function of leaf venation are important to plant performance, with key implications for the distribution and productivity of ecosystems, and applications in paleobiology, agriculture and technology. We synthesize classical concepts and the recent literature on a wide range of aspects of leaf venation. We describe 10 major structural features that contribute to multiple key functions, and scale up to leaf and plant performance. We describe the development and plasticity of leaf venation and its adaptation across environments globally, and a new global data compilation indicating trends relating vein length per unit area to climate, growth form and habitat worldwide. We synthesize the evolution of vein traits in the major plant lineages throughout paleohistory, highlighting the multiple origins of individual traits. We summarize the strikingly diverse current applications of leaf vein research in multiple fields of science and industry. A unified core understanding will enable an increasing range of plant biologists to incorporate leaf venation into their research.© 2013 The Authors New Phytologist © 2013 New Phytologist Trust.
A global meta- analysis of the relative extent of intraspecific trait variation in plant communities
DOI:10.1111/ele.12508
PMID:26415616
[本文引用: 2]
Recent studies have shown that accounting for intraspecific trait variation (ITV) may better address major questions in community ecology. However, a general picture of the relative extent of ITV compared to interspecific trait variation in plant communities is still missing. Here, we conducted a meta-analysis of the relative extent of ITV within and among plant communities worldwide, using a data set encompassing 629 communities (plots) and 36 functional traits. Overall, ITV accounted for 25% of the total trait variation within communities and 32% of the total trait variation among communities on average. The relative extent of ITV tended to be greater for whole-plant (e.g. plant height) vs. organ-level traits and for leaf chemical (e.g. leaf N and P concentration) vs. leaf morphological (e.g. leaf area and thickness) traits. The relative amount of ITV decreased with increasing species richness and spatial extent, but did not vary with plant growth form or climate. These results highlight global patterns in the relative importance of ITV in plant communities, providing practical guidelines for when researchers should include ITV in trait-based community and ecosystem studies. © 2015 John Wiley & Sons Ltd/CNRS.
All traits are functional: an evolutionary viewpoint
DOI:10.1016/j.tplants.2021.04.004 URL [本文引用: 1]
Global analysis of floral longevity reveals latitudinal gradients and biotic and abiotic correlates
DOI:10.1111/nph.v235.5 URL [本文引用: 1]
Tree species and genetic diversity increase productivity via functional diversity and trophic feedbacks
Global plant trait relationships extend to the climatic extremes of the tundra biome
A global database of paired leaf nitrogen and phosphorus concentrations of terrestrial plants
Independent evolutionary changes in fine-root traits among main clades during the diversification of seed plants
DOI:10.1111/nph.v228.2 URL [本文引用: 1]
Let the concept of trait be functional!
DOI:10.1111/oik.2007.116.issue-5 URL [本文引用: 9]
The China plant trait database version 2
The China Plant Trait Database: toward a comprehensive regional compilation of functional traits for land plants
DOI:10.1002/ecy.2091
PMID:29155446
[本文引用: 1]
<空>
Complex trait relationships between leaves and absorptive roots: coordination in tissue N concentration but divergence in morphology
DOI:10.1002/ece3.2895
PMID:28428860
[本文引用: 1]
Leaves and absorptive roots (i.e., first-order root) are above- and belowground plant organs related to resource acquisition; however, it is controversy over whether these two sets of functional traits vary in a coordinated manner. Here, we examined the relationships between analogous above- and belowground traits, including chemical (tissue C and N concentrations) and morphological traits (thickness and diameter, specific leaf area and root length, and tissue density) of 154 species sampling from eight subtropical and temperate forests. Our results showed that N concentrations of leaves and absorptive roots were positively correlated independent of phylogeny and plant growth forms, whereas morphological traits between above- and belowground organs varied independently. These results indicate that, different from plant economics spectrum theory, there is a complex integration of diverse adaptive strategies of plant species to above- and belowground environments, with convergent adaptation in nutrient traits but divergence in morphological traits across plant organs. Our results offer a new perspective for understanding the resource capture strategies of plants in adaptation to heterogeneous environments, and stress the importance of phylogenetic consideration in the discussion of cross-species trait relationships.
Latitudinal variation of leaf morphological traits from species to communities along a forest transect in Eastern China
DOI:10.1007/s11442-016-1251-x
[本文引用: 1]
Comprehensive information on geographic patterns of leaf morphological traits in Chinese forests is still scarce. To explore the spatial patterns of leaf traits, we investigated leaf area (LA), leaf thickness (LT), specific leaf area (SLA), and leaf dry matter content (LDMC) across 847 species from nine typical forests along the North-South Transect of Eastern China (NSTEC) between July and August 2013, and also calculated the community weighted means (CWM) of leaf traits by determining the relative dominance of each species. Our results showed that, for all species, the means (± SE) of LA, LT, SLA, and LDMC were 2860.01 ± 135.37 mm2, 0.17 ± 0.003 mm, 20.15 ± 0.43 m2 kg-1, and 316.73 ± 3.81 mg g-1, respectively. Furthermore, latitudinal variation in leaf traits differed at the species and community levels. Generally, at the species level, SLA increased and LDMC decreased as latitude increased, whereas no clear latitudinal trends among LA or LT were found, which could be the result of shifts in plant functional types. When scaling up to the community level, more significant spatial patterns of leaf traits were observed (R2 = 0.46-0.71), driven by climate and soil N content. These results provided synthetic data compilation and analyses to better parameterize complex ecological models in the future, and emphasized the importance of scaling-up when studying the biogeographic patterns of plant traits.
Anatomical and physiological plasticity in Leymus chinensis (Poaceae) along large-scale longitudinal gradient in Northeast China
Responses of tree leaf gas exchange to elevated CO2 combined with changes in temperature and water availability: a global synthesis
Towards a multidimensional root trait framework: a tree root review
DOI:10.1111/nph.14003
PMID:27174359
[本文引用: 2]
Contents 1159 I. 1159 II. 1161 III. 1164 IV. 1166 1167 References 1167 SUMMARY: The search for a root economics spectrum (RES) has been sparked by recent interest in trait-based plant ecology. By analogy with the one-dimensional leaf economics spectrum (LES), fine-root traits are hypothesised to match leaf traits which are coordinated along one axis from resource acquisitive to conservative traits. However, our literature review and meta-level analysis reveal no consistent evidence of an RES mirroring an LES. Instead the RES appears to be multidimensional. We discuss three fundamental differences contributing to the discrepancy between these spectra. First, root traits are simultaneously constrained by various environmental drivers not necessarily related to resource uptake. Second, above- and belowground traits cannot be considered analogues, because they function differently and might not be related to resource uptake in a similar manner. Third, mycorrhizal interactions may offset selection for an RES. Understanding and explaining the belowground mechanisms and trade-offs that drive variation in root traits, resource acquisition and plant performance across species, thus requires a fundamentally different approach than applied aboveground. We therefore call for studies that can functionally incorporate the root traits involved in resource uptake, the complex soil environment and the various soil resource uptake mechanisms - particularly the mycorrhizal pathway - in a multidimensional root trait framework.© 2016 Wageningen University. New Phytologist © 2016 New Phytologist Trust.
An integrated framework of plant form and function: the belowground perspective
DOI:10.1111/nph.17590
PMID:34197626
[本文引用: 1]
Plant trait variation drives plant function, community composition, and ecosystem processes. However, our current understanding of trait variation disproportionately relies on aboveground observations. Here we integrate root traits into the global framework of plant form and function. We developed and tested an overarching conceptual framework that integrates two recently identified root trait gradients with a well-established aboveground plant trait framework. We confronted our novel framework with published relationships between above- and belowground trait analogues and with multivariate analyses of aboveground and belowground traits of 2510 species. Our traits represent the leaf- and root conservation gradients (specific leaf area, leaf and root nitrogen concentration and root tissue density), the root collaboration gradient (root diameter and specific root length), and the plant size gradient (plant height and rooting depth). We found that an integrated, whole-plant trait space required as much as four axes. The two main axes represented the fast-slow 'conservation' gradient on which leaf and fine-root traits were well aligned, and the 'collaboration' gradient in roots. The two additional axes were separate, orthogonal plant size axes for height and rooting depth. This perspective on the multi-dimensional nature of plant trait variation better encompasses plant function and influence on the surrounding environment.This article is protected by copyright. All rights reserved.
A handbook for the standardised sampling of plant functional traits in disturbance-prone ecosystems, with a focus on open ecosystems
DOI:10.1071/BT20048
URL
[本文引用: 2]
\nPlant functional traits provide a valuable tool to improve our understanding of ecological processes at a range of scales. Previous handbooks on plant functional traits have highlighted the importance of standardising measurements of traits to improve our understanding of ecological and evolutionary processes. In open ecosystems (i.e. grasslands, savannas, open woodlands and shrublands), traits related to disturbance (e.g. herbivory, drought, and fire) play a central role in explaining species performance and distributions and are the focus of this handbook. We provide brief descriptions of 34 traits and list important environmental filters and their relevance, provide detailed sampling methodologies and outline potential pitfalls for each trait. We have grouped traits according to plant functional type (grasses, forbs and woody plants) and, because demographic stages may experience different selective pressures, we have separated traits according to the different plant life stages (seedlings saplings and adults). We have attempted to not include traits that have been covered in previous handbooks except for where updates or additional information was considered beneficial.\n
The worldwide leaf economics spectrum
DOI:10.1038/nature02403 [本文引用: 4]
Plant community traits associated with nitrogen can predict spatial variability in productivity
Why functional traits do not predict tree demographic rates
DOI:10.1016/j.tree.2018.03.003 URL [本文引用: 1]
Variation and evolution of C:N ratio among different organs enable plants to adapt to N-limited environments
DOI:10.1111/gcb.v26.4 URL [本文引用: 3]
Leaf multi-element network reveals the change of species dominance under nitrogen deposition
C:N:P stoichiometry in China’s forests: from organs to ecosystems
DOI:10.1111/fec.2018.32.issue-1 URL [本文引用: 1]
Community chlorophyll quantity determines the spatial variation of grassland productivity
Coordinated pattern of multi-element variability in leaves and roots across Chinese forest biomes
DOI:10.1111/geb.2016.25.issue-3 URL [本文引用: 2]
Conservative allocation strategy of multiple nutrients among major plant organs: from species to community
DOI:10.1111/jec.v108.1 URL [本文引用: 1]
/
〈 |
|
〉 |
