呼伦贝尔退化草原土壤养分调控的原理与技术
Theory and application of soil nutrient regulation for degraded steppe in Hulun Buir, China
通讯作者: * (pqm@ibcas.ac.cn)
编委: 周华坤(特邀)
责任编辑: 乔鲜果
收稿日期: 2024-04-23 接受日期: 2024-09-28
基金资助: |
|
Corresponding authors: * (pqm@ibcas.ac.cn)
Received: 2024-04-23 Accepted: 2024-09-28
Fund supported: |
|
退化草原恢复是中国草原管理与可持续利用面临的瓶颈问题。养分亏缺是退化草原难以恢复的一个主要限制因子。土壤养分调控的本质是在补充土壤养分的前提下, 调控植物群落组成, 恢复退化草原原有优势种, 提高生产力和优质牧草比例, 并减少养分添加导致的负面环境效应。该研究基于在呼伦贝尔退化草原开展的恢复实验, 依据退化草原土壤养分亏缺现状、植物生长的限制元素以及不同物种的养分需求特性, 提出了退化草原土壤养分调控技术, 其关键过程包括“以需定量、氮磷协同、补充微肥、早春施肥、深施入土、条带作业” 6个技术环节。土壤养分调控技术在我国呼伦贝尔草原具有广泛的应用前景。退化草原生产功能和生态功能的提升对于提高农牧民收入、保障我国饲草安全、维护我国北方生态安全和民族团结具有重要意义。
关键词:
Aims In China, the restoration of degraded grasslands is impeding the management of grasslands and their sustainable utilization. Soil nutrient deficiency is one of the main constraints for restoring degraded grassland. The essence of soil nutrient regulation is to restore the original dominant species, promote grassland productivity and the occupancy of high-quality forage in degraded grasslands, and meanwhile diminish the negative environmental effects caused by nutrient addition.
Methods Taking advantage of a restoration experiment carried out in a degraded grassland of Hulun Buir, in terms of the deficient soil nutrients, the limiting elements for plant growth and the nutrient specificity for different plant species, we developed soil nutrient regulation technique.
Important findings The key technical points are as follow: demand-based dosage, synergy of nitrogen and phosphorus, microelements supplemention, early-spring fertilization, deep fertilizaiton and strip operation. Soil nutrient regulation technique has broad prospects in application in Hulun Buir grassland, China. Improving the productive and ecological functions of degraded grasslands is of great significance for increasing the income of farmers and herders, ensuring the security of fodder grass supply, and safeguarding ecological security and national unity in northern China.
Keywords:
引用本文
刘伟, 郝毅晴, 孙佳美, 王璟, 范冰, 郝建玺, 金那申, 潘庆民.
LIU Wei, HAO Yi-Qing, SUN Jia-Mei, WANG Jing, FAN Bing, HAO Jian-Xi, JIN Na-Shen, PAN Qing-Min.
我国草原约293万km2, 占国土面积的1/3, 具有重要的生产和生态功能(方精云等, 2018)。自20世纪80年代以来, 我国的草原开始大面积退化, 退化草原的面积一度超过90%。草原退化不仅直接导致牧草产量和品质下降, 降低了其生产功能; 而且严重影响到生物多样性、水源涵养以及碳储存等生态功能(王德利等, 2020)。为了恢复退化的草原, 自2000 年以来, 我国陆续实施了“京津风沙源治理” “退牧还草” “天然草原保护”等多个重大生态工程, 一定程度上遏制了草原退化的势头。但由于受气候变化和人类活动的双重影响, 70%的草原仍存在不同程度的退化状态, 我国草原“局部好转、整体恶化”的态势并没有得到根本改变(方精云等, 2016; 国家林业和草原局, 2021)。目前, 退化草原恢复已经成为实现联合国可持续发展目标和联合国生态系统修复十年计划(2021年-2030)的核心工作(Dudley et al., 2020; Bardgett et al., 2021), 也是我国草原可持续利用的迫切需求。
草原退化包括植被退化和土壤退化。植被退化主要是指在不合理管理与超限利用条件下植物群落发生逆行演替, 导致牧草产量和质量下降。在轻度、中度和部分重度退化阶段, 草原植物种类尚未发生明显改变, 只是优势种的地位发生了变化(刘钟龄等, 2002)。土壤退化是指草原在过度利用条件下, 大量土壤养分通过牲畜粪便(36%)或以牧草收获的方式(87%)输出草原生态系统, 造成土壤氮严重亏缺(Giese et al., 2013)。在内蒙古温带典型草原, 退化草原与毗邻的长年围封样地相比较, 0-100 cm土壤全碳和全氮储量均下降超过50% (He et al., 2008)。有研究表明, 土壤养分不足或失衡是导致退化草原生物多样性和生产力下降的重要原因(贺金生等, 2020; 潘庆民等, 2023)。因此, 对于植物种类组成没有发生明显改变, 原有优势种尚存的轻度、中度和部分重度退化草原, 土壤养分调控是实现退化草原恢复的有效方法。
退化草原土壤养分调控能够解除土壤的养分限制, 快速恢复植被生产力, 实现退化草原生产和生态功能同步提升(贺金生等, 2020)。以往有关草原施肥的研究大多以探究氮沉降的影响为目的, 主要在未退化的群落中进行, 有些研究发现草原施肥效果不理想(王晶等, 2016), 而长期过量的氮添加还可能导致草原群落的物种多样性下降(Zhang et al., 2014), 这些研究结果影响了土壤养分调控技术在退化草原恢复过程中的应用。而未退化群落和退化群落生物多样性和植被生产力对氮添加的响应存在显著差异(Bai et al., 2010)。因此, 通过施肥恢复退化草原, 需要根据草原类型和退化程度, 确定肥料的种类、用量、施肥时期以及施肥方法等关键环节。近几年, 我们以呼伦贝尔退化草原为对象, 以解除养分限制瓶颈为突破口, 研发了土壤养分调控技术, 不仅实现了牧草产量和优质牧草比例的显著提升, 而且保证了物种多样性没有降低, 极大地提高了退化草原恢复的速度和效率, 使恢复年限从传统的20-25年(李博等, 1980)缩短为2年左右, 为我国温带退化草原恢复提供了借鉴。
1 退化草原土壤养分调控的原理
退化草原土壤养分调控的核心是通过补充土壤养分以调控植物群落组成, 特别是物种多度或密度的变化, 从而促进退化草原原有优势种的恢复(图1)。土壤养分调控从草原生态系统的养分循环入手, 首先阐述了退化草原土壤养分损失的现状, 分析了退化草原的主要限制元素; 然后探讨了退化草原不同植物种对限制元素的响应; 最后, 通过阐明土壤养分调控的适宜时期与施用量, 实现土壤养分调控在退化草原中的应用。
图1
图1
退化草原土壤养分调控原理技术路线。
Fig. 1
Technical roadmap of soil nutrient regulation technology in degraded grassland.
1.1 草原生态系统的养分循环与退化草原的土壤养分损失
在草原生态系统中, 植物、动物和微生物的生理活动共同维持了生物地球化学循环的动态平衡。植物作为生产者, 从大气中固定碳, 不仅补充了呼吸过程中从生态系统释放的碳, 而且为消费者提供食物, 而豆科植物通过生物固氮补充了土壤矿化过程中产生的气态氮损失。动物作为消费者通过采食植物, 又以粪尿的形式将绝大多数养分归还到土壤中。有研究表明, 在放牧场牲畜采食的牧草生物量有60%-95%以粪便的形式又回归到土壤中(Wilkinson & Lowrey, 1973)。微生物作为分解者, 将动植物残体以及粪便等有机物分解成植物可以重新吸收利用的营养元素。因此, 在一个健康的草原生态系统中, 各种元素在植物、土壤和微生物中形成闭环, 维持了土壤营养元素的动态平衡。
在过度放牧或连年打草等不合理管理利用方式下, 草原生态系统生物地球化学循环的平衡状态被打破。在放牧场, 过度放牧导致土壤中的养分通过牲畜被带出生态系统而得不到归还, 土壤养分入不敷出, 造成土壤养分失衡。据测算, 如果按1.5个羊单位·hm-2的放牧强度计算, 每年草地将损失纯氮4.8-10 kg·hm-2, 纯磷0.5-1.0 kg·hm-2 (潘庆民等, 2018)。我们比较了连年重度放牧地和围封样地的土壤养分状况, 结果发现, 与40年围封样地相比, 连年重度放牧样地的土壤全碳、氮、磷含量分别降低了40.1%、39.9%和62.5% (未发表数据)。
在打草场, 由于要收获干草且没有家畜粪便的养分归还, 土壤养分亏缺比放牧场更为严重。通过测定呼伦贝尔羊草(Leymus chinensis)草原群落水平的氮磷含量(氮、磷含量平均值分别为22.6和1.4 g·kg-1), 我们发现, 按21.1 kg·hm-2氮沉降、0.6 kg·hm-2磷沉降速率计算(Liu et al., 2013; Du et al., 2016), 若牧草产量维持在750 kg·hm-2 (折合每亩50 kg), 氮、磷收支基本持平; 若牧草产量维持在1 500 kg·hm-2, 则需要补充氮12.8 kg·hm-2, 需要补充磷1.5 kg·hm-2, 若牧草产量维持在2 250 kg·hm-2, 则需要补充氮29.7 kg·hm-2, 需要补充磷2.5 kg·hm-2 (图2)。如果连续10年打草, 每年收割牧草2 250 kg·hm-2, 则氮、磷净支出分别约300和25 kg·hm-2。因此, 草原若维持较高的牧草产量(如2 250 kg·hm-2), 一定需要补充氮磷养分。
图2
图2
呼伦贝尔羊草草原打草场不同牧草收获量下的氮磷收支。
Fig. 2
Nitrogen and phosphorus budget under different forage production of Leymus chinensis steppe in Hulun Buir.
1.2 草原群落生产力的氮磷共同限制
近年来, 越来越多的研究发现, 草原植被生产力受到氮和磷的共同限制(Harpole et al., 2011)。全球尺度的meta分析表明, 氮和磷添加分别增加了33.2%和14.2%的地上净初级生产力, 并且氮磷共同添加对地上净初级生产力具有协同效应(Li et al., 2022)。也有研究发现, 在低温、高纬度的山地草原地区, 有59%的区域受氮限制, 而在高温、低纬度地区的温带草原, 受磷限制更为严重, 约占该区域面积的52% (Du et al., 2020)。除氮磷之外, 钾能够提高豆科植物和禾草的抗性, 钾缺乏会降低共生固氮的效率(Liu et al., 2022)。硫作为植物生长所需的大量元素, 在非母岩地区可能会缺乏。低剂量的外源硫添加可能会促进草原植物对氮磷的协同吸收, 对草原生产力有一定的促进作用(姜勇等, 2019)。牧草生长所需的其他微量元素还包括硼、铜、铁、锰、锌等营养元素。具体到呼伦贝尔草甸草原, 在中国科学院额尔古纳森林草原过渡带生态系统研究站开展的多元素养分添加实验表明, 在利用霍格兰营养液配置的氮、磷、钾、钙、硫、镁、铁与微量元素(碘、硼、锰、锌、钠、钼、铜、钴和氯作为一个因子) 8种养分添加因子中, 氮添加或氮磷共同添加均显著增加了群落地上生物量, 其中, 氮磷共同添加的处理效应更为显著(图3)。
图3
图3
添加不同数量的营养元素对呼伦贝尔草原地上生物量的影响(平均值±标准误)。8种养分添加因子分别为氮、磷、钾、钙、硫、镁、铁与微量元素(碘、硼、锰、锌、钠、钼、铜、钴和氯作为一个因子)。N0P0, 不添加氮磷元素; N1P0, 添加氮; N1P1, 氮磷共同添加。氮磷添加量分别为20和2.95 g·m-2·a-1 (Peng et al., 2022)。
Fig. 3
Effects of different numbers of added nutrients on aboveground biomass in Hulun Buir steppe (mean ± SE). Eight nutrient factors are nitrogen, phosphorus, potassium, calcium, sulfur, magnesium, iron and micronutrients (iodine, boron, manganese, zinc, sodium, molybdenum, copper, cobalt and chlorine as one factor). N0P0, no nitrogen and phosphorus addition; N1P0, nitrogen addition; N1P1, nitrogen and phosphorus co-addition. The amount of nitrogen and phosphorus added is 20 and 2.95 g·m-2·a-1 (modified from Peng et al., 2022).
图4
图4
不同氮磷比对呼伦贝尔草原地上生物量的影响(平均值±标准误, n = 12)。不同小写字母代表差异显著(p < 0.05)。
Fig. 4
Effects of different nitrogen to phosphorus ratio (N:P) on aboveground biomass in Hulun Buir steppe (mean ± SE, n = 12). Different lowercase letters indicate significant differences (p < 0.05).
1.3 不同植物种的养分需求特异性
草原群落是由多个物种组成的, 而不同植物种具有鲜明的养分需求特异性(陈佐忠等, 1985)。植物群落中的物种组成决定了养分添加的种类和数量。当群落中以禾草为主, 一般需要额外添加氮以快速提高禾草比例和牧草质量。当群落中豆科植物地上生物量的比例超过40%, 一般不需要额外添加氮, 依靠生物固氮即可满足生态系统对氮的需求(Lemus, 2012)。羊草草原退化演替的物种组成变化表现为羊草和大针茅(Stipa grandis)等高大禾草的优势地位被糙隐子草(Cleistogenes squarrosa)、冷蒿(Artemisia frigida)和星毛委陵菜(Potentilla acaulis)等低矮的植物所取代(李永宏, 1988)。因此, 要恢复草原群落的结构, 特别是原生优势种在群落中的优势地位, 需要根据该类植物的养分需求特征进行养分补充(贺金生等, 2020)。在呼伦贝尔退化草原, 单独氮添加显著提高了群落地上生产力, 特别是根茎型禾草的相对生物量, 但降低了多年生杂类草和丛生禾草的相对生物量。而单独磷添加对群落地上生产力并没有显著影响, 但增加了多年生杂类草和豆科植物的相对生物量。氮磷共同添加减缓了单独氮添加对多年生杂类草和豆科植物的抑制作用, 通过增加禾草特别是根茎禾草的地上生物量显著增加了群落地上生物量(王洪义等, 2020)。
1.4 融雪期(4月)与生长季(7月)施肥的效应
植物对养分的吸收与水分吸收紧密耦联, 充足的水分是养分高效吸收的基础。由于呼伦贝尔草原一般冬季降雪较多, 在融雪期施肥, 能够充分利用融雪水, 可以实现肥跟水走, 水肥同步的效果。同时, 在呼伦贝尔草甸草原, 相对于杂类草来说, 优质禾草(如羊草、冰草(Agropyron cristatum)等)大多属于多年生植物, 早春返青快, 分蘖发生早。因此, 早春施肥能够满足禾草在生长季早期对养分的需求, 提高禾草的分蘖能力, 进而提高禾草在群落中的密度及竞争优势。我们在呼伦贝尔退化草甸草原开展了不同时期的氮磷养分添加实验, 氮磷添加量分别为10和3 g·m-2。结果表明, 4月融雪期和7月植物生长旺季进行养分添加均显著增加了地上生物量, 并且4月养分添加的效果要显著好于7月(图5A)。其中, 4月养分添加处理, 羊草的密度和种群地上生物量比对照分别增加了19.8和25.0倍(图5B、5C)。
图5
图5
不同养分添加时期对呼伦贝尔草原地上生物量(A)、羊草地上生物量(B)和羊草密度(C)的影响(平均值±标准误, n = 6)。对照为不施肥处理, 4月和7月表示施肥时间。氮磷添加量分别为10和3 g·m-2。不同小写字母代表不同处理间差异显著(p < 0.05)。
Fig. 5
Aboveground biomass of all species (A), Leymus chinensis (B) and the density of Leymus chinensis (C) under different timing of nutrient addition in Hulun Buir steppe (mean ± SE, n = 6). CK stands for no fertilization. April and July stand for fertilization time. Nutrient additions are 10 and 3 g·m-2, respectively. Different lowercase letters indicate significant differences among different treatments (p < 0.05).
1.5 不同施肥量对草原群落生产力的影响
在确定合适的养分添加量时, 要充分考虑土壤养分的供应状况以及退化草原植物群落对养分的需求。氮作为植物生长的主要限制元素, 补充氮可以促进植物生长, 提高退化草原的地上生物量。但植物地上生物量对氮添加具有饱和效应, 当外源氮添加超过植物的养分需求时, 地上生物量将不再增加。并且, 过量的氮添加会导致土壤酸化, 增加氨挥发及淋融损失, 并会降低生物多样性, 提高恢复成本, 不利于退化草原恢复技术的应用(Korfanta et al., 2015; Humbert et al., 2016)。另外, 已有研究表明, 磷的添加在一定程度上能够提高呼伦贝尔退化草原杂类草和豆科植物的相对生物量(王洪义等, 2020)。目前有关氮添加对草原地上生物量的饱和阈值已经开展了大量研究(Bai et al., 2010; Peng et al., 2020), 但饱和阈值变化幅度比较大, 多数氮添加的实验模拟氮沉降, 与生产实际不相符, 很难应用到退化草原的恢复应用中。并且现有的研究很少考虑到氮磷共同添加时, 地上生物量的饱和阈值。因此, 为阐明呼伦贝尔退化草原养分添加的最适量, 我们在中度退化草原, 利用免耕播种机开展了养分添加的梯度实验。结果表明, 当在4月融雪期氮添加9.6 g·m-2 +磷添加3.0 g·m-2时, 地上生物量达到最大值(图6A)。与未施肥的对照相比, 地上生物量由181 g·m-2提高到678 g·m-2, 提高了2.7倍, 羊草地上生物量比例由15%提高到68% (图6B), 并且单次养分添加并没有降低生物多样性(图6C)。
图6
图6
不同养分添加处理下呼伦贝尔草原地上生物量(A)、羊草地上生物量比例(B)和物种丰富度(C)的变化(平均值±标准误, n = 5)。CK、N1P1、N2P2、N3P3、N4P4、N5P5分别表示对照、添加4.8 g N·m-2 + 1.5 g P·m-2、7.2 g N·m-2 + 2.25 g P·m-2、9.6 g N·m-2 + 3.0 g P·m-2、12.0 g N·m-2 + 3.75 g P·m-2、14.4 g N·m-2 + 4.5 g P·m-2; N, 氮; P, 磷。不同小写字母代表不同处理间差异显著(p < 0.05); ns, p > 0.05。
Fig. 6
Aboveground biomass (A), biomass proportion of Leymus chinensis (B) and species richness (C) under different nutrient addition treatments in Hulun Buir steppe (mean ± SE, n = 5). CK, N1P1, N2P2, N3P3, N4P4, N5P5 stand for no addition, addition of 4.8 g N·m-2 + 1.5 g P·m-2, 7.2 g N·m-2 + 2.25 g P·m-2, 9.6 g N·m-2 + 3.0 g P·m-2, 12.0 g N·m-2 + 3.75 g P·m-2, 14.4 g N·m-2 + 4.5 g P·m-2, respectively; N, nitrogen; P, phosphorus. Different lowercase letters indicate significant differences (p < 0.05); ns, p > 0.05.
2 呼伦贝尔退化草原土壤养分调控技术
2.1 技术要点
基于以上技术原理, 我们研发了退化草原土壤养分调控技术, 主要包括: “以需定量、氮磷协同、补充微肥、早春施肥、深施入土、条带作业” 6个技术环节。
2.2 以需定量
养分添加量的确定以土壤养分测试和退化草原养分输出量为基础, 根据牧草的需肥规律来确定(表1)。土壤养分添加以氮磷为主。对于中度退化的草甸或典型草原, 氮的最适用量约为80-100 kg·hm-2, 可根据退化程度及牧草产量进一步调整; 根据氮磷协同的原则, 磷肥补充量以20-25 kg·hm-2为宜。内蒙古草原土壤钾含量丰富, 一般不需要额外补充钾肥。当土壤检测表明0-15 cm土壤钾含量低于250 kg·hm-2时, 需补充一定量的钾。有机肥中含有丰富的有机碳以及微量元素, 退化草原恢复过程中采用有机肥配施无机肥(有机肥15-45 t·hm-2 +氮肥45-75 kg·hm-2)可显著增加退化草原生产力和优质禾草比例。
表1 呼伦贝尔退化草原土壤氮磷含量及对应氮磷施用量
Table 1
土壤全氮含量 Soil total N content (g·kg-1) | 土壤全磷含量 Soil total P content (g·kg-1) | 氮施用量 N application rate (kg·hm-2) | 磷施用量 P application rate (kg·hm-2) |
---|---|---|---|
<1.5 | <0.3 | 80-100 | 20-25 |
1.5-2.5 | 0.3-0.4 | 60-80 | 15-20 |
≥2.5 | ≥0.4 | 40-60 | 10-15 |
2.3 氮磷协同
养分添加类型的选择主要考虑目标物种对养分的需求。我国草原地区物种以禾草占优势, 豆科植物地上生物量仅占整个群落地上生物量的3%-10% (牛书丽和蒋高明, 2004)。根据我们的实验结果, 氮磷比例约为2.5:1时, 氮磷比表现出显著的协同效应, 特别有利于禾本科牧草的恢复。
2.4 补充微肥
呼伦贝尔草原土壤铁离子缺乏, 可以适当补充, 此外, 钼和锌可以提高植物的光合能力, 根据测土配方的情况, 可以适当补充。对于微量元素缺乏的地区, 建议于5月初地表喷施或6月中旬叶面喷施FeSO4·7H2O、(NH4)2MoO4·4H2O、ZnSO4·7H2O溶液(有效成分)分别为2-3、3-4.5和0.75-1.5 kg·hm-2。
2.5 早春施入
施肥时期一般选择在早春融雪期(4月初至5月初)进行, 即冬春交替时首次白天气温连续5天超过0 ℃起一个月内。由于冬季积雪较多, 春季融雪期土壤水分充足, 并且较低的温度减少了氨挥发损失。若冬季降雪较少, 也可选择早春土壤温度小于5 ℃, 降雨量大于5 mm时进行。
2.6 深施入土
施肥可采用免耕播种机, 将肥料施入地表下3-5 cm。免耕播种机开沟器宜采用前排波纹盘, 配合后排双圆盘以减少对地表的破坏和土壤水分散失。不同于氮和硫, 磷、钾很难在土壤中移动, 因此, 深施相对于地表撒施来说可以显著提高该类养分的利用效率。对于固体有机肥, 以机械抛洒为主; 对于液体有机肥(主要为牲畜尿液), 采用注射施肥机将肥料注射入表层以下3-5 cm能够显著提高肥料利用率, 减少挥发和径流损失。
2.7 条带作业
在进行养分调控时, 建议采用条带间隔的方式进行作业, 即一条施肥条带与一条未施肥条带相间, 其中, 施肥条带行间距为20-30 cm。未施肥区条带宽度不少于6 m, 以确保区域尺度的物种多样性不会下降。待处理条带完全恢复(一般1-2年), 再对未施肥的条带进行施肥处理。
3 实施案例
近年来, 退化草原土壤养分调控技术在呼伦贝尔草原开展了大面积的示范应用。以呼伦贝尔市谢尔塔拉农牧场为例, 该区域属于寒温带半干旱大陆性季风气候, 年平均气温为-1.5 ℃, 年降水量约350 mm, 土壤类型为黑钙土。原生植被优势种为羊草, 由于连年打草, 目前处于中度退化状态, 羊草地上生物量比例不足20%, 地上生物量显著下降。
2022年, 谢尔塔拉农牧场采用退化草原土壤养分调控技术对约5 333 hm2 (8万亩)集中连片打草场进行了改良(图7)。在4月5-15日, 示范区使用免耕播种机进行草地适用肥作业。播种机行距为20 cm, 播深为3-5 cm, 适用肥播量为300 kg·hm-2, 折合氮磷养分添加量为97.5和30.0 kg·hm-2。在进行土壤养分调控时, 采用条带间隔方式进行作业, 以确保生物多样性不会下降。处理区和对照区条带宽度分别为12 和6 m。
图7
图7
土壤养分调控技术应用对地上生物量(A)、优质牧草地上生物量比例(B)、羊草密度(C)、物种丰富度(D)的影响(平均值±标准误, n = 5)及航拍图(E)。
Fig. 7
Effects of nutrient regulation and restoration technology on aboveground biomass (A), the ratio of high-quality forage (B), the density of Leymus chinensis (C), species richness (D) (mean ± SE, n = 5) and the aerial photography (E).
2022年8月份, 对退化草原土壤养分调控技术的应用效果进行了样方调查, 并开展了测产验收。该技术的示范应用取得了显著的效果。与对照区相比, 处理区地上生物量由209.8 g·m-2增加到578.8 g·m-2, 增加了1.76倍; 优质牧草地上生物量比例由33.0%提高到56.1%, 提高了69%; 羊草密度由116.5株·m-2提高到488.8株·m-2, 提高了3.2倍; 生物多样性没有显著变化(图7A-7D)。
4 结语
目前, 退化草原土壤养分调控技术已经在内蒙古自治区呼伦贝尔市、锡林郭勒盟、赤峰市和兴安盟推广应用约8.7万hm2 (130多万亩), 均取得了显著的恢复效果。主要表现为: (1)牧草产量提高。少雨年份牧草产量增加50%以上, 多雨年份牧草产量能够增加1-2倍。(2)优质牧草地上生物量比例增加。优质牧草地上生物量(如羊草)的比例可以在1-2年内由10%提高到60%-80%, 从而实现群落结构的快速恢复。(3)降水利用效率提高, 该技术不需灌溉, 主要是充分利用融雪水和自然降水, 使降水利用效率提高1-2倍。(4)生物多样性得以维持, 1-2年的施肥处理没有降低物种多样性, 有些区域还有所增加, 可能是过度放牧导致多样性降低后的反弹。(5)恢复速度快, 能够在1-2年内快速恢复到以优质禾草为优势种的原生群落结构。
退化草原土壤养分调控技术在呼伦贝尔退化草原的应用具有显著的生态效益。该技术的实施改善了退化草原的土壤环境, 显著提高了植被盖度及植株密度, 有效降低了风沙侵蚀和水土流失。生态环境的改善带动了当地旅游业的发展, 为绿色转型升级创造了条件。此外, 该技术的实施具有显著的经济效益。牧草产量, 特别是优质牧草产量的提升可为当地畜牧业的发展提供优质饲草。以该区域广泛分布的羊草草原为例, 呼伦贝尔原有羊草草原1.8万km2 (李博等, 1980), 我国羊草草原面积约22万km2 (李绍良等, 1993)。如果10%的面积得到恢复并培育为高产羊草草原, 以每hm2干草产量提高750 kg为例, 则每年可增加优质牧草170万t, 约相当于2021年我国进口干草(约199万t)总量的90%, 能够有效保障我国的饲草安全。
参考文献
Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia Grasslands
Combatting global grassland degradation
Imbalanced phosphorus and nitrogen deposition in China’s forests
Global patterns of terrestrial nitrogen and phosphorus limitation
Grasslands and savannahs in the UN decade on ecosystem restoration
DOI:10.1111/rec.13272
[本文引用: 1]
Grasslands and savannahs are suffering heavy losses from degradation and conversion. The UN Decade on Ecosystem Restoration offers important opportunities to address these losses through a range of restoration techniques. However, if poorly planned, the Decade could undermine some remaining natural and semi-natural grassland and savannah ecosystems by encouraging afforestation on these areas, thus acting as a perverse incentive. This article outlines the main issues and steps needed to ensure that the Decade creates positive outcomes for these important and highly biodiverse ecosystems: (1) better understanding of status and trends in degraded and converted grasslands and savannahs; (2) making the case for grassland and savannah restoration at both national and international levels; (3) ensuring post-2020 biodiversity conservation targets address all natural ecosystems; (4) improving selection tools for restoration to avoid displacing valuable ecosystems; and (5) identifying successful grassland and savannah restoration approaches that address ecological, cultural, and social needs.
How many areas of grasslands are there in China?
我国草地面积有多大?
“Small vs. Large Area” principle: protecting and restoring a large area of natural grassland by establishing a small area of cultivated pasture
“以小保大”原理: 用小面积人工草地建设换取大面积天然草地的保护与修复
N balance and cycling of Inner Mongolia typical steppe: a comprehensive case study of grazing effects
Nutrient co-limitation of primary producer communities
DOI:10.1111/j.1461-0248.2011.01651.x
PMID:21749598
[本文引用: 1]
Synergistic interactions between multiple limiting resources are common, highlighting the importance of co-limitation as a constraint on primary production. Our concept of resource limitation has shifted over the past two decades from an earlier paradigm of single-resource limitation towards concepts of co-limitation by multiple resources, which are predicted by various theories. Herein, we summarise multiple-resource limitation responses in plant communities using a dataset of 641 studies that applied factorial addition of nitrogen (N) and phosphorus (P) in freshwater, marine and terrestrial systems. We found that more than half of the studies displayed some type of synergistic response to N and P addition. We found support for strict definitions of co-limitation in 28% of the studies: i.e. community biomass responded to only combined N and P addition, or to both N and P when added separately. Our results highlight the importance of interactions between N and P in regulating primary producer community biomass and point to the need for future studies that address the multiple mechanisms that could lead to different types of co-limitation.© 2011 Blackwell Publishing Ltd/CNRS.
Analysis of the main constraints and restoration techniques of degraded grassland on the Tibetan Plateau
青藏高原退化草地恢复的制约因子及修复技术
DOI:10.3981/j.issn.1000-7857.2020.17.007
[本文引用: 3]
分析了退化高寒草地恢复的主要制约因素,包括植物种源、土壤微生物、土壤养分和人文因素;提出了针对这些制约因素的退化高寒草地恢复的主要途径:(1)研发乡土草种子采集、扩繁、包衣等技术,不同乡土草种种子组配及免耕补播技术,解决种源制约;(2)筛选适用于退化草地恢复的复合微生物菌种并研发菌剂,解决退化草地恢复的微生物制约; (3)研发以土壤养分调控为基础的植被恢复技术,解决退化草地恢复的土壤制约;(4)构建基于牧民新技术应用的草地适应性管理模式。分析认为,基于乡土草种、微生物、养分调控为主的物源途径的“近自然恢复”,有潜力成为青藏高原退化草地恢复的有效措施。
Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of Northern China
Impacts of nitrogen addition on plant biodiversity in mountain grasslands depend on dose, application duration and climate: a systematic review
Effects of exogenous sulfur input on nutrient availability in soil-plant system of grassland
Exogenous sulfur input is one of the most important factors that acidify grassland soils, which may inhibit mineralization of soil organic matter and facilitate organic carbon accumulation, but may contribute to the decomposition of carbonates in calcareous soils. Sulfur inputs enhance the availability of nitrogen and micronutrients (iron, manganese, copper, zinc and boron), decrease the availability of molybdenum, accelerate the leaching of exchangeable base cations, and reduce the availability of calcium, magnesium and potassium. Sulfur inputs increase the availability of phosphorus in calcareous and neutral soils, but decrease it in acid or strong acid soils. Exogenous sulfur inputs can improve the synergetic uptake of nitrogen and phosphorus by plants, and generally increase plant uptake of metallic micronutrients. Soil acidification induced by sulfur inputs might lead to plant manganese toxicity, which could increase plant manganese uptake but inhibit plant iron uptake. High inputs of exogenous sulfur and soil acidification can decline aboveground productivity and plant species diversity in grasslands. Low dose of sulfur input tends to improve aboveground productivity, but its effects on plant species diversity and community stability remain unclear.
外源硫输入对草地土壤-植物系统养分有效性的影响
外源硫输入增加是草地生态系统土壤酸化的一种重要诱因,在一定程度上抑制了土壤有机质的矿化从而有利于有机碳积累,但可导致石灰性土壤中碳酸盐的分解;硫输入可提高土壤中氮及微量元素铁、锰、铜、锌、硼的有效性,降低钼的有效性;导致交换性盐基离子淋失并降低钙、镁、钾的有效性;增加石灰性和中性土壤磷的有效性,而降低酸性或强酸性土壤磷的有效性。外源硫输入可促进草地植物对氮和磷的协同吸收,总体上可以促进草地植物对金属微量元素的吸收,但土壤酸化可能引起植物锰毒害,增加植物锰吸收的同时抑制了对铁的吸收。高量硫输入及土壤重度酸化可导致草地生产力和物种多样性降低;低剂量硫输入对草地生产力有一定的促进作用,但对物种多样性及群落稳定性的影响目前尚缺乏系统的研究资料。
Fertilizing western rangelands for ungulate conservation: an assessment of benefits and risks
Discussion on grassland vegetation resources and their utilization direction in Hulunbeier pastoral area
呼伦贝尔牧区草场植被资源及其利用方向的探讨
Study on the water regime of dark chestnut soil and the aboveground biomass forecast of an Eurolepidium chinese community
羊草草原暗栗钙土的水分状况及植物群落地上生物量预报
Nitrogen effects on grassland biomass production and biodiversity are stronger than those of phosphorus
The divergence and convergence of an Eurolepidium chinense steppe and Stipa grandis steppe under the grazing influence in Xilin River valley, Inner Mongolia
内蒙古锡林河流域羊草草原和大针茅草原在放牧影响下的分异和趋同
Investigate the effect of potassium on nodule symbiosis and uncover an HAK/KUP/KT member, GmHAK5, strongly responsive to root nodulation in soybean
Enhanced nitrogen deposition over China
Probes on the degeneration and recovery succession mechanisms of Inner Mongolia steppe
内蒙古草原退化与恢复演替机理的探讨
The importance of legume in China grassland ecosystem and the advances in physiology and ecology studies
豆科植物在中国草原生态系统中的地位及其生理生态研究
Current status of grassland degradation and measures for grassland restoration in Northern China
中国北方草原退化现状与恢复技术
Limiting factors of degraded grassland restoration in China and related basic scientific issues
我国退化草原恢复的限制因子及需要解决的基础科学问题
Plant genome size modulates grassland community responses to multi-nutrient additions
Global pattern and drivers of nitrogen saturation threshold of grassland productivity
Systematic restoration for degraded grasslands: concept, mechanisms and approaches
DOI:10.3864/j.issn.0578-1752.2020.13.002
[本文引用: 1]
Grasslands occupying the most terrestrial land surface display multiple functions. The long-term overgrazing of livestock often occur, and additional climate changes brings about the negative effects on the ecological stability, and therefore, grassland degradation is worldwide prevailing, which reduce the multiple functions of grasslands, and how to restore those degraded grasslands remains a crucial challenge for the human beings. For the past several decades, most researches on grassland restoration have focused on restoration practice rather than underlying theoretical basis, and the general restoration theory is lacking. Consequently, it is hard to have a practical solution for degraded grasslands due to lack of the available techniques. In this paper, the authors summarize the previous grassland restoration theories or models from restoration succession trajectory to the threshold model, the alternative state model and the filter model. A new concept, named as “systematic restoration for degraded grasslands” is put forward, which emphasizes three dimensions as key structure components (trophic species and dominant species of plant-animal-microbe), self-organized processes (water-nutrient coupling, linkage between aboveground and belowground), and multi-functionality (synergy and stability of grassland multiple functions), and also give the further explanations for contexts and mechanisms of the grassland systematic restoration (GSR): system structure integration, self-organization of ecological processes, and multi-functionality. Generally, the target of grassland restoration is approaching to the climax community or primordial state of ecosystem. The authors here emphasize the restoration of system self-organization, resulting from the interactions among the species like plant-soil feedback, as well as grassland multiple functions (goods and ecological services)characterized by their synergism and coupling. At last, the authors discuss the potential restoration practices like natural restoration by fencing and resting, intervening restoration with artificial inputs, and stimulating restoration with utilizing such as grazing and cutting, and perhaps the latter is the feasible mean for practical grassland restoration. The restoration mechanisms and practices for degraded grasslands are more complicated than thought, and here we attempt to establish a comprehensive conceptual framework to provide a new insight into grassland restoration theory. Certainly, it needs more evidence and experiments to enrich this new concept, GSR.
退化草地的系统性恢复: 概念、机制与途径
DOI:10.3864/j.issn.0578-1752.2020.13.002
[本文引用: 1]
草地是地球陆地面积最大、分布最广泛的多功能生态系统,长期以来过高的家畜数量使草地超载过牧,同时气候变化也对草地的生态稳定性产生负向作用,导致世界及我国的草地出现普遍性退化。草地退化是制约草地实现生产、生态功能的世界性环境问题之一,如何有效地使退化草地恢复是人类面临的巨大科学与技术挑战。迄今对草地恢复的研究已有几十年的历史,而这些研究总体上还处于初步发展阶段,并且实践多于理论研究,尚未形成有共识的草地恢复理论。只有深刻认识草地恢复的过程、机制及途径等理论问题,才能更有效地建立其相关的技术基础,进而研发出行之有效的草地恢复技术。本文作者针对草地恢复问题,分析总结了以往建立的草地恢复模型,即恢复演替理论、阈值模型、选择状态模型及过滤模型等,在此基础之上提出了草地的系统性恢复概念,即通过构建基本的草地关键组分(植被-动物-微生物的营养级物种与优势种)激发草地生态(跨营养级的养分-水分联系、地上-地下耦合等)的自组织过程,实现以系统稳定平衡和多功能协同为目标的恢复方式。草地的系统性恢复强调:恢复目标是接近或达到新的稳定平衡状态,这种状态能够保证维持草地主体功能即可。草地的恢复方式是从营养结构到生态过程和多功能的“系统化”,实际上是从“系统”角度定义、实施草地恢复;草地结构的恢复,即需要恢复草地的优势种或营养级物种,以此构建的生物多样性、食物网或生态网络之框架;草地过程的恢复是实现其自组织性,即依赖草地的内源动力,促发草地过程“自然地”达到稳定状态,这种内源动力源于草地系统存在的生物组分,由于生物可以进行新陈代谢而产生对环境的适应,以及环境对生物的反馈;草地功能的恢复主要是恢复草地的多功能(产品生产与生态服务),并使多功能之间形成协同与耦合,最终体现的是草地恢复的结构整体性、过程自组织性和功能完整性。文中还阐释了草地系统性恢复的相关机制,同时,对草地系统性恢复的主要方式或途径——封育式自然恢复、人工辅助式干预恢复、适度利用式激发恢复等,进行了深刻解析。鉴于我国牧区的草地面积、家畜数量基数、以及社会生产状况,草地的适度利用恢复可能是一种现实而有效的恢复途径。尽管草地恢复与草地退化密切关联,然而,草地恢复的过程与机制远比想象得更加复杂。本文构建了草地系统性恢复的概念框架,试图丰富、推动发展草地恢复的一般性理论。今后,仍然需要在不同的退化草地上,开展更多的长期试验与技术实践来检验、修正及发展这一概念。
Responses of community species diversity and productivity to nitrogen and phosphorus addition during restoration of degraded grassland
DOI:10.3864/j.issn.0578-1752.2020.13.009
[本文引用: 2]
【Objective】 Overgrazing and mowing of grassland in north China caused serious vegetation degradation and soil nutrient deficiency. The purpose of this study was to investigate the effects of nitrogen and phosphorus fertilizers on plant community diversity and productivity in the degraded grassland. 【Method】 A four-year nitrogen and phosphorus addition experiment was conducted with two kinds of fertilizers, including calcium superphosphate and ammonium nitrate, scheduled 2 nitrogen rates (0, and 10 g N·m-2·a-1) and 6 phosphorus rates (0, 2, 4, 6, 8 and 10 g P·m-2·a-1) with interaction between the both, a total of 12 treatments, and each treatment repeated 5 times. Fertilizers were applied when grassland was turning green in late May, and the community was investigated in the period of maximum biomass in the middle of August every year. In the process of research, the community productivity, species diversity and relative biomass of four functional groups were analyzed. 【Result】 From 2014 to 2017, it was found that the species richness decreased by year, and the average species of the control treatment (neither nitrogen nor phosphorus) was 20.2, 17.1, 14.7 and 15.2, respectively. Based on plant community α diversity index (richness and Simpson dominance index), the study showed that nitrogen addition significantly decreased the species diversity of the community, but phosphorus addition and cumulative effects of phosphorus did not affect the species diversity of the community. There was a significant difference in diversity index among years, and the interaction between nitrogen and year had a significant effect on it. The aboveground net primary productivity (ANPP) of grassland community varied significantly among years, with the highest in 2014 and the lowest in 2015, the range was from 400 g·m -2 to 100 g·m-2, and which in dry years was significantly lower than that in normal precipitation years. Phosphorus addition had little effect on ANPP, while nitrogen addition significantly increased ANPP, and the effect of nitrogen and phosphorus addition together was greater than that of phosphorus alone. In the normal precipitation growing season, nitrogen was the main limiting factor of Hulunber meadow steppe. Nitrogen addition significantly affected the relative biomass of functional groups, while phosphorus addition had little effect on it, and there was a significant difference in the relative biomass of each functional group between years. Nitrogen addition alone significantly increased the relative biomass of the perennial rhizomatous grass (PR), but reduced the relative biomass of the perennial fobs (PF) and perennial bunch grass (PB). Phosphorus addition alone increased relative biomass of PB and perennial leguminous (LE), while had no effect on relative biomass of PR and PB. Combined addition of nitrogen and phosphorus significantly increased the relative biomass of PR, but significantly decreased the relative biomass of the other functional groups. In addition, the nitrogen and phosphorus combined addition partly reduced the plant community stability. 【Conclusion】 The differentiation of different functional types’ responses caused by nitrogen and phosphorus addition led to the changes of the original hierarchical level between different functional groups, especially nitrogen addition could cause a rapid increase in PR relative biomass, and thus led to the plant community structure developing towards the direction of increasing dominance of PR, and decreasing species diversity and community stability.
退化草地恢复过程中群落物种多样性及生产力对氮磷养分的响应
DOI:10.3864/j.issn.0578-1752.2020.13.009
[本文引用: 2]
【目的】 北方草地过度放牧和刈割造成植被严重退化和土壤养分缺乏。本研究探讨施用氮、磷肥料对退化草地植物群落多样性和生产力的影响。【方法】 在呼伦贝尔退化草地连续进行4年氮、磷添加试验,设置2个施氮水平(0、10 g N·m<sup>-2</sup>·a<sup>-1</sup>)和6个施磷水平(0、2、4、6、8和10 g P·m<sup>-2</sup>·a<sup>-1</sup>),共计12个处理,5次重复。每年5月下旬返青时施肥,8月中旬生物量最大时期进行群落调查,主要进行群落生产力、物种多样性及4种功能群相对生物量的分析。【结果】 2014—2017年物种丰富度降低明显,完全对照处理(既不施氮也不施磷)4年的物种丰富度平均分别是20.2、17.1、14.7、15.2种;对植物群落α多样性(丰富度和优势度指数)研究表明,氮添加降低了群落物种多样性,而磷添加及磷的累积效应均对群落物种多样性无影响。多样性指数年际间差异显著,氮和年交互作用对其具有显著影响。草地群落地上生产力(ANPP)年际间变化显著,2014年最高,2015年最低,变化范围从400 g·m<sup>-2</sup>降到100 g·m<sup>-2</sup>左右,干旱年份显著低于正常降水年份,磷对群落生产力影响较小,氮添加显著提高了群落地上生产力,而且氮和磷共同添加的影响大于磷单独添加;生长季正常降水年份,氮素是草甸草原植物生长的主要限制因子。氮添加显著影响了各功能群相对生物量,磷添加对各功能群相对生物量影响较小,各功能群相对生物量年际间具有显著差异。氮单独添加显著增加根茎型禾草的相对生物量,但降低了多年生杂类草和丛生禾草的相对生物量,而磷单独添加增加了多年生杂类草和豆科植物功能群的相对生物量,但没有影响根茎型禾草和丛生禾草的相对生物量;氮磷复合添加显著增加了多年生根茎型禾草的相对生物量,但显著降低了其他功能群的相对生物量。此外,氮、磷添加在一定程度上降低植物群落的稳定性。【结论】 氮、磷添加引起不同功能群植物的差异化响应导致群落间原有的等级关系发生变化,尤其是氮添加引起喜氮的根茎型禾草相对生物量迅速增加,最终导致植物群落组成向着根茎型禾草优势度增加的方向发展,物种多样性降低,导致群落稳定性下降。
Influence of nitrogen addition on the primary production in Nei Mongol degraded grassland
DOI:10.17521/cjpe.2016.0141
[本文引用: 1]
Aims Irrational utilization and global climate change have caused degradation of grassland ecosystems in northern China with low soil fertility, decreased vegetation coverage and productivity. Nitrogen addition has been suggested an effective way to enhance restoration of those degraded grasslands. In this study, we selected a typical steppe with three different degrading levels, including lightly, moderately and heavily degraded communities, in East Ujimqin, Nei Mongol. Our objectives of this study are to examine if and how nitrogen (N) addition can enhance restoration of those degraded grasslands Methods Treatments with four levels of N addition (0, 5.0, 10.0 and 20.0 g N·m-2·a-1) were conducted to each of the three degraded communities from 2014 to 2015. Nitrogen was applied as urea in June of both years. Aboveground biomass was collected at the species level in 1 m × 1 m plot in August each year, all species biomass was summed as net primary production, and biomass of plant functional groups was calculated by perennial rhizome grasses, perennial bunchgrasses, perennial forbs, shrubs and semi-shrubs, annuals and biennials.Important findings Our results showed that the high (20.0 g N·m-2·a-1) and medium level N addition (10.0 g N·m-2·a-1) significantly increased the aboveground biomass of the slightly degraded community by 53.1% and 51.6% compared with no N addition. N addition had no significant effects on the moderately and heavily degraded communities. N addition with high and medium levels increased aboveground biomass of perennial rhizome grasses by 45.1% and 47.7%, but decreased that of perennial forbs by 37.4% and 42.1% at the slightly degraded community. Our results indicated that N addition could increase the growth of perennial rhizome grasses, and the growth of perennial forbs was suppressed consequently. Our results suggest that even the application of N fertilizers can only be helpful to restoration of those slightly degraded grasslands. Besides, N addition had no significant effects on species richness in different degraded communities indicating the fact that the study may not last long enough. For the purpose of increasing aboveground biomass of degraded grassland, we should not only consider the type and quantity of fertilization, but also the attribute of the degraded communities. In addition, the response of degraded community in biomass may strongly be impacted by degrading level of studied grassland.
氮素添加对内蒙古退化草原生产力的短期影响
DOI:10.17521/cjpe.2016.0141
[本文引用: 1]
不合理的土地利用方式以及气候变化导致我国草原生态系统普遍退化, 主要表现在土壤养分降低、植被覆盖度减少、生产力下降。外源氮素添加是促进退化草原尽快恢复的一项重要措施, 尤其是对那些退化较为严重的草原。该研究选取内蒙古东乌珠穆沁旗不同退化程度(轻度、中度和重度)的草原群落, 于2014-2015年开展连续两年的氮素添加实验, 设置对照(不添加)、低水平(5.0 g N·m<sup>-2</sup>·a<sup>-1</sup>)、中水平(10.0 g N·m<sup>-2</sup>·a<sup>-1</sup>)和高水平(20.0 g N·m<sup>-2</sup>·a<sup>-1</sup>) 4种氮素添加处理, 探讨退化草原群落生产力在恢复过程中对不同水平氮素添加的响应。结果显示: (1)高、中水平氮素添加显著提高了轻度退化群落的地上生物量, 分别比对照增加了53.1%、51.6%, 氮素各水平添加对中度、重度群落地上生物量无显著影响; (2)高、中水平氮素添加显著提高了轻度退化群落中多年生根茎型禾草地上生物量, 分别比对照增加了45.1%、47.7%, 而多年生杂类草地上生物量分别比对照减少了37.4%、42.1%, 但中度和重度退化群落各功能群生物量的响应不显著; (3)三种水平氮素添加对轻、中、重度退化群落物种丰富度在试验期间均没有显著影响。研究结果表明氮素添加有助于提高轻度退化草原中多年生根茎型禾草的生物量, 进而提高群落的生物量, 但多年生杂类草会被逐渐替代, 导致生物量降低, 可见施氮对草原恢复的影响取决于草原退化 程度。
Cycling of mineral nutrients in pasture ecosystems
Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe
DOI:10.1111/gcb.12611
PMID:24753127
[本文引用: 1]
Humans are both intentionally (fertilization) and unintentionally (atmospheric nutrient deposition) adding nutrients worldwide. Increasing availability of biologically reactive nitrogen (N) is one of the major drivers of plant species loss. It remains unclear, however, whether plant diversity will be equally reduced by inputs of reactive N coming from either small and frequent N deposition events or large and infrequent N fertilization events. By independently manipulating the rate and frequency of reactive N inputs, our study teases apart these potentially contrasting effects. Plant species richness decreased more quickly at high rates and at low frequency of N addition, which suggests that previous fertilization studies have likely over-estimated the effects of N deposition on plant species loss. N-induced species loss resulted from both acidification and ammonium toxicity. Further study of small and frequent N additions will be necessary to project future rates of plant species loss under increasing aerial N deposition. © 2014 John Wiley & Sons Ltd.
/
〈 |
|
〉 |
