植物生态学报 ›› 2025, Vol. 49 ›› Issue (1): 138-147.DOI: 10.17521/cjpe.2024.0124 cstr: 32100.14.cjpe.2024.0124
刘伟1, 郝毅晴1,2, 孙佳美1, 王璟1, 范冰3, 郝建玺3, 金那申4, 潘庆民1,2,*()
收稿日期:
2024-04-23
接受日期:
2024-09-28
出版日期:
2025-01-20
发布日期:
2025-03-08
通讯作者:
* (pqm@ibcas.ac.cn)基金资助:
LIU Wei1, HAO Yi-Qing1,2, SUN Jia-Mei1, WANG Jing1, FAN Bing3, HAO Jian-Xi3, JIN Na-Shen4, PAN Qing-Min1,2,*()
Received:
2024-04-23
Accepted:
2024-09-28
Online:
2025-01-20
Published:
2025-03-08
Supported by:
摘要:
退化草原恢复是中国草原管理与可持续利用面临的瓶颈问题。养分亏缺是退化草原难以恢复的一个主要限制因子。土壤养分调控的本质是在补充土壤养分的前提下, 调控植物群落组成, 恢复退化草原原有优势种, 提高生产力和优质牧草比例, 并减少养分添加导致的负面环境效应。该研究基于在呼伦贝尔退化草原开展的恢复实验, 依据退化草原土壤养分亏缺现状、植物生长的限制元素以及不同物种的养分需求特性, 提出了退化草原土壤养分调控技术, 其关键过程包括“以需定量、氮磷协同、补充微肥、早春施肥、深施入土、条带作业” 6个技术环节。土壤养分调控技术在我国呼伦贝尔草原具有广泛的应用前景。退化草原生产功能和生态功能的提升对于提高农牧民收入、保障我国饲草安全、维护我国北方生态安全和民族团结具有重要意义。
刘伟, 郝毅晴, 孙佳美, 王璟, 范冰, 郝建玺, 金那申, 潘庆民. 呼伦贝尔退化草原土壤养分调控的原理与技术. 植物生态学报, 2025, 49(1): 138-147. DOI: 10.17521/cjpe.2024.0124
LIU Wei, HAO Yi-Qing, SUN Jia-Mei, WANG Jing, FAN Bing, HAO Jian-Xi, JIN Na-Shen, PAN Qing-Min. Theory and application of soil nutrient regulation for degraded steppe in Hulun Buir, China. Chinese Journal of Plant Ecology, 2025, 49(1): 138-147. DOI: 10.17521/cjpe.2024.0124
图3 添加不同数量的营养元素对呼伦贝尔草原地上生物量的影响(平均值±标准误)。8种养分添加因子分别为氮、磷、钾、钙、硫、镁、铁与微量元素(碘、硼、锰、锌、钠、钼、铜、钴和氯作为一个因子)。N0P0, 不添加氮磷元素; N1P0, 添加氮; N1P1, 氮磷共同添加。氮磷添加量分别为20和2.95 g·m-2·a-1 (Peng et al., 2022)。
Fig. 3 Effects of different numbers of added nutrients on aboveground biomass in Hulun Buir steppe (mean ± SE). Eight nutrient factors are nitrogen, phosphorus, potassium, calcium, sulfur, magnesium, iron and micronutrients (iodine, boron, manganese, zinc, sodium, molybdenum, copper, cobalt and chlorine as one factor). N0P0, no nitrogen and phosphorus addition; N1P0, nitrogen addition; N1P1, nitrogen and phosphorus co-addition. The amount of nitrogen and phosphorus added is 20 and 2.95 g·m-2·a-1 (modified from Peng et al., 2022).
图4 不同氮磷比对呼伦贝尔草原地上生物量的影响(平均值±标准误, n = 12)。不同小写字母代表差异显著(p < 0.05)。
Fig. 4 Effects of different nitrogen to phosphorus ratio (N:P) on aboveground biomass in Hulun Buir steppe (mean ± SE, n = 12). Different lowercase letters indicate significant differences (p < 0.05).
图5 不同养分添加时期对呼伦贝尔草原地上生物量(A)、羊草地上生物量(B)和羊草密度(C)的影响(平均值±标准误, n = 6)。对照为不施肥处理, 4月和7月表示施肥时间。氮磷添加量分别为10和3 g·m-2。不同小写字母代表不同处理间差异显著(p < 0.05)。
Fig. 5 Aboveground biomass of all species (A), Leymus chinensis (B) and the density of Leymus chinensis (C) under different timing of nutrient addition in Hulun Buir steppe (mean ± SE, n = 6). CK stands for no fertilization. April and July stand for fertilization time. Nutrient additions are 10 and 3 g·m-2, respectively. Different lowercase letters indicate significant differences among different treatments (p < 0.05).
图6 不同养分添加处理下呼伦贝尔草原地上生物量(A)、羊草地上生物量比例(B)和物种丰富度(C)的变化(平均值±标准误, n = 5)。CK、N1P1、N2P2、N3P3、N4P4、N5P5分别表示对照、添加4.8 g N·m-2 + 1.5 g P·m-2、7.2 g N·m-2 + 2.25 g P·m-2、9.6 g N·m-2 + 3.0 g P·m-2、12.0 g N·m-2 + 3.75 g P·m-2、14.4 g N·m-2 + 4.5 g P·m-2; N, 氮; P, 磷。不同小写字母代表不同处理间差异显著(p < 0.05); ns, p > 0.05。
Fig. 6 Aboveground biomass (A), biomass proportion of Leymus chinensis (B) and species richness (C) under different nutrient addition treatments in Hulun Buir steppe (mean ± SE, n = 5). CK, N1P1, N2P2, N3P3, N4P4, N5P5 stand for no addition, addition of 4.8 g N·m-2 + 1.5 g P·m-2, 7.2 g N·m-2 + 2.25 g P·m-2, 9.6 g N·m-2 + 3.0 g P·m-2, 12.0 g N·m-2 + 3.75 g P·m-2, 14.4 g N·m-2 + 4.5 g P·m-2, respectively; N, nitrogen; P, phosphorus. Different lowercase letters indicate significant differences (p < 0.05); ns, p > 0.05.
土壤全氮含量 Soil total N content (g·kg-1) | 土壤全磷含量 Soil total P content (g·kg-1) | 氮施用量 N application rate (kg·hm-2) | 磷施用量 P application rate (kg·hm-2) |
---|---|---|---|
<1.5 | <0.3 | 80-100 | 20-25 |
1.5-2.5 | 0.3-0.4 | 60-80 | 15-20 |
≥2.5 | ≥0.4 | 40-60 | 10-15 |
表1 呼伦贝尔退化草原土壤氮磷含量及对应氮磷施用量
Table 1 Soil nitrogen (N) and phosphorus (P) content in Hulun Buir degraded grassland and corresponding nitrogen and phosphorus application rates
土壤全氮含量 Soil total N content (g·kg-1) | 土壤全磷含量 Soil total P content (g·kg-1) | 氮施用量 N application rate (kg·hm-2) | 磷施用量 P application rate (kg·hm-2) |
---|---|---|---|
<1.5 | <0.3 | 80-100 | 20-25 |
1.5-2.5 | 0.3-0.4 | 60-80 | 15-20 |
≥2.5 | ≥0.4 | 40-60 | 10-15 |
图7 土壤养分调控技术应用对地上生物量(A)、优质牧草地上生物量比例(B)、羊草密度(C)、物种丰富度(D)的影响(平均值±标准误, n = 5)及航拍图(E)。
Fig. 7 Effects of nutrient regulation and restoration technology on aboveground biomass (A), the ratio of high-quality forage (B), the density of Leymus chinensis (C), species richness (D) (mean ± SE, n = 5) and the aerial photography (E).
[1] | Bai Y, Wu J, Clark CM, Naeem S, Pan Q, Huang J, Zhang L, Han X (2010). Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from Inner Mongolia Grasslands. Global Change Biology, 16, 358-372. |
[2] | Bardgett RD, Bullock JM, Lavorel S, Manning P, Schaffner U, Ostle N, Chomel M, Durigan G, Fry EL, Johnson D, Lavallee JM, Le Provost G, Luo S, Png K, Sankaran M, et al. (2021). Combatting global grassland degradation. Nature Reviews Earth & Environment, 2, 720-735. |
[3] | Chen ZZ, Huang DH, Zhang HF (1985). The characteristics of element chemistry of 122 plant on the Xilin River velley, Inner Mongolia//Inner Mongolia grassland ecosystem research station, the Chinese Academy of Sciences. Research on Grassland Ecosystem. Science Press, Beijing. 112-131. |
[陈佐忠, 黄德华, 张鸿芳 (1985). 内蒙古锡林河流域122种植物的元素化学特征//中国科学院内蒙古草原生态系统定位研究站, 草原生态系统研究. 科学出版社, 北京. 112-131.] | |
[4] | Du E, de Vries W, Han W, Liu X, Yan Z, Jiang Y (2016). Imbalanced phosphorus and nitrogen deposition in China’s forests. Atmospheric Chemistry and Physics, 16, 8571-8579. |
[5] | Du E, Terrer C, Pellegrini AFA, Ahlström A, van Lissa CJ, Zhao X, Xia N, Wu X, Jackson RB (2020). Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 13, 221-226. |
[6] |
Dudley N, Eufemia L, Fleckenstein M, Periago ME, Petersen I, Timmers JF (2020). Grasslands and savannahs in the UN decade on ecosystem restoration. Restoration Ecology, 28, 1313-1317.
DOI |
[7] | Fang JY, Geng XQ, Zhao X, Shen HH, Hu HF (2018). How many areas of grasslands are there in China? Chinese Science Bulletin, 63, 1731-1739. |
[方精云, 耿晓庆, 赵霞, 沈海花, 胡会峰 (2018). 我国草地面积有多大? 科学通报, 63, 1731-1739.] | |
[8] | Fang JY, Pan QM, Gao SQ, Jing HC, Zhang WH (2016). “Small vs. Large Area” principle: protecting and restoring a large area of natural grassland by establishing a small area of cultivated pasture. Pratacultural Science, 33, 1913-1916. |
[方精云, 潘庆民, 高树琴, 景海春, 张文浩 (2016). “以小保大”原理: 用小面积人工草地建设换取大面积天然草地的保护与修复. 草业科学, 33, 1913-1916.] | |
[9] | Giese M, Brueck H, Gao Y, Lin S, Steffens M, Kögel-Knabner I, Glindemann T, Susenbeth A, Taube F, Butterbach-Bahl K, Zheng X, Hoffmann C, Bai Y, Han X (2013). N balance and cycling of Inner Mongolia typical steppe: a comprehensive case study of grazing effects. Ecological Monographs, 83, 195-219. |
[10] |
Harpole WS, Ngai JT, Cleland EE, Seabloom EW, Borer ET, Bracken MES, Elser JJ, Gruner DS, Hillebrand H, Shurin JB, Smith JE (2011). Nutrient co-limitation of primary producer communities. Ecology Letters, 14, 852-862.
DOI PMID |
[11] | He JS, Liu ZP, Yao T, Sun SC, Lü Z, Hu XW, Cao GM, Wu XW, Li L, Bu HY, Zhu JX (2020). Analysis of the main constraints and restoration techniques of degraded grassland on the Tibetan Plateau. Science & Technology Review, 38(17), 66-80. |
[贺金生, 刘志鹏, 姚拓, 孙书存, 吕植, 胡小文, 曹广民, 吴新卫, 李黎, 卜海燕, 朱剑霄 (2020). 青藏高原退化草地恢复的制约因子及修复技术. 科技导报, 38(17), 66-80.]
DOI |
|
[12] | He NP, Yu Q, Wu L, Wang YS, Han XG (2008). Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of Northern China. Soil Biology & Biochemistry, 40, 2952-2959. |
[13] | Humbert JY, Dwyer JM, Andrey A, Arlettaz R (2016). Impacts of nitrogen addition on plant biodiversity in mountain grasslands depend on dose, application duration and climate: a systematic review. Global Change Biology, 22, 110-120. |
[14] | Jiang Y, Li TP, Feng X, Wang RZ, Zhang YG (2019). Effects of exogenous sulfur input on nutrient availability in soil-plant system of grassland. Chinese Journal of Ecology, 38, 1192-1201. |
[姜勇, 李天鹏, 冯雪, 王汝振, 张玉革 (2019). 外源硫输入对草地土壤-植物系统养分有效性的影响. 生态学杂志, 38, 1192-1201.] | |
[15] | Korfanta NM, Mobley ML, Burke IC (2015). Fertilizing western rangelands for ungulate conservation: an assessment of benefits and risks. Wildlife Society Bulletin, 39, 1-8. |
[16] | Lemus RW (2012). Strategies for better management of pasture fertilization. [2024-08-28]. https://extension.msstate.edu/publications/strategies-for-better-management-pasture-fertilization. |
[17] | Li B, Sun HL, Zeng SD, Pu HX (1980). Discussion on grassland vegetation resources and their utilization direction in Hulunbeier pastoral area. Natural Resources, 2(4), 30-36. |
[李博, 孙鸿良, 曾泗弟, 浦汉昕 (1980). 呼伦贝尔牧区草场植被资源及其利用方向的探讨. 自然资源, 2(4), 30-36.] | |
[18] | Li SL, Chen YJ, Jia SH, Wang FJ (1993). Study on the water regime of dark chestnut soil and the aboveground biomass forecast of an Eurolepidium chinese community. Chinese Bulletin of Botany, (S1), 3. |
[李绍良, 陈有君, 贾树海, 王芳玖 (1993). 羊草草原暗栗钙土的水分状况及植物群落地上生物量预报. 植物学通报, (S1), 3.] | |
[19] | Li W, Gan X, Jiang Y, Cao F, Lü XT, Ceulemans T, Zhao C (2022). Nitrogen effects on grassland biomass production and biodiversity are stronger than those of phosphorus. Environmental Pollution, 309, 119720. DOI: 10.1016/j.envpol.2022.119720. |
[20] | Li YH (1988). The divergence and convergence of an Eurolepidium chinense steppe and Stipa grandis steppe under the grazing influence in Xilin River valley, Inner Mongolia. Acta Phytoecologica et Geobotanica Sinica, 12, 189-196. |
[李永宏 (1988). 内蒙古锡林河流域羊草草原和大针茅草原在放牧影响下的分异和趋同. 植物生态学与地植物学学报, 12, 189-196.] | |
[21] | Liu JJ, Liu JH, Cui MM, Chen X, Liu JL, Chen JD, Chen AQ, Xu GH (2022). Investigate the effect of potassium on nodule symbiosis and uncover an HAK/KUP/KT member, GmHAK5, strongly responsive to root nodulation in soybean. Journal of Plant Biology, 65, 459-471. |
[22] | Liu X, Zhang Y, Han W, Tang A, Shen J, Cui Z, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang F (2013). Enhanced nitrogen deposition over China. Nature, 494, 459-462. |
[23] | Liu ZL, Wang W, Hao DY, Liang CZ (2002). Probes on the degeneration and recovery succession mechanisms of Inner Mongolia steppe. Journal of Arid Land Resources and Environment, 16, 84-91. |
[刘钟龄, 王炜, 郝敦元, 梁存柱 (2002). 内蒙古草原退化与恢复演替机理的探讨. 干旱区资源与环境, 16, 84-91.] | |
[24] | National Forestry and Grassland Administration(2021). 国务院新闻办就“十四五”林业草原保护发展规划举行发布会. [2024-08-28]. http://www.forestry.gov.cn/main/5927/20210823/085429109469114.html. |
[国家林业和草原局 (2021). The State Council Information Office held a press conference on the “14th Five-Year Plan” forestry and grassland protection and development plan. [2024-08-28]. http://www.forestry.gov.cn/main/5927/20210823/085429109469114.html.] | |
[25] | Niu SL, Jiang GM (2004). The importance of legume in China grassland ecosystem and the advances in physiology and ecology studies. Chinese Bulletin of Botany, 21, 9-18. |
[牛书丽, 蒋高明 (2004). 豆科植物在中国草原生态系统中的地位及其生理生态研究. 植物学通报, 21, 9-18.] | |
[26] | Pan QM, Xue JG, Tao J, Xu MY, Zhang WH (2018). Current status of grassland degradation and measures for grassland restoration in Northern China. Chinese Science Bulletin, 63, 1642-1650. |
[潘庆民, 薛建国, 陶金, 徐明月, 张文浩 (2018). 中国北方草原退化现状与恢复技术. 科学通报, 63, 1642-1650.] | |
[27] | Pan QM, Yang YH, Huang JH (2023). Limiting factors of degraded grassland restoration in China and related basic scientific issues. Bulletin of National Natural Science Foundation of China, 37, 571-579. |
[潘庆民, 杨元合, 黄建辉 (2023). 我国退化草原恢复的限制因子及需要解决的基础科学问题. 中国科学基金, 37, 571-579.] | |
[28] | Peng Y, Yang J, Leitch IJ, Guignard MS, Seabloom EW, Cao D, Zhao F, Li H, Han X, Jiang Y, Leitch AR, Wei CZ (2022). Plant genome size modulates grassland community responses to multi-nutrient additions. New Phytologist, 236, 2091-102. |
[29] | Peng YF, Chen HYH, Yang YH (2020). Global pattern and drivers of nitrogen saturation threshold of grassland productivity. Functional Ecology, 34, 1979-1990. |
[30] |
Wang DL, Wang L, Xin XP, Li LH, Tang HJ (2020). Systematic restoration for degraded grasslands: concept, mechanisms and approaches. Scientia Agricultura Sinica, 53, 2532-2540.
DOI |
[王德利, 王岭, 辛晓平, 李凌浩, 唐华俊 (2020). 退化草地的系统性恢复: 概念、机制与途径. 中国农业科学, 53, 2532-2540.]
DOI |
|
[31] |
Wang HY, Chang JF, Wang ZW (2020). Responses of community species diversity and productivity to nitrogen and phosphorus addition during restoration of degraded grassland. Scientia Agricultura Sinica, 53, 2604-2613.
DOI |
[王洪义, 常继方, 王正文 (2020). 退化草地恢复过程中群落物种多样性及生产力对氮磷养分的响应. 中国农业科学, 53, 2604-2613.]
DOI |
|
[32] |
Wang J, Wang SS, Qiao XG, Li A, Xue JG, Hasi M, Zhang XY, Huang JH (2016). Influence of nitrogen addition on the primary production in Nei Mongol degraded grassland. Chinese Journal of Plant Ecology, 40, 980-990.
DOI |
[王晶, 王姗姗, 乔鲜果, 李昂, 薛建国, 哈斯木其尔, 张学耀, 黄建辉 (2016). 氮素添加对内蒙古退化草原生产力的短期影响. 植物生态学报, 40, 980-990.]
DOI |
|
[33] | Wilkinson S, Lowrey R (1973). Cycling of mineral nutrients in pasture ecosystems. Chemistry and Biochemistry of Herbage, 1, 247-351. |
[34] |
Zhang Y, Lü X, Isbell F, Stevens C, Han X, He N, Zhang G, Yu Q, Huang J, Han X (2014). Rapid plant species loss at high rates and at low frequency of N addition in temperate steppe. Global Change Biology, 20, 3520-3529.
DOI PMID |
[1] | 李琳 黄佳芳 丁中浩 郭萍萍 蔡芫镔 李诗华 李云琴 罗敏. 淹水增加对短叶茳芏潮汐沼泽湿地净生态系统二氧化碳交换量的影响[J]. 植物生态学报, 2025, 49(预发表): 1-0. |
[2] | 王贝贝 吴苏 王苗苗 胡锦涛. SIF的辐射、结构与生理信息在作物GPP估算中的贡献比例:多时间尺度分析[J]. 植物生态学报, 2025, 49(预发表): 1-0. |
[3] | 郝杰 刁华杰 苏原 武帅楷 高阳阳 梁雯君 牛慧敏 杨倩雯 常婕 王袼 许雯丽 马腾飞 董宽虎 王常慧. 降水调控农牧交错带盐渍化草地净初级生产力对氮添加及刈割的响应[J]. 植物生态学报, 2025, 49(预发表): 1-0. |
[4] | 孙佳美, 安冰儿, 刘伟, 王璟, 潘庆民. 草原植物繁殖体调控技术: “蘖芽岛”的培育与移植[J]. 植物生态学报, 2025, 49(1): 129-137. |
[5] | 牛亚平, 高晓霞, 姚世庭, 杨元合, 彭云峰. 退化高寒草地植物多样性和功能群组成与地上生产力的关系[J]. 植物生态学报, 2025, 49(1): 83-92. |
[6] | 王音, 同小娟, 张劲松, 李俊, 孟平, 刘沛荣, 张静茹. 干旱对栓皮栎人工林碳水通量及其耦合的影响[J]. 植物生态学报, 2024, 48(9): 1157-1171. |
[7] | 张梦迪, 向官海, 文艺瑶, 王欢, 呼格吉勒, 白永飞, 王忠武, 郑淑霞. 灌丛斑块和草本斑块碳交换对季节性降水增加的响应——基于地上净初级生产力和叶面积指数标准化的比较分析[J]. 植物生态学报, 2024, 48(8): 1035-1049. |
[8] | 白皓然, 侯盟, 刘艳杰. 少花蒺藜草入侵与干旱对羊草群落生产力的影响机制[J]. 植物生态学报, 2024, 48(5): 577-589. |
[9] | 杨宇萌, 来全, 刘心怡. 气候变化和人类活动对内蒙古植被总初级生产力的定量影响[J]. 植物生态学报, 2024, 48(3): 306-316. |
[10] | 袁鹤洋, 郝珉辉, 何怀江, 张春雨, 赵秀海. 长白山物种丰富度与物种组成对森林生产力的影响及其随演替的变化[J]. 植物生态学报, 2024, 48(12): 1602-1611. |
[11] | 黄砺成, 莫兴国. 海河流域生态系统净初级生产力对气象干旱的响应与弹性[J]. 植物生态学报, 2024, 48(10): 1256-1273. |
[12] | 代景忠, 白玉婷, 卫智军, 张楚, 辛晓平, 闫玉春, 闫瑞瑞. 羊草功能性状对施肥的动态响应[J]. 植物生态学报, 2023, 47(7): 943-953. |
[13] | 李伟, 张荣. 亚高寒草甸群落结构决定群落生产力实例验证[J]. 植物生态学报, 2023, 47(5): 713-723. |
[14] | 葛萍, 李昂, 王银柳, 姜良超, 牛国祥, 哈斯木其尔, 王彦兵, 薛建国, 赵威, 黄建辉. 草甸草原温室气体排放对氮添加量的非线性响应[J]. 植物生态学报, 2023, 47(11): 1483-1492. |
[15] | 杨元合, 张典业, 魏斌, 刘洋, 冯雪徽, 毛超, 徐玮婕, 贺美, 王璐, 郑志虎, 王媛媛, 陈蕾伊, 彭云峰. 草地群落多样性和生态系统碳氮循环对氮输入的非线性响应及其机制[J]. 植物生态学报, 2023, 47(1): 1-24. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
Copyright © 2022 版权所有 《植物生态学报》编辑部
地址: 北京香山南辛村20号, 邮编: 100093
Tel.: 010-62836134, 62836138; Fax: 010-82599431; E-mail: apes@ibcas.ac.cn, cjpe@ibcas.ac.cn
备案号: 京ICP备16067583号-19